GPUfs: Integrating a file system with GPUs

Size: px
Start display at page:

Download "GPUfs: Integrating a file system with GPUs"

Transcription

1 GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1

2 Building systems with GPUs is hard. Why? 2

3 Goal of GPU programming frameworks GPU CPU Data transfers GPU invocation Memory management Parallel Algorithm 3

4 Headache for GPU programmers GPU CPU Data transfers Invocation Memory management Parallel Algorithm Half of the CUDA SDK 4.1 samples: at least 9 CPU LOC per 1 GPU LOC 4

5 GPU kernels are isolated GPU CPU Data transfers Invocation Memory management Parallel Algorithm 5

6 Example: accelerating photo collage While(Unhappy()){ Read_next_image_file() Decide_placement() Remove_outliers() } 6

7 CPU Implementation CPU Application While(Unhappy()){ Read_next_image_file() Decide_placement() Remove_outliers() } 7

8 Offloading computations to GPU This offloading pattern is common in commodity applications CPU Application Move to GPU While(Unhappy()){ Read_next_image_file() Decide_placement() Remove_outliers() } 8

9 Offloading computations to GPU Co-processor programming model requires kernel termination CPU Application Data transfer GPU Kernel start Kernel termination 9

10 Kernel start/stop overheads ke invo y to cop U GP Cache flush cop y CPU to CPU Invocation latency GPU Synchronization 10

11 Implementation complexity Asynchronous invocation Manual data reuse management Double buffering y to cop U GP ke invo y to cop U GP cop y CPU to CPU GPU 11

12 Implementation complexity Management overhead Asynchronous invocation Manual data reuse management Double buffering y to cop U GP ke invo y to cop U GP cop y CPU to CPU GPU 12

13 Implementation complexity Management overhead Asynchronous invocation Manual data reuse management Double buffering y to cop U GP ke invo y to cop U GP cop y CPU to CPU GPU Why do we need to deal with low-level system details? 13

14 The reason is... GPUs are peer-processors 14

15 The reason is... GPUs are peer-processors They need I/O OS services 15

16 GPUfs: application view GPU2 GPU1 ) le ) d_fi hare n( s ope file d_ re ha ( s en op writ e() CPUs GPU3 () p a m m GPUfs Host File System 16

17 GPUfs: application view ) le ) d_fi hare n( s ope file d_ re ha ( s en op System-wide shared namespace GPU1 GPU2 writ e() CPUs GPU3 () p a m m POSIX GPUfs (CPU)-like API Host File System Persistent storage 17

18 Accelerating collage app with GPUfs No CPU management code CPU GPUfs GPU open/read from GPU 18

19 Accelerating collage app with GPUfs CPU Read-ahead GPUfsGPUfs GPUfs buffer cache GPU Overlapping Overlapping computations and transfers 19

20 Accelerating collage app with GPUfs CPU GPUfs GPU Data reuse Random data access 20

21 Challenge GPU CPU 21

22 GPUfs: File I/O support for GPUs Understanding the hardware Design Implementation Evaluation 22

23 Massive parallelism Parallelism is essential for performance in deeply multi-threaded wide-vector hardware AMD HD5870* NVIDIA Fermi* 23,000 active threads 31,000 active threads From M. Houston/A. Lefohn/K. Fatahalian A trip through the architecture of modern GPUs* 23

24 Heterogeneous memory GPUs inherently impose high bandwidth demands on memory GPU CPU 10-32GB/s GB/s Memory Memory ~x GB/s 24

25 How to build an FS layer on this hardware? 25

26 GPUfs: principled redesign of the whole file system stack Relaxed FS API semantics for parallelism Relaxed FS consistency for heterogeneous memory GPU-specific implementation of synchronization primitives, lock-free data structures, memory allocation,. 26

27 High-level design CPU GPU Unchanged applications using OS File API GPU application using GPUfs File API GPUfs hooks OS File System Interface OS Massive parallelism GPUfs GPU File I/O library GPUfs Distributed Buffer Cache (Page cache) CPU Memory GPU Memory Heterogeneous memory Host File System Disk 27

