CMSC 425: Lecture 16 Motion Planning: Basic Concepts

Size: px
Start display at page:

Download "CMSC 425: Lecture 16 Motion Planning: Basic Concepts"

Transcription

1 : Lecture 16 Motion lanning: Basic Concets eading: Today s material comes from various sources, including AI Game rogramming Wisdom 2 by S. abin and lanning Algorithms by S. M. LaValle (Chats. 4 and 5). eca: reviously, we discussed navigation meshes as a techniue for lanning the motion of walking agents in games. In this and future lectures, we will delve deeer into the theory and ractice of motion lanning as it relates to game rogramming. Configuration Saces: To begin, let us consider the roblem of lanning the motion of a single agent among a collection of obstacles. Since the techniues that we will be discussing originated in the field of robotics, henceforth we will usually refer to a moving agent as a robot. The environment in which the agent oerates is called its worksace, which consists of a collection of geometric objects, called obstacles, which the robot must avoid. We will assume that the worksace is static, that is, the obstacles do not move. 1 We also assume that a comlete geometric descrition of the worksace is available to us. 2 For our uroses, a robot will be modeled by two main elements. The first element is the robot s geometric model, say with resect to its reference ose (e.g., ositioned at the origin). The second is its configuration, by which we mean a finite seuence of numeric arameters that fully secifies the osition of the robot. Combined, these two elements fully define the robot s exact shae and osition in sace. For examle, suose that the robot is a 2-dimensional olygon that can translate and rotate in the lane (shown as a triangle in Fig. 1). Its geometric reresentation might be given as a seuence of vertices, relative to its reference osition. Let us assume that this reference ose overlas the origin. We refer to the location of the origin as the robot s reference oint. The robot s configuration may be described by its translation, which we can take to be the (x, y) coordinates of its reference oint after translation and an angle θ that reresents the counterclockwise angle of rotation about its reference oint (see Fig. 1). Thus, the configuration is given by a trile (x, y, θ). We define the sace of all valid configurations to be the robot s configuration sace. For any oint = (x, y, θ) in this sace, we define () to be the corresonding lacement of the robot in the worksace. The dimension of the configuration sace is sometimes referred to as the robots number of degrees of freedom (DOF). In 3-dimensional sace, a similarly rigid object can be described by six arameters, the (x, y, z)-coordinates of the object s reference oint, and the three Euler angles (θ, φ, ψ) that 1 The assumtion of a static worksace is not really reasonable for most games, since agents move and structures may change. A common techniue for dealing with dynamic environments is to searate the static objects from the dynamic ones, lan motion with resect to the static objects, and then adjust the lan incrementally to deal with the dynamic ones. 2 The assumtion of a known worksace is reasonable in comuter games. Note that this is not the case in robotics, where the world surrounding the robot is either unknown or is known only aroximately based on the robots limited sensor measurements. Lecture 16 1 Sring 2018

2 (1, 3, 0) (4, 2, 30, 60 ) 60 (0, 0, 0) eference ose (6, 2, 45 ) 45 (0, 0, 0, 0) eference ose 30 Fig. 1: Configurations of: translating and rotating robot and a translating and rotating robot with a revolute joints. define its orientation in sace.) 3 A more comlex examle would be an articulated arm consisting of a set of links, connected to one another by a set of revolute joints. The configuration of such a robot would consist of a vector of joint angles (see Fig. 1). The geometric descrition would robably consist of a geometric reresentation of the links. Given a seuence of joint angles, the exact shae of the robot could be derived by combining this configuration information with its geometric descrition. Free Sace: Because of limitations on the robot s hysical structure and the obstacles, not every oint in configuration sace corresonds to a legal lacement of the robot. Some configurations may be illegal because: The joint angle is outside the joint s oerating range. (E.g., you can bend your knee backwards, but not forwards... ouch!) The lacement associated with this configuration intersects some obstacle (see Fig. 2). Such illegal configurations are called a forbidden configurations. Given a robot and worksace S, the set of all forbidden configurations is denoted C forb (, S), and all other lacements are called free configurations, and the set of these configurations is denoted C free (, S), or free sace. These two sets artition configuration sace into two distinct regions (see Fig. 2). C-Obstacles and aths in Configuration Sace: Motion lanning is the following roblem: Given a worksace S, a robot, and initial and final configurations s, t C free (, S), determine whether it is ossible to move the robot from one configuration by a ath (s) (t)consisting entirely of free configurations (see Fig. 3). Based on the definition of configuration sace, it is easy to see that the motion lanning roblem reduces to the roblem of determining whether there is a ath from s to t in con- 3 A uaternion might be a more reasonable reresentation of the robot s angular orientation in sace. You might rotest that the use of a uaternion will involve four arameters rather than three. But remember that the uaterions used for reresenting rotations are unit uaternions, meaning that once three of the arameters are given, the fourth one is fixed. Lecture 16 2 Sring 2018

