Introduction to Visualization and Computer Graphics

Size: px
Start display at page:

Download "Introduction to Visualization and Computer Graphics"

Transcription

1 Introduction to Visualization and Comuter Grahics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Comuter Grahics Grids and Interolation

2 Next Tuesday No lecture next Tuesday!

3 Introduction to Visualization and Comuter Grahics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Grids and Interolation Structured Grids Unstructured Grids

4 Digital Data

5 Scientific Data

6 Data Reresentation R n R m satial domain X data values indeendent variables deendent variables

7 Data Reresentation In most cases, the visualization data reresent a continuous real object, e.g., an oscillating membrane, a velocity field around a body, an organ, human tissue, etc. This object lives in an n-dimensional sace - the domain Usually, the data is only given at a finite set of locations, or samles, in sace and/or time Remember imaging rocesses like numerical simulation and CTscanning, note similarity to ixel images We call this a discrete structure, or a discrete reresentation of a continuous object

8 Discrete reresentations Data Reresentation We usually deal with the reconstruction of a continuous real object from a given discrete reresentation Discrete structures consist of oint samles Often, we build grids/meshes that connect neighboring samles

9 Discrete reresentations Data Reresentation We usually deal with the reconstruction of a continuous real object from a given discrete reresentation? Discrete structures consist of oint samles Often, we build grids/meshes that connect neighboring samles

10 Data Reresentation Grid terminology 0D: grid vertex (grid oint) 1D: grid line 2D: grid face 3D: grid voxel grid vertices grid lines grid faces grid cell: largest-dimensional element in a grid 2D: grid face 3D: grid voxel

11 Grids and Interolation Data Connectivity There are different tyes of grids: Structured grids connectivity is imlicitly given. Block-structured grids combination of several structured grids Unstructured grids connectivity is exlicitly given. Hybrid grids combination of different grid tyes

12 Grids Structured grids Structured refers to the imlicitly given connectivity between the grid vertices We distinguish different tyes of structured grids regarding the imlicitly or exlicitly given coordinate ositions of the grid vertices uniform grid imlicitly given coordinates rectilinear grid semi-imlicitly given coordinates curvilinear grid exlicitly given coordinates

13 Grids and Interolation Structured grids Number of grid vertices: D x, D y, D z We can address every grid vertex with an index tule (i, j, k) 0 i < D x 0 j < D y 0 k < D z i, j = 2,3 i, j = 2,3 i, j = 2,3 D y D y D y D x uniform grid imlicitly given coordinates D x rectilinear grid semi-imlicitly given coordinates D x curvilinear grid exlicitly given coordinates

14 Grids and Interolation Structured grids Number of grid vertices: D x, D y, D z We can address every grid cell with an index tule (i, j, k) 0 i < D x 1 0 j < D y 1 0 k < D z 1 Number of cells: D x 1 D y 1 (D z 1) D y D y D y D x uniform grid imlicitly given coordinates D x rectilinear grid semi-imlicitly given coordinates D x curvilinear grid exlicitly given coordinates

15 Regular or uniform grids Grids and Interolation very imortant Cells are rectangles or rectangular cuboids of the same size All grid lines are arallel to the axes To define a uniform grid, we need the following: Bounding box: (x min, y min, z min ) - (x max, y max, z max ) Number of grid vertices in each dimension: D x, D y, D z Cell size: d x, d y, d z

16 Grids and Interolation Regular or uniform grids Well suited for image data (medical alications) Coordinate cell is very simle and chea Global search is good enough; local search not required Coordinate of a grid vertex:

17 Grids and Interolation Cartesian grid Secial case of a uniform grid: d x = d y = d z Consists of squares (2D), cubes (3D)

18 Grids and Interolation Rectilinear grids Cells are rectangles of different sizes All grid lines are arallel to the axes Vertex locations are inferred from ositions of grid lines for each dimension: XLoc = {0.0, 1.5, 2.0, 5.0, } YLoc = {-1.0, 0.3, 1.0, 2.0, } ZLoc = {3.0, 3.5, 3.6, 4.1, } Coordinate cell still quite simle

19 Grids and Interolation Curvilinear grids Vertex locations are exlicitly given XYZLoc = {(0.0, -1.0, 3.0), (1.5, 0.3, 3.5), (2.0, 1.0, 3.6), } Cells are quadrilaterals or cuboids Grid lines are not (necessarily) arallel to the axes 2D curvilinear grid 3D curvilinear grids

20 Grids and Interolation Curvilinear grids Coordinate cell: Local search within last cell or its immediate neighbors Global search via quadtree/octree 2D curvilinear grid 3D curvilinear grids

21 Grids and Interolation Block-structured grids combination of several structured grids DFG-funded SFB 557 Erik Wassen, TU Berlin, Germany 2008

22 Visualization Scenarios Demands on data storage, an examle: Ahmed body Block-structured grid with 52 blocks Each block is a curvilinear grid 17 million grid cells in total Temoral resolution: a article needs time stes from front to back of the Ahmed body DFG-funded SFB 557 Erik Wassen, TU Berlin, Germany 2008

23 Visualization Scenarios Demands on data storage, an examle: 17 million grid cells x time stes x 7 variables X 8 bytes er double = 8.66 terra bytes (60.62 TB for total time stes) DFG-funded SFB 557 Erik Wassen, TU Berlin, Germany 2008 Do not save every time ste, not every variable, and not every block.