28 On-GPU File I/O API open/close gopen/gclose read/write gread/gwrite mmap/munmap gmmap/gmunmap fsync/msync gfsync/gmsync ftrunc gftrunc 28

29 On-GPU File I/O API open/close gopen/gclose read/write gread/gwrite mmap/munmap gmmap/gmunmap fsync/msync gfsync/gmsync ftrunc gftrunc Should we preserve CPU semantics? 29

30 FS API semantics int fd=open( filename,o_grdwr); 30

31 FS API semantics int fd=open( filename,o_grdwr); C P U 31

32 GPU threads are not CPU threads int fd=open( filename,o_grdwr); C P U G P U 32

33 File descriptors are not designed for data-parallel programs int fd=open( filename,o_grdwr); C P U G P U 33

34 Parallel square root on CPU cpu_thread(thread_id i){ float buffer; int fd=open(filename,o_grdwr); Thread i offset=sizeof(float)*i; find i-th element in file pread(fd,sizeof(float),&buffer,offset); read a i ai ai buffer=sqrt(buffer); pwrite(fd,sizeof(float),&buffer,offset); write new a i close(fd); } 34

35 GPUfs implementation sqrt_gpu(char* filename ){ shared float buffer[block_size]; int fd=gopen(filename,o_grdwr); offset=block_size*sizeof(float)*blockidx.x; gread(fd,offset,&buffer,block_size*sizeof(float)); buffer[threadidx.x]=sqrt(buffer[threadidx.x]); gwrite(fd,offset,&buffer,block_size*sizeof(float)); if (is_last_block()) gfsync(fd); gclose(fd); } 35

36 GPUfs implementation sqrt_gpu(char* filename ){ shared float buffer[block_size]; Same FD for all kernel threads int fd=gopen(filename,o_grdwr); Calls from multiple TBs offset=block_size*sizeof(float)*blockidx.x; return the same FD gread(fd,offset,&buffer,block_size*sizeof(float)); Each TB can call with different file name buffer[threadidx.x]=sqrt(buffer[threadidx.x]); gwrite(fd,offset,&buffer,block_size*sizeof(float)); if (is_last_block()) gfsync(fd); gclose(fd); } 36

37 GPUfs implementation sqrt_gpu(char* filename ){ shared float buffer[block_size]; int fd=gopen(filename,o_grdwr); offset=block_size*sizeof(float)*blockidx.x; gread(fd,offset,&buffer,block_size*sizeof(float)); buffer[threadidx.x]=sqrt(buffer[threadidx.x]); Bulk synchronous read/write gwrite(fd,offset,&buffer,block_size*sizeof(float)); if (is_last_block()) gfsync(fd); gclose(fd); } 37

38 GPUfs implementation sqrt_gpu(char* filename ){ shared float buffer[block_size]; int fd=gopen(filename,o_grdwr); offset=block_size*sizeof(float)*blockidx.x; gread(fd,offset,&buffer,block_size*sizeof(float)); buffer[threadidx.x]=sqrt(buffer[threadidx.x]); gwrite(fd,offset,&buffer,block_size*sizeof(float)); if (is_last_block()) gfsync(fd); Explicit sync gclose(fd); } 38

39 GPUfs implementation sqrt_gpu(char* filename ){ shared float buffer[block_size]; int fd=gopen(filename,o_grdwr); offset=block_size*sizeof(float)*blockidx.x; gread(fd,offset,&buffer,block_size*sizeof(float)); buffer[threadidx.x]=sqrt(buffer[threadidx.x]); gwrite(fd,offset,&buffer,block_size*sizeof(float)); if (is_last_block()) gfsync(fd); gclose(fd); } Matching close per open 39

40 GPUfs high-level design CPU GPU Unchanged applications using OS File API GPU application using GPUfs File API GPUfs hooks OS File System Interface OS GPUfs GPU File I/O library GPUfs Distributed Buffer Cache (Page cache) CPU Memory GPU Memory Host File System Disk 40

