DEEP DIVE INTO DYNAMIC PARALLELISM

Size: px
Start display at page:

Download "DEEP DIVE INTO DYNAMIC PARALLELISM"

Transcription

1 April 4-7, 2016 Silicon Valley DEEP DIVE INTO DYNAMIC PARALLELISM SHANKARA RAO THEJASWI NANDITALE, NVIDIA CHRISTOPH ANGERER, NVIDIA 1

2 OVERVIEW AND INTRODUCTION 2

3 WHAT IS DYNAMIC PARALLELISM? The ability to launch new kernels from the GPU Dynamically - based on run-time data Simultaneously - from multiple threads at once Independently - each thread can launch a different grid Introduced with CUDA 5.0 and compute capability 3.5 and up CPU GPU CPU GPU Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself 3

4 DYNAMIC PARALLELISM CPU GPU CPU GPU 4

5 AN EASY TO PARALLELIZE PROGRAM M for i = 1 to N for j = 1 to M convolution(i, j) next j next i N 5

6 A DIFFICULT TO PARALLELIZE PROGRAM for i = 1 to N for j = 1 to x[i] convolution(i, j) next j next i 6

7 A DIFFICULT TO PARALLELIZE PROGRAM max(x[i]) N for i = 1 to N for j = 1 to x[i] convolution(i, j) next j next i Bad alternative #1: Idle Threads N Bad alternative #2: Tail Effect 7

8 Serial Program for i = 1 to N for j = 1 to x[i] convolution(i, j) next j next i DYNAMIC PARALLELISM CUDA Program global void convolution(int x[]) { for j = 1 to x[blockidx] kernel<<<... >>>(blockidx, j) } N void main() { setup(x); convolution<<< N, 1 >>>(x); } With Dynamic Parallelism 8

9 Time (ms) lower is better EXPERIMENT 300 dynpar idlethreads taileffect Matrix Size * Device/SDK = K40m/v7.5 * K40m-CPU = E

10 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A SM SM SM SM A0 B<<<1,1>>>() cudalaunchdevice( B, 1, 1 ); 10

11 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A SM SM SM SM A0 B<<<1,1>>>() Allocate Task data structure 11

12 Task Tracking Structures LAUNCH EXAMPLE B Grid Scheduler A0 Tracking Structure Grid A SM SM SM SM A0 B<<<1,1>>>() Fill out Task data structure 12

13 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A B SM SM SM A0 SM Track Task B in Block A0 B<<<1,1>>>() 13

14 B<<<1,1>>>() Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A B SM SM SM A0 SM Launch Task B to GPU 14

15 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Grid B B SM SM SM SM A0 B0 C<<<1,1>>>() cudalaunchdevice( C, 1, 1 ); 15

16 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Grid B B C SM SM SM SM A0 B0 Allocate, fill out, and track Task C in block A0 C<<<1,1>>>() 16

17 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Grid B B C SM SM SM SM A0 B0 Task C is not yet runnable. Track C to run after B. 17

18 LAUNCH EXAMPLE Task Tracking Structures Task B completes. SKED runs Scheduler. Grid Scheduler Task B completes. Scheduler kernel runs. A0 Tracking Structure Grid A, Scheduler B C SM SM SM SM A0 18

19 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Scheduler B C SM SM SM SM A0 Sched Scheduler searches for work. 19

20 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Scheduler B C SM SM SM SM A0 Sched Scheduler completes B, and Identifies C as ready-to-run. 20

21 C<<<1,1>>>() Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Scheduler C SM SM SM SM A0 Sched Scheduler frees B for re-use, and launches C to the Grid Scheduler. 21

22 Task Tracking Structures LAUNCH EXAMPLE Grid Scheduler A0 Tracking Structure Grid A, Grid C C SM SM SM A0 SM C0 Task C now executes. 22

23 Programming Model BASIC RULES Essentially the same as CUDA Launch is per-thread and asynchronous Time Grid A Launch CPU Thread Grid A Complete Sync is per-block Grid A - Parent Grid A Threads CUDA primitives are per-block (cannot pass streams/events to children) Grid B Launch Grid B Complete cudadevicesynchronize()!= syncthreads() Events allow inter-stream dependencies Streams are shared within a block Implicit NULL stream results in ordering within a block; use named streams Grid B - Child Grid B Threads CUDA API available on the device: 23