24 Grids and Interolation Unstructured grids 2D unstructured grid consisting of triangles 3D unstructured grid consisting of tetrahedra (from TetGen user manual)

25 Grids and Interolation Unstructured grids Vertex locations and connectivity exlicitly given Linear interolation within a triangle/tetrahedron using barycentric coordinates Coordinate triangle/tetra: Local search within last triangle/tetra or its immediate neighbors Global search via quadtree/octree 3D unstructured grid consisting of tetrahedra (from TetGen user manual)

26 Grids and Interolation How to store unstructured grids? Different requirements: Efficient storage bytes er face / bytes er vertex Efficient access of face / vertex roerties (e.g., osition) Efficient traversal e.g., neighboring face, 1-ring of a vertex,... Requirements are cometing

27 Grids and Interolation Face set Store faces 3 ositions no connectivity ( match ositions ) Examle: STL very simle structure (too simle, unractical!) easily ortable

28 Grids and Interolation Shared vertex vertex table stores ositions triangle table stores indices into vertices No exlicit connectivity Examles: OFF, OBJ, PLY Quite simle and efficient Enables efficient oerations on static meshes

29 Grids and Interolation Face-based connectivity vertices store osition face reference faces store 3 vertex references references to 3 neighboring faces

30 Grids and Interolation Edge-based connectivity vertex stores osition reference to 1 edge edge stores references to 2 vertices 2 faces 4 edges face stores reference to 1 edge

31 Halfedge based connectivity Half-edge based connectivity vertex stores osition reference to 1 half-edge half-edge stored references to 1 vertex 1 face 1, 2, or 3 half-edges face stores reference to 1 half-edge

32 Grids and Interolation Half-edge based connectivity

33 Grids and Interolation Half-edge based connectivity: Traversal Building blocks Vertex to (outgoing) halfedge half-edge to next (revious) halfedge half-edge to neighboring half-edge half-edge to face half-edge to start (end) vertex Examle: Traverse around vertex (1-ring) enumerate vertices/faces/half-edges

34 1-ring traversal Start at vertex

35 1-ring traversal Start at vertex Outgoing halfedge

36 1-ring traversal Start at vertex Outgoing halfedge Oosite halfedge

37 1-ring traversal Start at vertex Outgoing halfedge Oosite halfedge Next half-egde

38 1-ring traversal Start at vertex Outgoing halfedge Oosite halfedge Next half-egde Oosite...

39 1-ring traversal Start at vertex Outgoing halfedge Oosite halfedge Next half-egde Oosite... Next......

40 Half-edge based libraries CGAL Comutational geometry Free for non-commercial use Oen Mesh Mesh rocessing Free, LGPL license gmu (gmu-lite) rorietary, directed edges

41 Grids and Interolation Unstructured grids 2D unstructured grid consisting of quads Source: htts://

42 Grids and Interolation Hybrid grids combination of different grid tyes 2D hybrid grid

43 Introduction to Visualization and Comuter Grahics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Grids and Interolation Linear, Bilinear, Trilinear Interolation in Structured Grids Gradients Linear Interolation in Unstructured Grids

44 Interolation A grid consists of a finite number of samles The continuous signal is known only at a few oints (data oints) In general, data is needed in between these oints By interolation we obtain a reresentation that matches the function at the data oints Reconstruction at any other oint ossible?

45 Interolation Simlest aroach: Nearest-Neighbor Interolation Assign the value of the nearest grid oint to the samle.

46 Interolation Linear Interolation (in 1D domain) Domain oints, scalar function General: Secial Case: Basis Coefficients

47 Interolation Linear Interolation (in 1D domain) Samle values Continuity (discontinuous first derivative) Use higher order interolation for smoother transition, e.g., cubic interolation

48 Interolation Interolation in 2D, 3D, 4D, Bi-Linear Bi-Cubic Tensor Product Interolation Perform linear / cubic interolation in each x,y,z direction searately

49 Interolation Bilinear Interolation very imortant 2D, bi-linear interolate twice in x direction and then once in y direction

50 Grids and Interolation Examle: Bi-linear interolation in a 2D cell Reeated linear interolation

51 Interolation Trilinear Interolation 3D, tri-linear interolate four times in x direction, twice in y direction, and once in z direction