41 Buffer cache semantics Local or Distributed file system data consistency? 41

42 GPUfs buffer cache Weak data consistency model close(sync)-to-open semantics (AFS) open() read(1) GPU1 Not visible to CPU GPU2 write(1) fsync() write(2) Remote-to-Local memory performance ratio is similar to a distributed system >> 42

43 Implementation bits In the paper Full paging support Dynamic data structures and memory allocators Lock-free radix tree Inter-processor communications (IPC) Hybrid H/W-S/W barriers Consistency module in the OS kernel 43

44 GPUfs impact on GPU programs Memory overhead Register pressure Very little CPU coding Makes exitless GPU kernels possible Pay-as-you-go design 44

45 Evaluation All benchmarks are written as a GPU kernel: no CPU-side development 45

46 Evaluation All benchmarks are written as a GPU kernel: no CPU-side development CUDA 5.0, 4x TESLA C2075, Supermicro 2x4 Xeon L5630, RAM 12GB 46

47 Matrix-vector product (Inputs/Outputs in files) Vector 1x128K elements 3500 CUDA piplined CUDA optimized GPU file I/O Throughput (MB/s) Input matrix size (MB) 47

48 Prioritized image matching Problem ordered set of databases Di query set of images Q For every image from Q find the database with the matching image, having the smallest i Challenges Dynamic working set Unpredictable input size 48

49 Image matching Input: 2,016 random images (31MB raw data) Databases: 3 files 400MB each, 25,000 images in total Matching function: Euclidean distance 49

50 Image matching Input: 2,016 random images (31MB raw data) Databases: 3 files 400MB each, 25,000 images in total Matching function: Euclidean distance CPU and GPUfs versions: 130+/-10 LOC 8CPUs 1GPU 2GPU 3GPU 4GPU 119s 53s 27s 18s 13(x4) Exact match 100s 40s 21s 14s 11s(x3.6) No match 50

51 Word frequency count in text Count frequency of modern English words in the works of Shakespeare, and in the Linux kernel source tree English dictionary: 58,000 words Challenges Dynamic working set Small files Lots of file I/O (33,000 files,1-5kb each) Unpredictable output size 51

52 Results 8CPUs GPU-vanilla GPU-GPUfs Linux source 33,000 files, 524MB 6h 50m (7.2X) 53m (6.8X) Shakespeare 1 file, 6MB 292s 40s (7.3X) 40s (7.3X) 52

53 Results 8CPUs GPU-vanilla GPU-GPUfs Linux source 33,000 files, 524MB 6h 50m (7.2X) 53m (6.8X) Shakespeare 1 file, 6MB 292s 8% overhead 40s (7.3X) 40s (7.3X) Unbounded input/output size support 53

54 Matrix Product Input/output in files Implementation based on matrixmul sample Input: A=8192x1024, B=1024x8192 Challenges High contention on file system state High sensitivity to overheads 54

55 Results Kepler K20c Matrix Sizes: A(8320 x 1024), B(1024 x 4096), C(8320 x 4096) A(33M), B(16M), C(130M) CUDA matmul GPUfs matmul 167GFLOP/s Data in GPU buffer cache/memory 154GFLOP/s Input in files Output in GPU buffer cache/memory 164GFLOP/s 40 GFLOP/s 132GFLOP/s Data in files 161GFLOP/s 55

56 GPUfs is the first system to provide native access to host OS services from GPU programs GPUfs CPU CPU GPU GPU Code and paper are available for download at:

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs ASPLOS 2013 GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications OS CPU

More information

Accelerator-centric operating systems

Accelerator-centric operating systems Accelerator-centric operating systems Rethinking the role of s in modern computers Mark Silberstein EE, Technion System design challenge: Programmability and Performance 2 System design challenge: Programmability