24 MEMORY CONSISTENCY RULES Memory Model Launch implies membar (child sees parent state at time of launch) Time Grid A Launch CPU Thread Grid A Complete Sync implies invalidate (parent sees child writes after sync) Grid A - Parent Grid A Threads Texture changes by child are visible to parent after sync (i.e. sync == tex cache invalidate) Constants are immutable Grid B - Child Grid B Launch Grid B Threads Grid B Complete Local & shared memory are private: cannot be passed as child kernel args Fully consistent 25

25 EXPERIMENTS 26

26 DIRECTED BENCHMARKS Kernels written to measure specific aspects of dynamic parallelism Launch throughput Launch latency As a function of different configurations SDK Versions Varying Clocks 27

27 RESULTS LAUNCH THROUGHPUT 28

28 Grids/sec LAUNCH THROUGHPUT K40m K40m-CPU Num Child kernels launched * Device/SDK/mem-clk,gpu-clk = K40m/v7.5/875 * K40m-CPU = E * Host launches are with 32 streams 29

29 LAUNCH THROUGHPUT Observations About an order of magnitude higher than from host Dynamic parallelism is very useful when there are a lot of child kernels Two major limiters of launch throughput Pending Launch Count Grid Scheduler Limit 30

30 Grids/sec PENDING LAUNCH COUNT Num Child kernels launched * Device/SDK/mem-clk,gpu-clk = K40/v7.5/3004,875 * Different curves represent different pending launch count limits 31

31 PENDING LAUNCH COUNT Observations Pre-allocated buffer in Global Memory to store kernels before their launch Default value 2048 kernels Buffer overflow implies resize performed on-the-go Substantial reduction in launch throughput! Know the number of pending child kernels! 32

32 PENDING LAUNCH COUNT CUDA API S cudadevicesetlimit(cudalimitdevruntimependinglaunchcount, yourlimit); Setting Limit cudadevicegetlimit(&yourlimit, cudalimitdevruntimependinglaunchcount); Querying Limit 4/27/

33 Grids/sec GRID SCHEDULER LIMIT Num device streams * Device/SDK/mem-clk,gpu-clk = K40/v7.5/3004,875 * Different curves represent the total number of child kernels launched 34

34 GRID SCHEDULER LIMIT Observations Ability of grid scheduler to track the number of concurrent kernels The limit is currently 32 If this limit is crossed, upto 50% loss in launch throughput 35

35 RESULTS LAUNCH LATENCY 36

36 Time (ns) LAUNCH LATENCY Initial Subsequent K40m K40m-CPU * Device/SDK/mem-clk,gpu-clk = K40m/v7.5/3004,875 * K40m-CPU = E * Host launches are with 32 streams 37

37 LAUNCH LATENCY Observations Initial and subsequent latencies are about 2-3x slower than that of host Dynamic Parallelism may not be a good choice currently when: A few child kernels Serial kernel launches We are working towards improving this** ** Characterization and Analysis of Dynamic Parallelism in Unstructured GPU Applications, Jin Wang and Sudhakar Yalamanchili, 2014 IEEE International Symposium on Workload Characterization (IISWC). 38

38 Time (ns) Time (ns) LAUNCH LATENCY - STREAMS Host streams Device streams * Device/SDK/mem-clk,gpu-clk = K40m/v7.5/3004,875 39

39 LAUNCH LATENCY - STREAMS Observations Host streams affect device-side launch latency Prefer device streams for dynamic parallelism 40

40 RESULTS DEVICE SYNCHRONIZE 41

41 DEVICE SYNCHRONIZE cudadevicesynchronize is costly Avoid it when possible, example below global void parent() { dosomeinitialization(); } childkernel<<<grid,blk>>>(); cudadevicesynchronize(); Unnecessary. Implicit join enforced by the programming model! 42

42 Time (ms) DEVICE SYNCHRONIZE - COST sync nosync Amount of work per thread (higher the number, more the work) * Device/SDK = K40/v7.5 43

43 DEVICE SYNCHRONIZE DEPTH Deepest recursion level until where cudadevicesynchronize works CUDA limit cudalimitdevruntimesyncdepth controls it Default is level 2 At the cost of extra global memory reserved for storing parent blocks 44