52 Function Derivatives Function Derivative Estimation Called Gradients for multidimensional functions Have a lot of imortant alications (e.g., normal for volume rendering, critical oint classification for vector field toology ) vector of artial derivatives Describes direction of steeest ascend

53 Function Derivatives Two ways to estimate gradients: Direct derivation of interolation formula Finite differences schemes

54 Field Function Derivatives Field Function Derivatives, Bi-Linear derive this interolation formula constant in x direction constant in y direction

55 Field Function Derivatives Problem of exact linear function differentiation: discontinuous gradients (Piecewise) linear function Gradient Solution: Use higher order interolation scheme (cubic) Use finite difference estimation

56 Finite Differences Finite Differences Schemes Aly Taylor series exansion around samles Continuous function Linear function Taylor exansion Forward difference Backward difference

57 Finite Differences Finite Differences Schemes Difference Central difference Central differences have higher aroximation order than forward / backward differences

58 Finite Differences Schemes, Higher order derivatives Finite Differences 1D Examle, linear interolation (Piecewise) linear function Central differences

59 Interolation in Triangles Piecewise Linear Interolation in Triangle Meshes

60 Interolation in Triangles Linear Interolation in a Triangle There is exactly one linear function that satisfies the interolation constraint A linear function can be written as Polynomial can be obtained by solving the linear system Linear in and Interolated values along any ray in the lane sanned by the triangle are linear along that ray

61 Barycentric Coordinates Barycentric Coordinates: Planar case: Barycentric combinations of 3 oints Area formulation: 1 : 3, with )),, ( ( )),, ( (, )),, ( ( )),, ( (, )),, ( ( )),, ( ( area area area area area area 1 2 3

62 Barycentric Coordinates Barycentric Coordinates: Linear formulation: ) (

63 Barycentric Coordinates 3, with :

64 Barycentric Interolation Barycentric Interolation in a Triangle very imortant The linear function of a triangle can be comuted at any oint as with (Barycentric Coordinates) This also holds for the coordinate of the triangle: Can be used to solve for unknown coefficients :

65 Barycentric Interolation Barycentric Interolation in a Triangle Solution of (e.g. Cramer's rule): ith Inside triangle criteria

66 Barycentric Interolation Barycentric Interolation in a Tetrahedron Analogous to the triangle case

67 Barycentric Interolation Gradient of a linearly interolated function in a triangle/tetrahedron Constant!

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

CS649 Sensor Networks IP Track Lecture 6: Graphical Models

CS649 Sensor Networks IP Track Lecture 6: Graphical Models CS649 Sensor Networks IP Track Lecture 6: Grahical Models I-Jeng Wang htt://hinrg.cs.jhu.edu/wsn06/ Sring 2006 CS 649 1 Sring 2006 CS 649 2 Grahical Models Grahical Model: grahical reresentation of joint

More information

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.) Advanced Algorithms Fall 2015 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual

More information

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1 CS 428: Fall 21 Introduction to Comuter Grahics Geometric Transformations Andrew Nealen, Rutgers, 21 9/15/21 1 Toic overview Image formation and OenGL (last week) Modeling the image formation rocess OenGL

More information

Global Illumination with Photon Map Compensation

Global Illumination with Photon Map Compensation Institut für Comutergrahik und Algorithmen Technische Universität Wien Karlslatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18688 Fax: +43 (1) 58801-18698 Institute of Comuter Grahics and Algorithms

More information

Shading Models. Simulate physical phenomena

Shading Models. Simulate physical phenomena Illumination Models & Shading Shading Models Simulate hysical henomena Real illumination simulation is comlicated & exensive Use aroximation and heuristics with little hysical basis that looks surrisingly

More information

Numerical Methods for Particle Tracing in Vector Fields

Numerical Methods for Particle Tracing in Vector Fields On-Line Visualization Notes Numerical Methods for Particle Tracing in Vector Fields Kenneth I. Joy Visualization and Grahics Research Laboratory Deartment of Comuter Science University of California, Davis

More information

Chapter 1 - Basic Equations

Chapter 1 - Basic Equations 2.20 - Marine Hydrodynamics, Sring 2005 Lecture 2 2.20 Marine Hydrodynamics Lecture 2 Chater 1 - Basic Equations 1.1 Descrition of a Flow To define a flow we use either the Lagrangian descrition or the

More information

Lecture 8: Orthogonal Range Searching

Lecture 8: Orthogonal Range Searching CPS234 Comutational Geometry Setember 22nd, 2005 Lecture 8: Orthogonal Range Searching Lecturer: Pankaj K. Agarwal Scribe: Mason F. Matthews 8.1 Range Searching The general roblem of range searching is

More information

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics structure arises in many alications of geometry. The dual structure, called a Delaunay triangulation also has many interesting roerties. Figure 3: Voronoi diagram and Delaunay triangulation. Search: Geometric