3 Free Worksace Forbidden Free Configuration Sace (Loosely interreted) Forbidden C forb (, S) C free (, S) Fig. 2: Worksace showing free and forbidden configurations and a ossible configuration sace. figuration sace (as oosed to the robot s worksace) that lies entirely within the robot s free configuration subsace (see Fig. 3). Thus, we have reduced the task of lanning the motion of a robot in its worksace to the roblem of finding a ath for a single oint through free configuration sace. Work sace Configuration sace Fig. 3: Motion lanning: worksace with obstacles and configuration sace and C-obstacles. Configuration Obstacles and Minkowski Sums: Since high-dimensional configuration saces are difficult to visualize, let s consider the simle case of translating a convex olygonal robot in the lane amidst a collection of olygonal obstacles. In this cased both the worksace and configuration sace are two-dimensional. We claim that, for each obstacle in the worksace, there is a corresonding configuration obstacle (or C-obstacle) that corresonds to it in the sense that if () does not intersect the obstacle in the worksace, then does not intersect the corresonding C-obstacle. For simlicity, let us assume that the reference oint for our robot is at the origin. Let () denote the translate of the robot so that its reference oint lies at oint. Given a olygonal obstacle, the corresonding C-obstacle is formally defined to the set of lacements of Lecture 16 3 Sring 2018

4 that intersect, that is C( ) = { : () }. One way to visualize C( ) is to imagine scraing along the boundary of and seeing the region traced out by s reference oint (see Fig. 4). C( ) + Q Q Fig. 4: Minkowski sum of two olygons. Given and, how do we comute the configuration obstacle C( )? To do this, we first introduce the notion of a Minkowski sum. Let us think of oints in the lane as vectors. Given any two sets and Q in the lane, define their Minkowski sum to be the set of all airwise sums of oints taken from each set (see Fig. 4), that is, Q = { + :, Q}. Also, define S = { : S}. (In in the lane S is just the 360 rotation of S about the origin, but this does not hold in higher dimensions.) We introduce the shorthand notation to denote {}. Observe that the translate of by vector is () =. The relevance of Minkowski sums to C-obstacles is given in the following claim. Claim: Given a translating robot and an obstacle, C( ) = ( ) (see Fig. 5). roof: Observe that C( ) iff () intersects, which is true iff there exist r and such that = r+ (see Fig. 5), which is true iff there exist r and such that = + ( r) (see Fig. 5), which is euivalent to saying that ( ). Therefore, C( ) iff ( ), which means that C( ) = ( ), as desired. It is an easy matter to comute in linear time (by simly negating all of its vertices) the roblem of comuting the C-obstacle C( ) reduces to the roblem of comuting a Minkowski sum of two convex olygons. We ll show next that this can be done in O(m + n) time, where m is the number of vertices in and n is the number of vertices in. Note that the above roof made no use of the convexity of or. It works for any shaes and in any dimension. However, comutation of the Minkowski sums is most efficient for convex olygons. We will not resent the algorithm formally here, but here is an intuitive exlanation. First, comute the vectors associated with the edges of each olygon and merge them into a single list, sorted by angular order. Then link them together end-to-end (see Fig. 6). (It is not immediately obvious that this works, but it can be roved to be correct.) Lecture 16 4 Sring 2018

5 C( ) ( ) r r Fig. 5: Configuration obstacles and Minkowski sums. u 1 u 2 u u 1 3 v 1 u 2 v 4 v 3 + u 3 Q v 4 v 3 v 1 v 2 Q v2 Fig. 6: Comuting the Minkowski sum of two convex olygons. C-Obstacles for otating obots: When rotation is involved, this scraing rocess must consider not only translation, but all rotations that cause the robot s boundary to touch the obstacle s boundary. (One way to visualize this is to fix the value of θ, rotate the robot by this angle, and then comute the translational C-obstacle with the robot rotated at this angle. Then, stack the resulting C-obstacles on to of one another, as θ varies through one comlete revolution. The resulting twisted column is the C-obstacle in 3-dimensional sace.) Note that because the configuration sace encodes not only translation, but the joint angles as well. Thus, a ath in configuration sace generally characterizes both the translation and the individual joint rotations. (This is insanely hard to illustrate, so I hoe you can visualize this on your own!) When dealing with olyhedral robots and olyhedral obstacles models under translation, the C-obstacles are all olyhedra as well. However, when revolute joints are involved, the boundaries of the C-obstacles are curved surfaces, which reuire more effort to rocess than simly olyhedral models. Comlex configuration saces are not tyically used in games, due to the comlexity of rocessing them. Game designers often resort to more ad hoc tricks to avoid this comlexity, and the exense of accuracy. Lecture 16 5 Sring 2018

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.) Advanced Algorithms Fall 2015 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual

More information

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101 Convex Hulls Helen Cameron Helen Cameron Convex Hulls 1/101 What Is a Convex Hull? Starting Point: Points in 2D y x Helen Cameron Convex Hulls 3/101 Convex Hull: Informally Imagine that the x, y-lane is

More information

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1 CS 428: Fall 21 Introduction to Comuter Grahics Geometric Transformations Andrew Nealen, Rutgers, 21 9/15/21 1 Toic overview Image formation and OenGL (last week) Modeling the image formation rocess OenGL