More information

GPUfs: Integrating a File System with GPUs. Yishuai Li & Shreyas Skandan

GPUfs: Integrating a File System with GPUs. Yishuai Li & Shreyas Skandan GPUfs: Integrating a File System with GPUs Yishuai Li & Shreyas Skandan Von Neumann Architecture Mem CPU I/O Von Neumann Architecture Mem CPU I/O slow fast slower Direct Memory Access Mem CPU I/O slow

More information

SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and GPUs. Shai Bergman Tanya Brokhman Tzachi Cohen Mark Silberstein

SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and GPUs. Shai Bergman Tanya Brokhman Tzachi Cohen Mark Silberstein : Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and s Shai Bergman Tanya Brokhman Tzachi Cohen Mark Silberstein What do we do? Enable efficient file I/O for s Why? Support diverse

More information

GPUfs: Integrating a File System with GPUs

GPUfs: Integrating a File System with GPUs 1 GPUfs: Integrating a File System with GPUs MARK SILBERSTEIN, University of Texas at Austin BRYAN FORD, YaleUniversity IDIT KEIDAR, Technion EMMETT WITCHEL, University of Texas at Austin As GPU hardware

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Chris Rossbach, Jon Currey, Microsoft Research Mark Silberstein, Technion Baishakhi Ray, Emmett Witchel, UT Austin SOSP October 25, 2011

Chris Rossbach, Jon Currey, Microsoft Research Mark Silberstein, Technion Baishakhi Ray, Emmett Witchel, UT Austin SOSP October 25, 2011 Chris Rossbach, Jon Currey, Microsoft Research Mark Silberstein, Technion Baishakhi Ray, Emmett Witchel, UT Austin SOSP October 25, 2011 There are lots of GPUs 3 of top 5 supercomputers use GPUs In all

More information

Device Memories and Matrix Multiplication

Device Memories and Matrix Multiplication Device Memories and Matrix Multiplication 1 Device Memories global, constant, and shared memories CUDA variable type qualifiers 2 Matrix Multiplication an application of tiling runningmatrixmul in the

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

Virtualization, Xen and Denali

Virtualization, Xen and Denali Virtualization, Xen and Denali Susmit Shannigrahi November 9, 2011 Susmit Shannigrahi () Virtualization, Xen and Denali November 9, 2011 1 / 70 Introduction Virtualization is the technology to allow two

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Chen, Vijay Chidambaram, Emmett Witchel The University of Texas at Austin

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems Block Cache Address Space Abstraction Given a file, which physical pages store its data? Each file inode has an address space (0 file size) So do block devices that cache data

More information

Real-Time Support for GPU. GPU Management Heechul Yun

Real-Time Support for GPU. GPU Management Heechul Yun Real-Time Support for GPU GPU Management Heechul Yun 1 This Week Topic: Real-Time Support for General Purpose Graphic Processing Unit (GPGPU) Today Background Challenges Real-Time GPU Management Frameworks

More information

EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT. Konstantinos Alexopoulos ECE NTUA CSLab

EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT. Konstantinos Alexopoulos ECE NTUA CSLab EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT Konstantinos Alexopoulos ECE NTUA CSLab MOTIVATION HPC, Multi-node & Heterogeneous Systems Communication with low latency

More information

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0 Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nsight VSE APOD

More information

LDetector: A low overhead data race detector for GPU programs

LDetector: A low overhead data race detector for GPU programs LDetector: A low overhead data race detector for GPU programs 1 PENGCHENG LI CHEN DING XIAOYU HU TOLGA SOYATA UNIVERSITY OF ROCHESTER 1 Data races in GPU Introduction & Contribution Impact correctness

More information

Arrakis: The Operating System is the Control Plane

Arrakis: The Operating System is the Control Plane Arrakis: The Operating System is the Control Plane Simon Peter, Jialin Li, Irene Zhang, Dan Ports, Doug Woos, Arvind Krishnamurthy, Tom Anderson University of Washington Timothy Roscoe ETH Zurich Building