More information

AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY

AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY Yandong Wang EagleView Technology Cor. 5 Methodist Hill Dr., Rochester, NY 1463, the United States yandong.wang@ictometry.com

More information

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Min Hu, Saad Ali and Mubarak Shah Comuter Vision Lab, University of Central Florida {mhu,sali,shah}@eecs.ucf.edu Abstract Learning tyical

More information

Texture Mapping with Vector Graphics: A Nested Mipmapping Solution

Texture Mapping with Vector Graphics: A Nested Mipmapping Solution Texture Maing with Vector Grahics: A Nested Mimaing Solution Wei Zhang Yonggao Yang Song Xing Det. of Comuter Science Det. of Comuter Science Det. of Information Systems Prairie View A&M University Prairie

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-0) Isosurfaces & Volume Rendering Dr. David Koop Fields & Grids Fields: - Values come from a continuous domain, infinitely many values - Sampled at certain positions

More information

Dr Pavan Chakraborty IIIT-Allahabad

Dr Pavan Chakraborty IIIT-Allahabad GVC-43 Lecture - 5 Ref: Donald Hearn & M. Pauline Baker, Comuter Grahics Foley, van Dam, Feiner & Hughes, Comuter Grahics Princiles & Practice Dr Pavan Chakraborty IIIT-Allahabad Summary of line drawing

More information

Grouping of Patches in Progressive Radiosity

Grouping of Patches in Progressive Radiosity Grouing of Patches in Progressive Radiosity Arjan J.F. Kok * Abstract The radiosity method can be imroved by (adatively) grouing small neighboring atches into grous. Comutations normally done for searate

More information

3 Data Representation. Data Representation. Department of Computer Science and Engineering 3-1

3 Data Representation. Data Representation. Department of Computer Science and Engineering 3-1 Data Representation 3-1 Overview This chapter will introduce you to data representations used for Scientific Visualization. We will discuss different grid structures and ways to represent data using these

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

A Simple and Robust Approach to Computation of Meshes Intersection

A Simple and Robust Approach to Computation of Meshes Intersection A Simle and Robust Aroach to Comutation of Meshes Intersection Věra Skorkovská 1, Ivana Kolingerová 1 and Bedrich Benes 2 1 Deartment of Comuter Science and Engineering, University of West Bohemia, Univerzitní

More information

ACGV 2008, Lecture 1 Tuesday January 22, 2008

ACGV 2008, Lecture 1 Tuesday January 22, 2008 Advanced Computer Graphics and Visualization Spring 2008 Ch 1: Introduction Ch 4: The Visualization Pipeline Ch 5: Basic Data Representation Organization, Spring 2008 Stefan Seipel Filip Malmberg Mats

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Cycle of Visualization Storage De noising/filtering Down sampling

More information

Efficient Computation of Morse-Smale Complexes for Three-dimensional Scalar Functions.

Efficient Computation of Morse-Smale Complexes for Three-dimensional Scalar Functions. Efficient omutation of Morse-Smale omlexes for Three-dimensional Scalar Functions. ttila Gyulassy Institute for Data nalysis and Visualization Det. of omuter Science University of alifornia, Davis Vijay

More information

Real Time Compression of Triangle Mesh Connectivity

Real Time Compression of Triangle Mesh Connectivity Real Time Comression of Triangle Mesh Connectivity Stefan Gumhold, Wolfgang Straßer WSI/GRIS University of Tübingen Abstract In this aer we introduce a new comressed reresentation for the connectivity

More information

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101 Convex Hulls Helen Cameron Helen Cameron Convex Hulls 1/101 What Is a Convex Hull? Starting Point: Points in 2D y x Helen Cameron Convex Hulls 3/101 Convex Hull: Informally Imagine that the x, y-lane is

More information

A Data Dependent Triangulation for Vector Fields

A Data Dependent Triangulation for Vector Fields A Data Dependent Triangulation for Vector Fields Gerik Scheuermann Hans Hagen Institut for Computer Graphics and CAGD Department of Computer Science University of Kaiserslautern, Postfach 3049, D-67653

More information

Collective Communication: Theory, Practice, and Experience. FLAME Working Note #22

Collective Communication: Theory, Practice, and Experience. FLAME Working Note #22 Collective Communication: Theory, Practice, and Exerience FLAME Working Note # Ernie Chan Marcel Heimlich Avi Purkayastha Robert van de Geijn Setember, 6 Abstract We discuss the design and high-erformance

More information

2-D Fir Filter Design And Its Applications In Removing Impulse Noise In Digital Image

2-D Fir Filter Design And Its Applications In Removing Impulse Noise In Digital Image -D Fir Filter Design And Its Alications In Removing Imulse Noise In Digital Image Nguyen Thi Huyen Linh 1, Luong Ngoc Minh, Tran Dinh Dung 3 1 Faculty of Electronic and Electrical Engineering, Hung Yen

More information

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER GEOMETRIC CONSTRAINT SOLVING IN < AND < 3 CHRISTOPH M. HOFFMANN Deartment of Comuter Sciences, Purdue University West Lafayette, Indiana 47907-1398, USA and PAMELA J. VERMEER Deartment of Comuter Sciences,

More information

Graph Cut Matching In Computer Vision

Graph Cut Matching In Computer Vision Grah Cut Matching In Comuter Vision Toby Collins (s0455374@sms.ed.ac.uk) February 2004 Introduction Many of the roblems that arise in early vision can be naturally exressed in terms of energy minimization.