44 Memory Reserved (MB) DEVICE SYNCHRONIZE DEPTH Memory Usage Device Synchronize Depth 45

45 DEVICE SYNCHRONIZE DEPTH Error Handling cudadevicesynchronize fails silently beyond the set SyncDepth Use cudagetlasterror on device to inspect the error Kernel Kernel Kernel (depth=1) (depth=2) (depth=3) Kernel (depth=4) Kernel (depth=5) SyncDepth=2 46

46 DYNAMIC PARALLELISM - LIMITS 47

47 DYNAMIC PARALLELISM Limits Recursion depth is currently 24 Maximum size of formal parameters in the child kernel is 4096 B Violation causes a compile-time error Runtime exceptions in child kernel are only visible from host-side 48

48 ERROR HANDLING Runtime exceptions in child kernels Visible only from host-side -lineinfo of nvcc along with cuda-memcheck to locate the error location global void child(float* arr) { arr[0] = 1.0f; } global void parent() { child<<<1,1>>>(null); cudadevicesynchronize(); printf( %d\n, cudagetlasterror()); } Control never reaches here! parent<<<1,1>>>(); cudaerror_t err = cudadevicesynchronize(); Error caught here 49

49 SUCCESS STORIES 50

50 FMM Fast Multipole Method Solving the N-body problem Computational complexity O(n) Tree-based approach Image source: 51

51 lower is better FMM (2) Performance Dynamic 1: launch child grids for neighbors and children Dynamic 2: launch child grids for children only Dynamic 3: launch child grids for children only; start only p 2 kernel threads; use shared GPU memory From: FMM goes GPU A smooth trip or bumpy ride?, B. Kohnke, I.Kabadshow MPI BPC Göttingen & Jülich Supercomputing Centre, GTC

52 PANDA anti-proton ANnihilation at DArmstadt State-of-the-art hadron particle physics experiment 53

53 PANDA (2) Performance and Reasons for Improvements Avoiding extra PCI-e data transfers. Launch configuration data dependencies Higher launch throughput Reducing false dependencies between kernel launches. Waiting on stream prevents enqueuing of work into other streams Source: A CUDA Dynamic Parallelism Case Study: PANDA, Andrew Adinetz 54

54 SUMMARY 55

55 WHEN TO USE CUDA DYNAMIC PARALLELISM Three Good Reasons Algorithmic: Dynamically Formed Pockets of Structured Parallelism * Unbalanced load (e.g., vertex expansion in graphs, compressed sparse row) Tree traversal (fat and shallow computation trees) Adaptive Mesh Refinement Performance: Improve launch throughput Reduce PCIe traffic and false dependencies Maintenance: Simplified, more natural program flow *) from: Characterization and Analysis of Dynamic Parallelism in Unstructured GPU Applications, J.Wang and S. Yalamanchili, IISWC

56 REFERENCES CUDA-C Programming Guide, Adaptive Parallel Computation with CUDA Dynamic Parallelism FMM goes GPU, B. Kohnke and I.Kabadshow, GTC 2015, 58

57 April 4-7, 2016 Silicon Valley THANK YOU JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

April 4-7, 2016 Silicon Valley. CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016

April 4-7, 2016 Silicon Valley. CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016 April 4-7, 2016 Silicon Valley CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016 AGENDA General debugging approaches Cuda-gdb Demo 2 CUDA API CHECKING CUDA calls are

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

CUDA Advanced Techniques 2 Mohamed Zahran (aka Z)

CUDA Advanced Techniques 2 Mohamed Zahran (aka Z) CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 2 Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Alignment Memory Alignment Memory

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs

LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs Jin Wang*, Norm Rubin, Albert Sidelnik, Sudhakar Yalamanchili* *Computer Architecture and System Lab, Georgia Institute of Technology NVIDIA

More information

CS377P Programming for Performance GPU Programming - II

CS377P Programming for Performance GPU Programming - II CS377P Programming for Performance GPU Programming - II Sreepathi Pai UTCS November 11, 2015 Outline 1 GPU Occupancy 2 Divergence 3 Costs 4 Cooperation to reduce costs 5 Scheduling Regular Work Outline

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018 S8630 - WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS Jakob Progsch, Mathias Wagner GTC 2018 1. Know your hardware BEFORE YOU START What are the target machines, how many nodes? Machine-specific

More information

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0 Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nsight VSE APOD

More information

Dynamic Thread Block Launch: A Lightweight Execution Mechanism to Support Irregular Applications on GPUs

Dynamic Thread Block Launch: A Lightweight Execution Mechanism to Support Irregular Applications on GPUs Dynamic Thread Block Launch: A Lightweight Execution Mechanism to Support Irregular Applications on GPUs Jin Wang* Norm Rubin Albert Sidelnik Sudhakar Yalamanchili* *Georgia Institute of Technology NVIDIA

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

GPU Programming. Rupesh Nasre.