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Recent Advances in Heterogeneous Computing using Charm++

Recent Advances in Heterogeneous Computing using Charm++ Recent Advances in Heterogeneous Computing using Charm++ Jaemin Choi, Michael Robson Parallel Programming Laboratory University of Illinois Urbana-Champaign April 12, 2018 1 / 24 Heterogeneous Computing

More information

GPUnet: Networking Abstractions for GPU Programs. Author: Andrzej Jackowski

GPUnet: Networking Abstractions for GPU Programs. Author: Andrzej Jackowski Author: Andrzej Jackowski 1 Author: Andrzej Jackowski 2 GPU programming problem 3 GPU distributed application flow 1. recv req Network 4. send repl 2. exec on GPU CPU & Memory 3. get results GPU & Memory

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

Beyond Block I/O: Rethinking

Beyond Block I/O: Rethinking Beyond Block I/O: Rethinking Traditional Storage Primitives Xiangyong Ouyang *, David Nellans, Robert Wipfel, David idflynn, D. K. Panda * * The Ohio State University Fusion io Agenda Introduction and

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 39) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory

Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Institute of Computational Science Efficient CPU GPU data transfers CUDA 6.0 Unified Virtual Memory Juraj Kardoš (University of Lugano) July 9, 2014 Juraj Kardoš Efficient GPU data transfers July 9, 2014

More information

PG-Strom v2.0 Release Technical Brief (17-Apr-2018) PG-Strom Development Team

PG-Strom v2.0 Release Technical Brief (17-Apr-2018) PG-Strom Development Team PG-Strom v2.0 Release Technical Brief (17-Apr-2018) PG-Strom Development Team What is PG-Strom? PG-Strom: an extension module to accelerate analytic SQL workloads using GPU. off-loading

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

Advanced CUDA Optimization 1. Introduction

Advanced CUDA Optimization 1. Introduction Advanced CUDA Optimization 1. Introduction Thomas Bradley Agenda CUDA Review Review of CUDA Architecture Programming & Memory Models Programming Environment Execution Performance Optimization Guidelines

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

Towards a Performance- Portable FFT Library for Heterogeneous Computing

Towards a Performance- Portable FFT Library for Heterogeneous Computing Towards a Performance- Portable FFT Library for Heterogeneous Computing Carlo C. del Mundo*, Wu- chun Feng* *Dept. of ECE, Dept. of CS Virginia Tech Slides Updated: 5/19/2014 Forecast (Problem) AMD Radeon

More information

Antonio R. Miele Marco D. Santambrogio

Antonio R. Miele Marco D. Santambrogio Advanced Topics on Heterogeneous System Architectures GPU Politecnico di Milano Seminar Room A. Alario 18 November, 2015 Antonio R. Miele Marco D. Santambrogio Politecnico di Milano 2 Introduction First

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

INTRODUCTION TO OPENCL TM A Beginner s Tutorial. Udeepta Bordoloi AMD

INTRODUCTION TO OPENCL TM A Beginner s Tutorial. Udeepta Bordoloi AMD INTRODUCTION TO OPENCL TM A Beginner s Tutorial Udeepta Bordoloi AMD IT S A HETEROGENEOUS WORLD Heterogeneous computing The new normal CPU Many CPU s 2, 4, 8, Very many GPU processing elements 100 s Different

More information

GpuWrapper: A Portable API for Heterogeneous Programming at CGG

GpuWrapper: A Portable API for Heterogeneous Programming at CGG GpuWrapper: A Portable API for Heterogeneous Programming at CGG Victor Arslan, Jean-Yves Blanc, Gina Sitaraman, Marc Tchiboukdjian, Guillaume Thomas-Collignon March 2 nd, 2016 GpuWrapper: Objectives &

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian)

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) From Shader Code to a Teraflop: How GPU Shader Cores Work Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) 1 This talk Three major ideas that make GPU processing cores run fast Closer look at real