More information

Collective communication: theory, practice, and experience

Collective communication: theory, practice, and experience CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Comutat.: Pract. Exer. 2007; 19:1749 1783 Published online 5 July 2007 in Wiley InterScience (www.interscience.wiley.com)..1206 Collective

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Patterned Wafer Segmentation

Patterned Wafer Segmentation atterned Wafer Segmentation ierrick Bourgeat ab, Fabrice Meriaudeau b, Kenneth W. Tobin a, atrick Gorria b a Oak Ridge National Laboratory,.O.Box 2008, Oak Ridge, TN 37831-6011, USA b Le2i Laboratory Univ.of

More information

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification Using Rational Numbers and Parallel Comuting to Efficiently Avoid Round-off Errors on Ma Simlification Maurício G. Grui 1, Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1, W. Randolh Franklin 2,

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Folded Structures Satisfying Multiple Conditions

Folded Structures Satisfying Multiple Conditions Journal of Information Processing Vol.5 No.4 1 10 (Oct. 017) [DOI: 1197/isjji.5.1] Regular Paer Folded Structures Satisfying Multile Conditions Erik D. Demaine 1,a) Jason S. Ku 1,b) Received: November

More information

Efficient Algorithms for Computing Conservative Portal Visibility Information

Efficient Algorithms for Computing Conservative Portal Visibility Information EUROGRAPHICS 2000 / M. Gross and F.R.A. Hogood (Guest Editors) Volum9 (2000), Number 3 Efficient Algorithms for Comuting Conservative Portal Visibility Information W. F. H. Jiménez, C. Eserança and A.

More information

THE COMPARISON OF DRAINAGE NETWORK EXTRACTION BETWEEN SQUARE AND HEXAGONAL GRID-BASED DEM

THE COMPARISON OF DRAINAGE NETWORK EXTRACTION BETWEEN SQUARE AND HEXAGONAL GRID-BASED DEM The International Archives of the Photogrammetry, Remote Sensing and Satial Information Sciences, Volume XLII-4, 208 ISPRS TC IV Mid-term Symosium 3D Satial Information Science The Engine of Change, 5

More information

Curve Reconstruction taken from [1]

Curve Reconstruction taken from [1] Notes by Tamal K. Dey, OSU 47 Curve Reconstruction taken from [1] The simlest class of manifolds that ose nontrivial reconstruction roblems are curves in the lane. We will describe two algorithms for curve

More information

AN INTEGER LINEAR MODEL FOR GENERAL ARC ROUTING PROBLEMS

AN INTEGER LINEAR MODEL FOR GENERAL ARC ROUTING PROBLEMS AN INTEGER LINEAR MODEL FOR GENERAL ARC ROUTING PROBLEMS Philie LACOMME, Christian PRINS, Wahiba RAMDANE-CHERIF Université de Technologie de Troyes, Laboratoire d Otimisation des Systèmes Industriels (LOSI)

More information

Source Coding and express these numbers in a binary system using M log

Source Coding and express these numbers in a binary system using M log Source Coding 30.1 Source Coding Introduction We have studied how to transmit digital bits over a radio channel. We also saw ways that we could code those bits to achieve error correction. Bandwidth is

More information

Theoretical Analysis of Graphcut Textures

Theoretical Analysis of Graphcut Textures Theoretical Analysis o Grahcut Textures Xuejie Qin Yee-Hong Yang {xu yang}@cs.ualberta.ca Deartment o omuting Science University o Alberta Abstract Since the aer was ublished in SIGGRAPH 2003 the grahcut

More information

CMSC 425: Lecture 16 Motion Planning: Basic Concepts

CMSC 425: Lecture 16 Motion Planning: Basic Concepts : Lecture 16 Motion lanning: Basic Concets eading: Today s material comes from various sources, including AI Game rogramming Wisdom 2 by S. abin and lanning Algorithms by S. M. LaValle (Chats. 4 and 5).