More information

CSE4421/5324: Introduction to Robotics

CSE4421/5324: Introduction to Robotics CSE442/5324: Introduction to Robotics Contact Information Burton Ma Lassonde 246 burton@cse.yorku.ca EECS442/5324 lectures Monday, Wednesday, Friday :3-2:3PM (SLH C) Lab Thursday 2:3-2:3, Prism 4 Lab 2

More information

Computing the Convex Hull of. W. Hochstattler, S. Kromberg, C. Moll

Computing the Convex Hull of. W. Hochstattler, S. Kromberg, C. Moll Reort No. 94.60 A new Linear Time Algorithm for Comuting the Convex Hull of a Simle Polygon in the Plane by W. Hochstattler, S. Kromberg, C. Moll 994 W. Hochstattler, S. Kromberg, C. Moll Universitat zu

More information

arxiv: v1 [math.gt] 1 May 2018

arxiv: v1 [math.gt] 1 May 2018 CIRCUIT PRESENTATION AND LATTICE STICK NUMBER WITH EXACTLY 4 z-sticks HYOUNGJUN KIM AND SUNGJONG NO arxiv:805.0023v [math.gt] May 208 Abstract. The lattice stick number s L(L) of a link L is defined to

More information

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1,

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1, CHAPTER 33 Comutational Geometry Is the branch of comuter science that studies algorithms for solving geometric roblems. Has alications in many fields, including comuter grahics robotics, VLSI design comuter

More information

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER GEOMETRIC CONSTRAINT SOLVING IN < AND < 3 CHRISTOPH M. HOFFMANN Deartment of Comuter Sciences, Purdue University West Lafayette, Indiana 47907-1398, USA and PAMELA J. VERMEER Deartment of Comuter Sciences,

More information

We will then introduce the DT, discuss some of its fundamental properties and show how to compute a DT directly from a given set of points.

We will then introduce the DT, discuss some of its fundamental properties and show how to compute a DT directly from a given set of points. Voronoi Diagram and Delaunay Triangulation 1 Introduction The Voronoi Diagram (VD, for short) is a ubiquitious structure that aears in a variety of discilines - biology, geograhy, ecology, crystallograhy,

More information

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Min Hu, Saad Ali and Mubarak Shah Comuter Vision Lab, University of Central Florida {mhu,sali,shah}@eecs.ucf.edu Abstract Learning tyical

More information

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics structure arises in many alications of geometry. The dual structure, called a Delaunay triangulation also has many interesting roerties. Figure 3: Voronoi diagram and Delaunay triangulation. Search: Geometric

More information

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

Deformable Free Space Tilings for Kinetic Collision Detection

Deformable Free Space Tilings for Kinetic Collision Detection Deformable Free Sace Tilings for Kinetic Collision Detection Pankaj K. Agarwal Julien Basch Leonidas J. Guibas John Hershberger Li Zhang Abstract We resent kinetic data structures for detecting collisions

More information

Extracting Optimal Paths from Roadmaps for Motion Planning

Extracting Optimal Paths from Roadmaps for Motion Planning Extracting Otimal Paths from Roadmas for Motion Planning Jinsuck Kim Roger A. Pearce Nancy M. Amato Deartment of Comuter Science Texas A&M University College Station, TX 843 jinsuckk,ra231,amato @cs.tamu.edu

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Comutational Geometry 1 David M. Mount Deartment of Comuter Science University of Maryland Fall 2002 1 Coyright, David M. Mount, 2002, Det. of Comuter Science, University of Maryland, College

More information

Lecture 8: Orthogonal Range Searching

Lecture 8: Orthogonal Range Searching CPS234 Comutational Geometry Setember 22nd, 2005 Lecture 8: Orthogonal Range Searching Lecturer: Pankaj K. Agarwal Scribe: Mason F. Matthews 8.1 Range Searching The general roblem of range searching is

More information

Cross products Line segments The convex combination of two distinct points p

Cross products Line segments The convex combination of two distinct points p CHAPTER Comutational Geometry Is the branch of comuter science that studies algorithms for solving geometric roblems. Has alications in many fields, including comuter grahics robotics, VLSI design comuter

More information

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83,

More information

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network 1 Sensitivity Analysis for an Otimal Routing Policy in an Ad Hoc Wireless Network Tara Javidi and Demosthenis Teneketzis Deartment of Electrical Engineering and Comuter Science University of Michigan Ann

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

Non-Strict Independence-Based Program Parallelization Using Sharing and Freeness Information

Non-Strict Independence-Based Program Parallelization Using Sharing and Freeness Information Non-Strict Indeendence-Based Program Parallelization Using Sharing and Freeness Information Daniel Cabeza Gras 1 and Manuel V. Hermenegildo 1,2 Abstract The current ubiuity of multi-core rocessors has

More information

Randomized algorithms: Two examples and Yao s Minimax Principle

Randomized algorithms: Two examples and Yao s Minimax Principle Randomized algorithms: Two examles and Yao s Minimax Princile Maximum Satisfiability Consider the roblem Maximum Satisfiability (MAX-SAT). Bring your knowledge u-to-date on the Satisfiability roblem. Maximum