GPU Programming. Rupesh Nasre. GPU Programming Rupesh Nasre. http://www.cse.iitm.ac.in/~rupesh IIT Madras July 2017 Debugging Debugging parallel programs is difficult. Non-determinism due to thread-scheduling Output can be different

More information

Kepler Overview Mark Ebersole

Kepler Overview Mark Ebersole Kepler Overview Mark Ebersole TFLOPS TFLOPS 3x Performance in a Single Generation 3.5 3 2.5 2 1.5 1 0.5 0 1.25 1 Single Precision FLOPS (SGEMM) 2.90 TFLOPS.89 TFLOPS.36 TFLOPS Xeon E5-2690 Tesla M2090

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

An Introduction to GPU Architecture and CUDA C/C++ Programming. Bin Chen April 4, 2018 Research Computing Center

An Introduction to GPU Architecture and CUDA C/C++ Programming. Bin Chen April 4, 2018 Research Computing Center An Introduction to GPU Architecture and CUDA C/C++ Programming Bin Chen April 4, 2018 Research Computing Center Outline Introduction to GPU architecture Introduction to CUDA programming model Using the

More information

Exploring Dynamic Parallelism on OpenMP

Exploring Dynamic Parallelism on OpenMP www.bsc.es Exploring Dynamic Parallelism on OpenMP Guray Ozen, Eduard Ayguadé, Jesús Labarta WACCPD @ SC 15 Guray Ozen - Exploring Dynamic Parallelism in OpenMP Austin, Texas 2015 MACC: MACC: Introduction

More information

Hands-on CUDA Optimization. CUDA Workshop

Hands-on CUDA Optimization. CUDA Workshop Hands-on CUDA Optimization CUDA Workshop Exercise Today we have a progressive exercise The exercise is broken into 5 steps If you get lost you can always catch up by grabbing the corresponding directory

More information

GPU Programming Using CUDA. Samuli Laine NVIDIA Research

GPU Programming Using CUDA. Samuli Laine NVIDIA Research GPU Programming Using CUDA Samuli Laine NVIDIA Research Today GPU vs CPU Different architecture, different workloads Basics of CUDA Executing code on GPU Managing memory between CPU and GPU CUDA API Quick

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

CUDA (Compute Unified Device Architecture)

CUDA (Compute Unified Device Architecture) CUDA (Compute Unified Device Architecture) Mike Bailey History of GPU Performance vs. CPU Performance GFLOPS Source: NVIDIA G80 = GeForce 8800 GTX G71 = GeForce 7900 GTX G70 = GeForce 7800 GTX NV40 = GeForce

More information

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms CS 590: High Performance Computing GPU Architectures and CUDA Concepts/Terms Fengguang Song Department of Computer & Information Science IUPUI What is GPU? Conventional GPUs are used to generate 2D, 3D

More information

Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control flow

Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control flow Fundamental Optimizations (GTC 2010) Paulius Micikevicius NVIDIA Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control flow Optimization

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

Practical Introduction to CUDA and GPU

Practical Introduction to CUDA and GPU Practical Introduction to CUDA and GPU Charlie Tang Centre for Theoretical Neuroscience October 9, 2009 Overview CUDA - stands for Compute Unified Device Architecture Introduced Nov. 2006, a parallel computing

More information

Inside Kepler. Manuel Ujaldon Nvidia CUDA Fellow. Computer Architecture Department University of Malaga (Spain)

Inside Kepler. Manuel Ujaldon Nvidia CUDA Fellow. Computer Architecture Department University of Malaga (Spain) Inside Kepler Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain) Talk outline [46 slides] 1. Introducing the architecture [2] 2. Cores organization [9] 3. Memory

More information

CUDA Workshop. High Performance GPU computing EXEBIT Karthikeyan

CUDA Workshop. High Performance GPU computing EXEBIT Karthikeyan CUDA Workshop High Performance GPU computing EXEBIT- 2014 Karthikeyan CPU vs GPU CPU Very fast, serial, Low Latency GPU Slow, massively parallel, High Throughput Play Demonstration Compute Unified Device