More information

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm Comuter Grahics Global Illumination: Monte-Carlo Ray Tracing and Photon Maing Lecture 11 In the last lecture We did ray tracing and radiosity Ray tracing is good to render secular objects but cannot handle

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Chapter 8: Adaptive Networks

Chapter 8: Adaptive Networks Chater : Adative Networks Introduction (.1) Architecture (.2) Backroagation for Feedforward Networks (.3) Jyh-Shing Roger Jang et al., Neuro-Fuzzy and Soft Comuting: A Comutational Aroach to Learning and

More information

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83,

More information

MATH4455 Module 10 Worth the Weight

MATH4455 Module 10 Worth the Weight MTH4455 Module 10 Worth the Weight Math Math oncets: Weighted Means, Inscribed reas, eneralized Midoints uxiliary Ideas: Quadrilaterals, eneralized Proortions, Polygons, onvexity I. Personally Inscribed.

More information

Stereo Disparity Estimation in Moment Space

Stereo Disparity Estimation in Moment Space Stereo Disarity Estimation in oment Sace Angeline Pang Faculty of Information Technology, ultimedia University, 63 Cyberjaya, alaysia. angeline.ang@mmu.edu.my R. ukundan Deartment of Comuter Science, University

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Visualization Pipeline Visualization Pipeline Overview Data acquisition

More information

arxiv: v1 [cs.dc] 13 Nov 2018

arxiv: v1 [cs.dc] 13 Nov 2018 Task Grah Transformations for Latency Tolerance arxiv:1811.05077v1 [cs.dc] 13 Nov 2018 Victor Eijkhout November 14, 2018 Abstract The Integrative Model for Parallelism (IMP) derives a task grah from a

More information

Discrete shading of three-dimensional objects from medial axis transform

Discrete shading of three-dimensional objects from medial axis transform Pattern Recognition Letters 20 (1999) 1533±1544 www.elsevier.nl/locate/atrec Discrete shading of three-dimensional objects from medial axis transform Jayanta Mukherjee a, *, M. Aswatha Kumar b, B.N. Chatterji

More information

An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Under Test in Situ

An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Under Test in Situ An Efficient and Highly Accurate echnique for Periodic Planar Scanner Calibration with the Antenna Under est in Situ Scott Pierce I echnologies 1125 Satellite Boulevard, Suite 100 Suwanee, Georgia 30024

More information

Scalar Data. Alark Joshi

Scalar Data. Alark Joshi Scalar Data Alark Joshi Announcements Pick two papers to present Email me your top 3/4 choices. FIFO allotment Contact your clients Blog summaries: http://cs.boisestate.edu/~alark/cs564/participants.html

More information

Face Recognition Based on Wavelet Transform and Adaptive Local Binary Pattern

Face Recognition Based on Wavelet Transform and Adaptive Local Binary Pattern Face Recognition Based on Wavelet Transform and Adative Local Binary Pattern Abdallah Mohamed 1,2, and Roman Yamolskiy 1 1 Comuter Engineering and Comuter Science, University of Louisville, Louisville,

More information

UNIFYING LOCAL AND NONLOCAL PROCESSING WITH PARTIAL DIFFERENCE OPERATORS ON WEIGHTED GRAPHS

UNIFYING LOCAL AND NONLOCAL PROCESSING WITH PARTIAL DIFFERENCE OPERATORS ON WEIGHTED GRAPHS UNIFYING LOCAL AND NONLOCAL PROCESSING WITH PARTIAL DIFFERENCE OPERATORS ON WEIGHTED GRAPHS Abderrahim Elmoataz 1, Olivier Lézoray 1, Sébastien Bougleux 2 and Vinh-Thong Ta 1 1 Université de Caen Basse-Normandie,

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

Space-efficient Region Filling in Raster Graphics

Space-efficient Region Filling in Raster Graphics "The Visual Comuter: An International Journal of Comuter Grahics" (submitted July 13, 1992; revised December 7, 1992; acceted in Aril 16, 1993) Sace-efficient Region Filling in Raster Grahics Dominik Henrich

More information

5. UDEC. 5.1 Introduction. 5.2 UDEC: Two-dimensional modelling

5. UDEC. 5.1 Introduction. 5.2 UDEC: Two-dimensional modelling 5. 5.1 Introduction On a conference in 1971 Peter A. Cundall, the doctorial student of Imerial College, introduced a novel software called Universal Distinct Element Code (). This software (Cundall, 1971)

More information

Volume Visualization

Volume Visualization Volume Visualization Part 1 (out of 3) Overview: Volume Visualization Introduction to volume visualization On volume data Surface vs. volume rendering Overview: Techniques Simple methods Slicing, cuberille

More information

Surface reconstruction Introduction. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Surface reconstruction Introduction. Florent Lafarge Inria Sophia Antipolis - Mediterranee Surface reconstruction Introduction Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline Contents Introduction Smooth/piecewise-smooth reconstruction methods Primitive-based reconstruction methods

More information

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2 Cliing MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Chapter 7, Part B Sampling and Sampling Distributions