More information

Source Coding and express these numbers in a binary system using M log

Source Coding and express these numbers in a binary system using M log Source Coding 30.1 Source Coding Introduction We have studied how to transmit digital bits over a radio channel. We also saw ways that we could code those bits to achieve error correction. Bandwidth is

More information

An Efficient Video Program Delivery algorithm in Tree Networks*

An Efficient Video Program Delivery algorithm in Tree Networks* 3rd International Symosium on Parallel Architectures, Algorithms and Programming An Efficient Video Program Delivery algorithm in Tree Networks* Fenghang Yin 1 Hong Shen 1,2,** 1 Deartment of Comuter Science,

More information

Space-efficient Region Filling in Raster Graphics

Space-efficient Region Filling in Raster Graphics "The Visual Comuter: An International Journal of Comuter Grahics" (submitted July 13, 1992; revised December 7, 1992; acceted in Aril 16, 1993) Sace-efficient Region Filling in Raster Grahics Dominik Henrich

More information

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University Query Processing Shuigeng Zhou May 18, 2016 School of Comuter Science Fudan University Overview Outline Measures of Query Cost Selection Oeration Sorting Join Oeration Other Oerations Evaluation of Exressions

More information

MATHEMATICAL MODELING OF COMPLEX MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT

MATHEMATICAL MODELING OF COMPLEX MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT MATHEMATICAL MODELING OF COMPLE MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT V.N. Nesterov JSC Samara Electromechanical Plant, Samara, Russia Abstract. The rovisions of the concet of a multi-comonent

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singaore. Title Automatic Robot Taing: Auto-Path Planning and Maniulation Author(s) Citation Yuan, Qilong; Lembono, Teguh

More information

Recognizing Convex Polygons with Few Finger Probes

Recognizing Convex Polygons with Few Finger Probes Pattern Analysis and Alications manuscrit No. (will be inserted by the editor) Recognizing Convex Polygons with Few Finger Probes Sumanta Guha Kiêu Trọng Khánh Received: date / Acceted: date Abstract The

More information

Fundamentals of Restricted-Orientation Convexity

Fundamentals of Restricted-Orientation Convexity Fundamentals of Restricted-Orientation Convexity Eugene Fink Derick Wood Abstract A restricted-orientation convex set, also called an O-convex set, is a set of oints whose intersection with lines from

More information

Kinematics, Workspace, Design and Accuracy Analysis of RPRPR Medical Parallel Robot

Kinematics, Workspace, Design and Accuracy Analysis of RPRPR Medical Parallel Robot HSI 009 Catania, Italy, May 1-3, 009. Kinematics, Worksace, Design and Accuracy Analysis of RPRPR Medical Parallel Robot Cristian Sze, Sergiu-Dan Stan, Member, IEEE, Vencel Csibi, Milos Manic, Senior Member,

More information

Grouping of Patches in Progressive Radiosity

Grouping of Patches in Progressive Radiosity Grouing of Patches in Progressive Radiosity Arjan J.F. Kok * Abstract The radiosity method can be imroved by (adatively) grouing small neighboring atches into grous. Comutations normally done for searate

More information

Image Segmentation Using Topological Persistence

Image Segmentation Using Topological Persistence Image Segmentation Using Toological Persistence David Letscher and Jason Fritts Saint Louis University Deartment of Mathematics and Comuter Science {letscher, jfritts}@slu.edu Abstract. This aer resents

More information

Chapter 1 - Basic Equations

Chapter 1 - Basic Equations 2.20 - Marine Hydrodynamics, Sring 2005 Lecture 2 2.20 Marine Hydrodynamics Lecture 2 Chater 1 - Basic Equations 1.1 Descrition of a Flow To define a flow we use either the Lagrangian descrition or the

More information

Efficient Algorithms for Computing Conservative Portal Visibility Information

Efficient Algorithms for Computing Conservative Portal Visibility Information EUROGRAPHICS 2000 / M. Gross and F.R.A. Hogood (Guest Editors) Volum9 (2000), Number 3 Efficient Algorithms for Comuting Conservative Portal Visibility Information W. F. H. Jiménez, C. Eserança and A.

More information

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2 Cliing MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Incorporating Geometric Algorithms in Impedance- and Admittance-Type Haptic Rendering

Incorporating Geometric Algorithms in Impedance- and Admittance-Type Haptic Rendering Incororating Geometric Algorithms in Imedance- and Admittance-Tye Hatic Rendering Ryo Kikuuwe and Hideo Fujimoto Nagoya Institute of Technology, Nagoya, 466-8555, Jaan Abstract Geometric (roxy-based) hatic

More information

Continuous Visible k Nearest Neighbor Query on Moving Objects

Continuous Visible k Nearest Neighbor Query on Moving Objects Continuous Visible k Nearest Neighbor Query on Moving Objects Yaniu Wang a, Rui Zhang b, Chuanfei Xu a, Jianzhong Qi b, Yu Gu a, Ge Yu a, a Deartment of Comuter Software and Theory, Northeastern University,