More information

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL (stashing recurrent weights on-chip) Baidu SVAIL April 7, 2016 SVAIL Think hard AI. Goal Develop hard AI technologies that impact 100 million users. Deep Learning at SVAIL 100 GFLOP/s 1 laptop 6 TFLOP/s

More information

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture Rafia Inam Mälardalen Real-Time Research Centre Mälardalen University, Västerås, Sweden http://www.mrtc.mdh.se rafia.inam@mdh.se CONTENTS

More information

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 17: Data Transfer and CUDA Streams

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 17: Data Transfer and CUDA Streams CS/EE 217 GPU Architecture and Parallel Programming Lecture 17: Data fer and CUDA Streams Objective To learn more advanced features of the CUDA APIs for data transfer and kernel launch Task parallelism

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

Profiling & Tuning Applications. CUDA Course István Reguly

Profiling & Tuning Applications. CUDA Course István Reguly Profiling & Tuning Applications CUDA Course István Reguly Introduction Why is my application running slow? Work it out on paper Instrument code Profile it NVIDIA Visual Profiler Works with CUDA, needs

More information

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction Francesco Rossi University of Bologna and INFN * Using this terminology since you ve already heard of SIMD and SPMD at this school

More information

Fundamental Optimizations

Fundamental Optimizations Fundamental Optimizations Paulius Micikevicius NVIDIA Supercomputing, Tutorial S03 New Orleans, Nov 14, 2010 Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access

More information

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5)

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5) CUDA programming model N. Cardoso & P. Bicudo Física Computacional (FC5) N. Cardoso & P. Bicudo CUDA programming model 1/23 Outline 1 CUDA qualifiers 2 CUDA Kernel Thread hierarchy Kernel, configuration

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

Supercomputing, Tutorial S03 New Orleans, Nov 14, 2010

Supercomputing, Tutorial S03 New Orleans, Nov 14, 2010 Fundamental Optimizations Paulius Micikevicius NVIDIA Supercomputing, Tutorial S03 New Orleans, Nov 14, 2010 Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access

More information

GPU Programming Using CUDA. Samuli Laine NVIDIA Research

GPU Programming Using CUDA. Samuli Laine NVIDIA Research GPU Programming Using CUDA Samuli Laine NVIDIA Research Today GPU vs CPU Different architecture, different workloads Basics of CUDA Executing code on GPU Managing memory between CPU and GPU CUDA API Quick

More information

CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION

CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION April 4-7, 2016 Silicon Valley CUDA OPTIMIZATION WITH NVIDIA NSIGHT VISUAL STUDIO EDITION CHRISTOPH ANGERER, NVIDIA JAKOB PROGSCH, NVIDIA 1 WHAT YOU WILL LEARN An iterative method to optimize your GPU

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Optimization Overview GPU architecture Kernel optimization Memory optimization Latency optimization Instruction optimization CPU-GPU

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34 1 / 34 GPU Programming Lecture 2: CUDA C Basics Miaoqing Huang University of Arkansas 2 / 34 Outline Evolvements of NVIDIA GPU CUDA Basic Detailed Steps Device Memories and Data Transfer Kernel Functions

More information

Lecture 1: an introduction to CUDA

Lecture 1: an introduction to CUDA Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Overview hardware view software view CUDA programming

More information

Tutorial: Parallel programming technologies on hybrid architectures HybriLIT Team

Tutorial: Parallel programming technologies on hybrid architectures HybriLIT Team Tutorial: Parallel programming technologies on hybrid architectures HybriLIT Team Laboratory of Information Technologies Joint Institute for Nuclear Research The Helmholtz International Summer School Lattice

More information

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Haicheng Wu 1, Daniel Zinn 2, Molham Aref 2, Sudhakar Yalamanchili 1 1. Georgia Institute of Technology 2. LogicBlox

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

Introduction to GPGPUs and to CUDA programming model

Introduction to GPGPUs and to CUDA programming model Introduction to GPGPUs and to CUDA programming model www.cineca.it Marzia Rivi m.rivi@cineca.it GPGPU architecture CUDA programming model CUDA efficient programming Debugging & profiling tools CUDA libraries

More information

Scientific discovery, analysis and prediction made possible through high performance computing.