Chapter 7, Part B Sampling and Sampling Distributions Slides Preared by JOHN S. LOUCKS St. Edward s University Slide 1 Chater 7, Part B Samling and Samling Distributions Samling Distribution of Proerties of Point Estimators Other Samling Methods Slide 2 Samling

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

Denoising of Laser Scanning Data using Wavelet

Denoising of Laser Scanning Data using Wavelet 27 Denoising of Laser Scanning Data using Wavelet Jašek, P. and Štroner, M. Czech Technical University in Prague, Faculty of Civil Engineering, Deartment of Secial Geodesy, Thákurova 7, 16629 Praha 6,

More information

EE678 Application Presentation Content Based Image Retrieval Using Wavelets

EE678 Application Presentation Content Based Image Retrieval Using Wavelets EE678 Alication Presentation Content Based Image Retrieval Using Wavelets Grou Members: Megha Pandey megha@ee. iitb.ac.in 02d07006 Gaurav Boob gb@ee.iitb.ac.in 02d07008 Abstract: We focus here on an effective

More information

Simulating Ocean Currents. Simulating Galaxy Evolution

Simulating Ocean Currents. Simulating Galaxy Evolution Simulating Ocean Currents (a) Cross sections (b) Satial discretization of a cross section Model as two-dimensional grids Discretize in sace and time finer satial and temoral resolution => greater accuracy

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

SPARSE SIGNAL REPRESENTATION FOR COMPLEX-VALUED IMAGING Sadegh Samadi 1, M üjdat Çetin 2, Mohammad Ali Masnadi-Shirazi 1

SPARSE SIGNAL REPRESENTATION FOR COMPLEX-VALUED IMAGING Sadegh Samadi 1, M üjdat Çetin 2, Mohammad Ali Masnadi-Shirazi 1 SPARSE SIGNAL REPRESENTATION FOR COMPLEX-VALUED IMAGING Sadegh Samadi 1, M üjdat Çetin, Mohammad Ali Masnadi-Shirazi 1 1. Shiraz University, Shiraz, Iran,. Sabanci University, Istanbul, Turkey ssamadi@shirazu.ac.ir,

More information

An Efficient Coding Method for Coding Region-of-Interest Locations in AVS2

An Efficient Coding Method for Coding Region-of-Interest Locations in AVS2 An Efficient Coding Method for Coding Region-of-Interest Locations in AVS2 Mingliang Chen 1, Weiyao Lin 1*, Xiaozhen Zheng 2 1 Deartment of Electronic Engineering, Shanghai Jiao Tong University, China

More information

Introduction to Image Compresion

Introduction to Image Compresion ENEE63 Fall 2 Lecture-7 Introduction to Image Comresion htt://www.ece.umd.edu/class/enee63/ minwu@eng.umd.edu M. Wu: ENEE63 Digital Image Processing (Fall') Min Wu Electrical & Comuter Engineering Univ.

More information

How to fit a surface to a point cloud?

How to fit a surface to a point cloud? TRICS seminar Comuter Science Deartment How to fit a surface to a oint cloud? or otimization of surface functionals in comuter vision Yuri Boykov Otimization of surface functionals in comuter vision The

More information

Parallel Construction of Multidimensional Binary Search Trees. Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka

Parallel Construction of Multidimensional Binary Search Trees. Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka Parallel Construction of Multidimensional Binary Search Trees Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka School of CIS and School of CISE Northeast Parallel Architectures Center Syracuse

More information

INFLUENCE POWER-BASED CLUSTERING ALGORITHM FOR MEASURE PROPERTIES IN DATA WAREHOUSE

INFLUENCE POWER-BASED CLUSTERING ALGORITHM FOR MEASURE PROPERTIES IN DATA WAREHOUSE The International Archives of the Photogrammetry, Remote Sensing and Satial Information Sciences, Vol. 38, Part II INFLUENCE POWER-BASED CLUSTERING ALGORITHM FOR MEASURE PROPERTIES IN DATA WAREHOUSE Min

More information

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface.

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface. Illumination and Shading Illumination (ighting) Model the interaction of light with surface oints to determine their final color and brightness OenG comutes illumination at vertices illumination Shading

More information

Scientific visualization concepts

Scientific visualization concepts Scientific visualization concepts Luigi Calori Slides material from: Alex Telea, Groningen University: www.cs.rug.nl/svcg Kitware: www.kitware.com Sandia National Laboratories Argonne National Laboratory

More information

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized?