More information

Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules

Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules Andreas Nürnberger, Aljoscha Klose, Rudolf Kruse University of Magdeburg, Faculty of Comuter Science 39106 Magdeburg, Germany

More information

5. UDEC. 5.1 Introduction. 5.2 UDEC: Two-dimensional modelling

5. UDEC. 5.1 Introduction. 5.2 UDEC: Two-dimensional modelling 5. 5.1 Introduction On a conference in 1971 Peter A. Cundall, the doctorial student of Imerial College, introduced a novel software called Universal Distinct Element Code (). This software (Cundall, 1971)

More information

Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case

Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case Multi-robot SLAM with Unknown Initial Corresondence: The Robot Rendezvous Case Xun S. Zhou and Stergios I. Roumeliotis Deartment of Comuter Science & Engineering, University of Minnesota, Minneaolis, MN

More information

Constrained Path Optimisation for Underground Mine Layout

Constrained Path Optimisation for Underground Mine Layout Constrained Path Otimisation for Underground Mine Layout M. Brazil P.A. Grossman D.H. Lee J.H. Rubinstein D.A. Thomas N.C. Wormald Abstract The major infrastructure comonent reuired to develo an underground

More information

CS2 Algorithms and Data Structures Note 8

CS2 Algorithms and Data Structures Note 8 CS2 Algorithms and Data Structures Note 8 Heasort and Quicksort We will see two more sorting algorithms in this lecture. The first, heasort, is very nice theoretically. It sorts an array with n items in

More information

Computational Geometry: Proximity and Location

Computational Geometry: Proximity and Location 63 Comutational Geometry: Proximity and Location 63.1 Introduction Proximity and location are fundamental concets in geometric comutation. The term roximity refers informally to the uality of being close

More information

The Edge-flipping Distance of Triangulations

The Edge-flipping Distance of Triangulations The Edge-fliing Distance of Triangulations Sabine Hanke (Institut für Informatik, Universität Freiburg, Germany hanke@informatik.uni-freiburg.de) Thomas Ottmann (Institut für Informatik, Universität Freiburg,

More information

Parallel Construction of Multidimensional Binary Search Trees. Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka

Parallel Construction of Multidimensional Binary Search Trees. Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka Parallel Construction of Multidimensional Binary Search Trees Ibraheem Al-furaih, Srinivas Aluru, Sanjay Goil Sanjay Ranka School of CIS and School of CISE Northeast Parallel Architectures Center Syracuse

More information

10. Parallel Methods for Data Sorting

10. Parallel Methods for Data Sorting 10. Parallel Methods for Data Sorting 10. Parallel Methods for Data Sorting... 1 10.1. Parallelizing Princiles... 10.. Scaling Parallel Comutations... 10.3. Bubble Sort...3 10.3.1. Sequential Algorithm...3

More information

P Z. parametric surface Q Z. 2nd Image T Z

P Z. parametric surface Q Z. 2nd Image T Z Direct recovery of shae from multile views: a arallax based aroach Rakesh Kumar. Anandan Keith Hanna Abstract Given two arbitrary views of a scene under central rojection, if the motion of oints on a arametric

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

The Spatial Skyline Queries

The Spatial Skyline Queries The Satial Skyline Queries Mehdi Sharifzadeh Comuter Science Deartment University of Southern California Los Angeles, CA 90089-078 sharifza@usc.edu Cyrus Shahabi Comuter Science Deartment University of

More information

Fast Shape-based Road Sign Detection for a Driver Assistance System

Fast Shape-based Road Sign Detection for a Driver Assistance System Fast Shae-based Road Sign Detection for a Driver Assistance System Gareth Loy Comuter Vision and Active Percetion Laboratory Royal Institute of Technology (KTH) Stockholm, Sweden Email: gareth@nada.kth.se

More information

The Anubis Service. Paul Murray Internet Systems and Storage Laboratory HP Laboratories Bristol HPL June 8, 2005*

The Anubis Service. Paul Murray Internet Systems and Storage Laboratory HP Laboratories Bristol HPL June 8, 2005* The Anubis Service Paul Murray Internet Systems and Storage Laboratory HP Laboratories Bristol HPL-2005-72 June 8, 2005* timed model, state monitoring, failure detection, network artition Anubis is a fully

More information

Matlab Virtual Reality Simulations for optimizations and rapid prototyping of flexible lines systems

Matlab Virtual Reality Simulations for optimizations and rapid prototyping of flexible lines systems Matlab Virtual Reality Simulations for otimizations and raid rototying of flexible lines systems VAMVU PETRE, BARBU CAMELIA, POP MARIA Deartment of Automation, Comuters, Electrical Engineering and Energetics

More information

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics Kinematics Inverse kinematics The study of motion without regard to the forces that cause it Forward kinematics Given a joint configuration, what is the osition of an end oint on the structure? Inverse

More information

CS649 Sensor Networks IP Track Lecture 6: Graphical Models

CS649 Sensor Networks IP Track Lecture 6: Graphical Models CS649 Sensor Networks IP Track Lecture 6: Grahical Models I-Jeng Wang htt://hinrg.cs.jhu.edu/wsn06/ Sring 2006 CS 649 1 Sring 2006 CS 649 2 Grahical Models Grahical Model: grahical reresentation of joint