Scientific discovery, analysis and prediction made possible through high performance computing. Scientific discovery, analysis and prediction made possible through high performance computing. An Introduction to GPGPU Programming Bob Torgerson Arctic Region Supercomputing Center November 21 st, 2013

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Institute of Computational Science Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Juraj Kardoš (University of Lugano) July 9, 2014 Juraj Kardoš Efficient GPU data transfers July 9, 2014

More information

Parallel Programming and Debugging with CUDA C. Geoff Gerfin Sr. System Software Engineer

Parallel Programming and Debugging with CUDA C. Geoff Gerfin Sr. System Software Engineer Parallel Programming and Debugging with CUDA C Geoff Gerfin Sr. System Software Engineer CUDA - NVIDIA s Architecture for GPU Computing Broad Adoption Over 250M installed CUDA-enabled GPUs GPU Computing

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

CUDA Performance Optimization

CUDA Performance Optimization Mitglied der Helmholtz-Gemeinschaft CUDA Performance Optimization GPU Programming with CUDA April 25-27, 2016 Jiri Kraus (NVIDIA) based on work by Andrew V. Adinetz What you will learn: What is memory

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA

CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA Sreepathi Pai October 18, 2017 URCS Outline Background Memory Code Execution Model Outline Background Memory Code Execution Model

More information

Efficient Data Transfers

Efficient Data Transfers Efficient Data fers Slide credit: Slides adapted from David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 PCIE Review Typical Structure of a CUDA Program Global variables declaration Function prototypes global

More information

PERFWORKS A LIBRARY FOR GPU PERFORMANCE ANALYSIS

PERFWORKS A LIBRARY FOR GPU PERFORMANCE ANALYSIS April 4-7, 2016 Silicon Valley PERFWORKS A LIBRARY FOR GPU PERFORMANCE ANALYSIS Avinash Baliga, NVIDIA Developer Tools Software Architect April 5, 2016 @ 3:00 p.m. Room 211B NVIDIA PerfWorks SDK New API

More information

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou A GPU Implementation of Tiled Belief Propagation on Markov Random Fields Hassan Eslami Theodoros Kasampalis Maria Kotsifakou BP-M AND TILED-BP 2 BP-M 3 Tiled BP T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 4 Tiled

More information

Compiler-Assisted Workload Consolidation For Efficient Dynamic Parallelism on GPU

Compiler-Assisted Workload Consolidation For Efficient Dynamic Parallelism on GPU Compiler-Assisted Workload Consolidation For Efficient Dynamic Parallelism on GPU Hancheng Wu*, Da Li*, Michela Becchi Dept. of Electrical and Computer Engineering University of Missouri Columbia, MO,

More information

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 CUDA Lecture 2 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de December 15, 2015 CUDA Programming Fundamentals CUDA

More information

Introduction to Scientific Programming using GPGPU and CUDA

Introduction to Scientific Programming using GPGPU and CUDA Introduction to Scientific Programming using GPGPU and CUDA Day 1 Sergio Orlandini s.orlandini@cineca.it Mario Tacconi m.tacconi@cineca.it 0 Hands on: Compiling a CUDA program Environment and utility:

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Technische Universität München. GPU Programming. Rüdiger Westermann Chair for Computer Graphics & Visualization. Faculty of Informatics

Technische Universität München. GPU Programming. Rüdiger Westermann Chair for Computer Graphics & Visualization. Faculty of Informatics GPU Programming Rüdiger Westermann Chair for Computer Graphics & Visualization Faculty of Informatics Overview Programming interfaces and support libraries The CUDA programming abstraction An in-depth

More information

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES Cliff Woolley, NVIDIA PREFACE This talk presents a case study of extracting parallelism in the UMT2013 benchmark for 3D unstructured-mesh

More information

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA GPGPU LAB Case study: Finite-Difference Time- Domain Method on CUDA Ana Balevic IPVS 1 Finite-Difference Time-Domain Method Numerical computation of solutions to partial differential equations Explicit

More information

Massively Parallel Computing with CUDA. Carlos Alberto Martínez Angeles Cinvestav-IPN