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized? Volume Data Volume Visualization Part 1 (out of 3) Where do the data come from? Medical Application Computed Tomographie (CT) Magnetic Resonance Imaging (MR) Materials testing Industrial-CT Simulation

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Comutational Geometry 1 David M. Mount Deartment of Comuter Science University of Maryland Fall 2002 1 Coyright, David M. Mount, 2002, Det. of Comuter Science, University of Maryland, College

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Randomized algorithms: Two examples and Yao s Minimax Principle

Randomized algorithms: Two examples and Yao s Minimax Principle Randomized algorithms: Two examles and Yao s Minimax Princile Maximum Satisfiability Consider the roblem Maximum Satisfiability (MAX-SAT). Bring your knowledge u-to-date on the Satisfiability roblem. Maximum

More information

arxiv: v1 [cs.mm] 18 Jan 2016

arxiv: v1 [cs.mm] 18 Jan 2016 Lossless Intra Coding in with 3-ta Filters Saeed R. Alvar a, Fatih Kamisli a a Deartment of Electrical and Electronics Engineering, Middle East Technical University, Turkey arxiv:1601.04473v1 [cs.mm] 18

More information

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms Chater : Grahics Outut Primitives Primitives: functions in grahics acage that we use to describe icture element Points and straight lines are the simlest rimitives Some acages include circles, conic sections,

More information

Polyhedral Subdivision for Free-Form Algebraic Surfaces

Polyhedral Subdivision for Free-Form Algebraic Surfaces Polyhedral Subdivision for ree-orm Algebraic Surfaces Paer ategory: research, Paer ormat: regular Abstract We resent a robust algorithm to construct an inner simlicial hull Σ as a single ste of subdivision

More information

Thickness computation of trimmed B-Rep model using GPU ray tracing

Thickness computation of trimmed B-Rep model using GPU ray tracing Thickness comutation of trimmed B-Re model using GPU ray tracing G. Lemasson 1,2,3, J.C. Iehl 2, F. Zara 1, B. Shariat 1, V. Baudet 3, P. Arthaud 3 1 Université de Lyon, CNRS, Université Lyon 1, LIRIS,

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Computer Graphics. Computer Graphics. Lecture 3 Line & Circle Drawing

Computer Graphics. Computer Graphics. Lecture 3 Line & Circle Drawing Comuter Grahics Comuter Grahics Lecture 3 Line & Circle Drawing Comuter Grahics Towards the Ideal Line We can onl do a discrete aroimation Illuminate iels as close to the true ath as ossible, consider

More information

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network 1 Sensitivity Analysis for an Otimal Routing Policy in an Ad Hoc Wireless Network Tara Javidi and Demosthenis Teneketzis Deartment of Electrical Engineering and Comuter Science University of Michigan Ann

More information

A Morphological LiDAR Points Cloud Filtering Method based on GPGPU

A Morphological LiDAR Points Cloud Filtering Method based on GPGPU A Morhological LiDAR Points Cloud Filtering Method based on GPGPU Shuo Li 1, Hui Wang 1, Qiuhe Ma 1 and Xuan Zha 2 1 Zhengzhou Institute of Surveying & Maing, No.66, Longhai Middle Road, Zhengzhou, China

More information

To appear in IEEE TKDE Title: Efficient Skyline and Top-k Retrieval in Subspaces Keywords: Skyline, Top-k, Subspace, B-tree

To appear in IEEE TKDE Title: Efficient Skyline and Top-k Retrieval in Subspaces Keywords: Skyline, Top-k, Subspace, B-tree To aear in IEEE TKDE Title: Efficient Skyline and To-k Retrieval in Subsaces Keywords: Skyline, To-k, Subsace, B-tree Contact Author: Yufei Tao (taoyf@cse.cuhk.edu.hk) Deartment of Comuter Science and

More information

Efficient Parallel Hierarchical Clustering

Efficient Parallel Hierarchical Clustering Efficient Parallel Hierarchical Clustering Manoranjan Dash 1,SimonaPetrutiu, and Peter Scheuermann 1 Deartment of Information Systems, School of Comuter Engineering, Nanyang Technological University, Singaore

More information

On Modeling and Simulation of 6 Degrees of Freedom Stewart Platform Mechanism Using Multibody Dynamics Approach

On Modeling and Simulation of 6 Degrees of Freedom Stewart Platform Mechanism Using Multibody Dynamics Approach ECCOMS Multibody Dynamics 2013 1-4 July, 2013, University of Zagreb, Croatia On Modeling and Simulation of 6 Degrees of Freedom Stewart Platform Mechanism Using Multibody Dynamics roach yman El-Badawy

More information

Privacy Preserving Moving KNN Queries

Privacy Preserving Moving KNN Queries Privacy Preserving Moving KNN Queries arxiv:4.76v [cs.db] 4 Ar Tanzima Hashem Lars Kulik Rui Zhang National ICT Australia, Deartment of Comuter Science and Software Engineering University of Melbourne,

More information

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification Segmentation

More information

Interpolation and Basis Fns

Interpolation and Basis Fns CS148: Introduction to Computer Graphics and Imaging Interpolation and Basis Fns Topics Today Interpolation Linear and bilinear interpolation Barycentric interpolation Basis functions Square, triangle,,

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information