More information

Equality-Based Translation Validator for LLVM

Equality-Based Translation Validator for LLVM Equality-Based Translation Validator for LLVM Michael Ste, Ross Tate, and Sorin Lerner University of California, San Diego {mste,rtate,lerner@cs.ucsd.edu Abstract. We udated our Peggy tool, reviously resented

More information

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

Folded Structures Satisfying Multiple Conditions

Folded Structures Satisfying Multiple Conditions Journal of Information Processing Vol.5 No.4 1 10 (Oct. 017) [DOI: 1197/isjji.5.1] Regular Paer Folded Structures Satisfying Multile Conditions Erik D. Demaine 1,a) Jason S. Ku 1,b) Received: November

More information

Perception of Shape from Shading

Perception of Shape from Shading 1 Percetion of Shae from Shading Continuous image brightness variation due to shae variations is called shading Our ercetion of shae deends on shading Circular region on left is erceived as a flat disk

More information

An improved algorithm for Hausdorff Voronoi diagram for non-crossing sets

An improved algorithm for Hausdorff Voronoi diagram for non-crossing sets An imroved algorithm for Hausdorff Voronoi diagram for non-crossing sets Frank Dehne, Anil Maheshwari and Ryan Taylor May 26, 2006 Abstract We resent an imroved algorithm for building a Hausdorff Voronoi

More information

Dr Pavan Chakraborty IIIT-Allahabad

Dr Pavan Chakraborty IIIT-Allahabad GVC-43 Lecture - 5 Ref: Donald Hearn & M. Pauline Baker, Comuter Grahics Foley, van Dam, Feiner & Hughes, Comuter Grahics Princiles & Practice Dr Pavan Chakraborty IIIT-Allahabad Summary of line drawing

More information

Introduction to Parallel Algorithms

Introduction to Parallel Algorithms CS 1762 Fall, 2011 1 Introduction to Parallel Algorithms Introduction to Parallel Algorithms ECE 1762 Algorithms and Data Structures Fall Semester, 2011 1 Preliminaries Since the early 1990s, there has

More information

Empty Region Graphs. Computer Science Department, Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium

Empty Region Graphs. Computer Science Department, Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium Emty Region Grahs Jean Cardinal 1 Sébastien Collette 2 Stefan Langerman 3 Comuter Science Deartment, Université Libre de Bruxelles, CP212, Boulevard du Triomhe, 1050 Bruxelles, Belgium Abstract A family

More information

Collective Communication: Theory, Practice, and Experience. FLAME Working Note #22

Collective Communication: Theory, Practice, and Experience. FLAME Working Note #22 Collective Communication: Theory, Practice, and Exerience FLAME Working Note # Ernie Chan Marcel Heimlich Avi Purkayastha Robert van de Geijn Setember, 6 Abstract We discuss the design and high-erformance

More information

Brief Contributions. A Geometric Theorem for Network Design 1 INTRODUCTION

Brief Contributions. A Geometric Theorem for Network Design 1 INTRODUCTION IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO., APRIL 00 83 Brief Contributions A Geometric Theorem for Network Design Massimo Franceschetti, Member, IEEE, Matthew Cook, and Jehoshua Bruck, Fellow, IEEE

More information

A Novel Iris Segmentation Method for Hand-Held Capture Device

A Novel Iris Segmentation Method for Hand-Held Capture Device A Novel Iris Segmentation Method for Hand-Held Cature Device XiaoFu He and PengFei Shi Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200030, China {xfhe,

More information

Constrained Empty-Rectangle Delaunay Graphs

Constrained Empty-Rectangle Delaunay Graphs CCCG 2015, Kingston, Ontario, August 10 12, 2015 Constrained Emty-Rectangle Delaunay Grahs Prosenjit Bose Jean-Lou De Carufel André van Renssen Abstract Given an arbitrary convex shae C, a set P of oints

More information

CS2 Algorithms and Data Structures Note 8

CS2 Algorithms and Data Structures Note 8 CS2 Algorithms and Data Structures Note 8 Heasort and Quicksort We will see two more sorting algorithms in this lecture. The first, heasort, is very nice theoretically. It sorts an array with n items in

More information

for Motion Planning RSS Lecture 10 Prof. Seth Teller

for Motion Planning RSS Lecture 10 Prof. Seth Teller Configuration Space for Motion Planning RSS Lecture 10 Monday, 8 March 2010 Prof. Seth Teller Siegwart & Nourbahksh S 6.2 (Thanks to Nancy Amato, Rod Brooks, Vijay Kumar, and Daniela Rus for some of the

More information

PREDICTING LINKS IN LARGE COAUTHORSHIP NETWORKS

PREDICTING LINKS IN LARGE COAUTHORSHIP NETWORKS PREDICTING LINKS IN LARGE COAUTHORSHIP NETWORKS Kevin Miller, Vivian Lin, and Rui Zhang Grou ID: 5 1. INTRODUCTION The roblem we are trying to solve is redicting future links or recovering missing links