Massively Parallel Computing with CUDA. Carlos Alberto Martínez Angeles Cinvestav-IPN Massively Parallel Computing with CUDA Carlos Alberto Martínez Angeles Cinvestav-IPN What is a GPU? A graphics processing unit (GPU) The term GPU was popularized by Nvidia in 1999 marketed the GeForce

More information

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Programmer Interface Klaus Mueller Computer Science Department Stony Brook University Compute Levels Encodes the hardware capability of a GPU card newer cards have higher compute

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm. Martin Burtscher Department of Computer Science Texas State University-San Marcos

An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm. Martin Burtscher Department of Computer Science Texas State University-San Marcos An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm Martin Burtscher Department of Computer Science Texas State University-San Marcos Mapping Regular Code to GPUs Regular codes Operate on

More information

Debugging Your CUDA Applications With CUDA-GDB

Debugging Your CUDA Applications With CUDA-GDB Debugging Your CUDA Applications With CUDA-GDB Outline Introduction Installation & Usage Program Execution Control Thread Focus Program State Inspection Run-Time Error Detection Tips & Miscellaneous Notes

More information

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten GPU Computing: Development and Analysis Part 1 Anton Wijs Muhammad Osama Marieke Huisman Sebastiaan Joosten NLeSC GPU Course Rob van Nieuwpoort & Ben van Werkhoven Who are we? Anton Wijs Assistant professor,

More information

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library Libraries Don t reinvent the wheel. Specialized math libraries are likely faster. BLAS: Basic Linear Algebra Subprograms LAPACK: Linear Algebra Package (uses BLAS) http://www.netlib.org/lapack/ to download

More information

Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP

Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP Zhe Weng and Peter Strazdins*, Computer Systems Group, Research School of Computer Science, The Australian National University

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting

GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting Girona, Spain May 4-5 GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting David Camp, Hari Krishnan, David Pugmire, Christoph Garth, Ian Johnson, E. Wes Bethel, Kenneth

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Gernot Ziegler, Developer Technology (Compute) (Material by Thomas Bradley) Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Building systems with GPUs is hard. Why? 2 Goal of

More information

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA PROGRAMMING MODEL Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA: COMMON UNIFIED DEVICE ARCHITECTURE Parallel computing architecture and programming model GPU Computing Application Includes

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

Introduction to GPU programming with CUDA

Introduction to GPU programming with CUDA Introduction to GPU programming with CUDA Dr. Juan C Zuniga University of Saskatchewan, WestGrid UBC Summer School, Vancouver. June 12th, 2018 Outline 1 Overview of GPU computing a. what is a GPU? b. GPU

More information

Maximizing Face Detection Performance

Maximizing Face Detection Performance Maximizing Face Detection Performance Paulius Micikevicius Developer Technology Engineer, NVIDIA GTC 2015 1 Outline Very brief review of cascaded-classifiers Parallelization choices Reducing the amount

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

GPU-accelerated data expansion for the Marching Cubes algorithm

GPU-accelerated data expansion for the Marching Cubes algorithm GPU-accelerated data expansion for the Marching Cubes algorithm San Jose (CA) September 23rd, 2010 Christopher Dyken, SINTEF Norway Gernot Ziegler, NVIDIA UK Agenda Motivation & Background Data Compaction

More information

Debugging and Optimization strategies

Debugging and Optimization strategies Debugging and Optimization strategies Philip Blakely Laboratory for Scientific Computing, Cambridge Philip Blakely (LSC) Optimization 1 / 25 Writing a correct CUDA code You should start with a functional

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs

LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs LaPerm: Locality Aware Scheduler for Dynamic Parallelism on GPUs Jin Wang* Norm Rubin Albert Sidelnik Sudhakar Yalamanchili* *Georgia Institute of Technology NVIDIA Research Email: {jin.wang,sudha}@gatech.edu,

More information

CS 179 Lecture 4. GPU Compute Architecture

CS 179 Lecture 4. GPU Compute Architecture CS 179 Lecture 4 GPU Compute Architecture 1 This is my first lecture ever Tell me if I m not speaking loud enough, going too fast/slow, etc. Also feel free to give me lecture feedback over email or at

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

Advanced CUDA Optimization 1. Introduction

Advanced CUDA Optimization 1. Introduction Advanced CUDA Optimization 1. Introduction Thomas Bradley Agenda CUDA Review Review of CUDA Architecture Programming & Memory Models Programming Environment Execution Performance Optimization Guidelines

More information