More information

Source-to-Source Code Generation Based on Pattern Matching and Dynamic Programming

Source-to-Source Code Generation Based on Pattern Matching and Dynamic Programming Source-to-Source Code Generation Based on Pattern Matching and Dynamic Programming Weimin Chen, Volker Turau TR-93-047 August, 1993 Abstract This aer introduces a new technique for source-to-source code

More information

A New and Efficient Algorithm-Based Fault Tolerance Scheme for A Million Way Parallelism

A New and Efficient Algorithm-Based Fault Tolerance Scheme for A Million Way Parallelism A New and Efficient Algorithm-Based Fault Tolerance Scheme for A Million Way Parallelism Erlin Yao, Mingyu Chen, Rui Wang, Wenli Zhang, Guangming Tan Key Laboratory of Comuter System and Architecture Institute

More information

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification Using Rational Numbers and Parallel Comuting to Efficiently Avoid Round-off Errors on Ma Simlification Maurício G. Grui 1, Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1, W. Randolh Franklin 2,

More information

Directed File Transfer Scheduling

Directed File Transfer Scheduling Directed File Transfer Scheduling Weizhen Mao Deartment of Comuter Science The College of William and Mary Williamsburg, Virginia 387-8795 wm@cs.wm.edu Abstract The file transfer scheduling roblem was

More information

The Spatial Skyline Queries

The Spatial Skyline Queries Coffee sho The Satial Skyline Queries Mehdi Sharifzadeh and Cyrus Shahabi VLDB 006 Presented by Ali Khodaei Coffee sho Three friends Coffee sho Three friends Don t choose this lace is closer to each three

More information

Theoretical Analysis of Graphcut Textures

Theoretical Analysis of Graphcut Textures Theoretical Analysis o Grahcut Textures Xuejie Qin Yee-Hong Yang {xu yang}@cs.ualberta.ca Deartment o omuting Science University o Alberta Abstract Since the aer was ublished in SIGGRAPH 2003 the grahcut

More information

Short Papers. Symmetry Detection by Generalized Complex (GC) Moments: A Close-Form Solution 1 INTRODUCTION

Short Papers. Symmetry Detection by Generalized Complex (GC) Moments: A Close-Form Solution 1 INTRODUCTION 466 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE VOL 2 NO 5 MAY 999 Short Paers Symmetry Detection by Generalized Comlex (GC) Moments: A Close-Form Solution Dinggang Shen Horace HS I

More information

OMNI: An Efficient Overlay Multicast. Infrastructure for Real-time Applications

OMNI: An Efficient Overlay Multicast. Infrastructure for Real-time Applications OMNI: An Efficient Overlay Multicast Infrastructure for Real-time Alications Suman Banerjee, Christoher Kommareddy, Koushik Kar, Bobby Bhattacharjee, Samir Khuller Abstract We consider an overlay architecture

More information

Improving Trust Estimates in Planning Domains with Rare Failure Events

Improving Trust Estimates in Planning Domains with Rare Failure Events Imroving Trust Estimates in Planning Domains with Rare Failure Events Colin M. Potts and Kurt D. Krebsbach Det. of Mathematics and Comuter Science Lawrence University Aleton, Wisconsin 54911 USA {colin.m.otts,

More information

Building Polygonal Maps from Laser Range Data

Building Polygonal Maps from Laser Range Data ECAI Int. Cognitive Robotics Worksho, Valencia, Sain, August 2004 Building Polygonal Mas from Laser Range Data Longin Jan Latecki and Rolf Lakaemer and Xinyu Sun and Diedrich Wolter Abstract. This aer

More information

To appear in IEEE TKDE Title: Efficient Skyline and Top-k Retrieval in Subspaces Keywords: Skyline, Top-k, Subspace, B-tree

To appear in IEEE TKDE Title: Efficient Skyline and Top-k Retrieval in Subspaces Keywords: Skyline, Top-k, Subspace, B-tree To aear in IEEE TKDE Title: Efficient Skyline and To-k Retrieval in Subsaces Keywords: Skyline, To-k, Subsace, B-tree Contact Author: Yufei Tao (taoyf@cse.cuhk.edu.hk) Deartment of Comuter Science and

More information

KAAP686 Mathematics and Signal Processing for Biomechanics. Rotation Matrices William C. Rose ,

KAAP686 Mathematics and Signal Processing for Biomechanics. Rotation Matrices William C. Rose , KAAP686 Mathematics and Signal Processing for Biomechanics Rotation Matrices William C. Rose 20150928, 20170423 Two-dimensional rotation matrices Consider the 2x2 matrices corresonding to rotations of

More information

Privacy Preserving Moving KNN Queries

Privacy Preserving Moving KNN Queries Privacy Preserving Moving KNN Queries arxiv:4.76v [cs.db] 4 Ar Tanzima Hashem Lars Kulik Rui Zhang National ICT Australia, Deartment of Comuter Science and Software Engineering University of Melbourne,

More information

A Method to Determine End-Points ofstraight Lines Detected Using the Hough Transform

A Method to Determine End-Points ofstraight Lines Detected Using the Hough Transform RESEARCH ARTICLE OPEN ACCESS A Method to Detere End-Points ofstraight Lines Detected Using the Hough Transform Gideon Kanji Damaryam Federal University, Lokoja, PMB 1154, Lokoja, Nigeria. Abstract The

More information

Object and Native Code Thread Mobility Among Heterogeneous Computers

Object and Native Code Thread Mobility Among Heterogeneous Computers Object and Native Code Thread Mobility Among Heterogeneous Comuters Bjarne Steensgaard Eric Jul Microsoft Research DIKU (Det. of Comuter Science) One Microsoft Way University of Coenhagen Redmond, WA 98052

More information

A Simple and Robust Approach to Computation of Meshes Intersection

A Simple and Robust Approach to Computation of Meshes Intersection A Simle and Robust Aroach to Comutation of Meshes Intersection Věra Skorkovská 1, Ivana Kolingerová 1 and Bedrich Benes 2 1 Deartment of Comuter Science and Engineering, University of West Bohemia, Univerzitní

More information

Efficient Parallel Hierarchical Clustering

Efficient Parallel Hierarchical Clustering Efficient Parallel Hierarchical Clustering Manoranjan Dash 1,SimonaPetrutiu, and Peter Scheuermann 1 Deartment of Information Systems, School of Comuter Engineering, Nanyang Technological University, Singaore

More information

Parallel Algorithms for the Summed Area Table on the Asynchronous Hierarchical Memory Machine, with GPU implementations

Parallel Algorithms for the Summed Area Table on the Asynchronous Hierarchical Memory Machine, with GPU implementations Parallel Algorithms for the Summed Area Table on the Asynchronous Hierarchical Memory Machine, ith GPU imlementations Akihiko Kasagi, Koji Nakano, and Yasuaki Ito Deartment of Information Engineering Hiroshima

More information

Quality-of-Service Routing with Two Concave Constraints

Quality-of-Service Routing with Two Concave Constraints This full text aer was eer reviewed at the direction of IEEE Communications ociety subject matter exerts for ublication in the ICC 008 roceedings. Quality-of-ervice Routing with Two Concave Constraints

More information

dip3d Computing Structural Dip Program dip3d Computation flow chart Volumetric Attributes: Program dip3d

dip3d Computing Structural Dip Program dip3d Computation flow chart Volumetric Attributes: Program dip3d Comuting Structural Di Program di3d Comutation flow chart Program di3d uses a seismic amlitude volume as its inut and generates estimates of inline di, crossline di, di magnitude, di azimuth, and a confidence

More information

Collective communication: theory, practice, and experience

Collective communication: theory, practice, and experience CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Comutat.: Pract. Exer. 2007; 19:1749 1783 Published online 5 July 2007 in Wiley InterScience (www.interscience.wiley.com)..1206 Collective

More information

A 2D Random Walk Mobility Model for Location Management Studies in Wireless Networks Abstract: I. Introduction

A 2D Random Walk Mobility Model for Location Management Studies in Wireless Networks Abstract: I. Introduction A D Random Walk Mobility Model for Location Management Studies in Wireless Networks Kuo Hsing Chiang, RMIT University, Melbourne, Australia Nirmala Shenoy, Information Technology Deartment, RIT, Rochester,

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

Support Vector Machines for Face Authentication

Support Vector Machines for Face Authentication Suort Vector Machines for Face Authentication K Jonsson 1 2, J Kittler 1,YPLi 1 and J Matas 1 2 1 CVSSP, University of Surrey Guildford, Surrey GU2 5XH, United Kingdom 2 CMP, Czech Technical University

More information

Chapter 7b - Point Estimation and Sampling Distributions

Chapter 7b - Point Estimation and Sampling Distributions Chater 7b - Point Estimation and Samling Distributions Chater 7 (b) Point Estimation and Samling Distributions Point estimation is a form of statistical inference. In oint estimation we use the data from

More information

split split (a) (b) split split (c) (d)

split split (a) (b) split split (c) (d) International Journal of Foundations of Comuter Science c World Scientic Publishing Comany ON COST-OPTIMAL MERGE OF TWO INTRANSITIVE SORTED SEQUENCES JIE WU Deartment of Comuter Science and Engineering

More information

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand Imaging Geometr 1. Basic Geometric Coordinate Transorms emember: The equation o rojection Cartesian coordinates: (,, z) ( z, z ) C36 Martin Jagersand How do we develo a consistent mathematical ramework

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

REAL NUMBERS. 1.1 Introduction

REAL NUMBERS. 1.1 Introduction REAL NUMBERS 1 REAL NUMBERS 1 1.1 Introduction In Class IX, you began your exloration of the world of real numbers and encountered irrational numbers. We continue our discussion on real numbers in this

More information

RTL Fast Convolution using the Mersenne Number Transform

RTL Fast Convolution using the Mersenne Number Transform RTL Fast Convolution using the Mersenne Number Transform Oscar N. Bria and Horacio A. Villagarcía o.bria@ieee.org CeTAD - - Argentina Abstract VHDL is a versatile high level language for the secification

More information