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

OPERATING SYSTEM TRANSACTIONS

OPERATING SYSTEM TRANSACTIONS OPERATING SYSTEM TRANSACTIONS Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel The University of Texas at Austin OS APIs don t handle concurrency 2 OS is weak

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole Improving IPC by Kernel Design & The Performance of Micro- Kernel Based Systems The IPC Dilemma IPC is very import in µ-kernel design - Increases modularity,

More information

Real-Time Rendering Architectures

Real-Time Rendering Architectures Real-Time Rendering Architectures Mike Houston, AMD Part 1: throughput processing Three key concepts behind how modern GPU processing cores run code Knowing these concepts will help you: 1. Understand

More information

Generic System Calls for GPUs

Generic System Calls for GPUs Generic System Calls for GPUs Ján Veselý*, Arkaprava Basu, Abhishek Bhattacharjee*, Gabriel H. Loh, Mark Oskin, Steven K. Reinhardt *Rutgers University, Indian Institute of Science, Advanced Micro Devices

More information

A Case Study in Optimizing GNU Radio s ATSC Flowgraph

A Case Study in Optimizing GNU Radio s ATSC Flowgraph A Case Study in Optimizing GNU Radio s ATSC Flowgraph Presented by Greg Scallon and Kirby Cartwright GNU Radio Conference 2017 Thursday, September 14 th 10am ATSC FLOWGRAPH LOADING 3% 99% 76% 36% 10% 33%

More information

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D,

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D, Flavors of Memory supported by Linux, their use and benefit Christoph Lameter, Ph.D, Twitter: @qant Flavors Of Memory The term computer memory is a simple term but there are numerous nuances

More information

Turing Architecture and CUDA 10 New Features. Minseok Lee, Developer Technology Engineer, NVIDIA

Turing Architecture and CUDA 10 New Features. Minseok Lee, Developer Technology Engineer, NVIDIA Turing Architecture and CUDA 10 New Features Minseok Lee, Developer Technology Engineer, NVIDIA Turing Architecture New SM Architecture Multi-Precision Tensor Core RT Core Turing MPS Inference Accelerated,

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Advanced CUDA Optimizations. Umar Arshad ArrayFire

Advanced CUDA Optimizations. Umar Arshad ArrayFire Advanced CUDA Optimizations Umar Arshad (@arshad_umar) ArrayFire (@arrayfire) ArrayFire World s leading GPU experts In the industry since 2007 NVIDIA Partner Deep experience working with thousands of customers

More information

Windows Persistent Memory Support

Windows Persistent Memory Support Windows Persistent Memory Support Neal Christiansen Microsoft Agenda Review: Existing Windows PM Support What s New New PM APIs Large & Huge Page Support Dax aware Write-ahead LOG Improved Driver Model

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Red Fox: An Execution Environment for Relational Query Processing on GPUs

Red Fox: An Execution Environment for Relational Query Processing on GPUs Red Fox: An Execution Environment for Relational Query Processing on GPUs Haicheng Wu 1, Gregory Diamos 2, Tim Sheard 3, Molham Aref 4, Sean Baxter 2, Michael Garland 2, Sudhakar Yalamanchili 1 1. Georgia

More information

Designing a True Direct-Access File System with DevFS

Designing a True Direct-Access File System with DevFS Designing a True Direct-Access File System with DevFS Sudarsun Kannan, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau University of Wisconsin-Madison Yuangang Wang, Jun Xu, Gopinath Palani Huawei Technologies

More information

Chapter 8 Main Memory

Chapter 8 Main Memory COP 4610: Introduction to Operating Systems (Spring 2014) Chapter 8 Main Memory Zhi Wang Florida State University Contents Background Swapping Contiguous memory allocation Paging Segmentation OS examples

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters An Extension of XcalableMP PGAS Lanaguage for Multi-node Clusters Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku and Mitsuhisa Sato University of Tsukuba 1 Presentation Overview l Introduction

More information

OS Extensibility: SPIN and Exokernels. Robert Grimm New York University

OS Extensibility: SPIN and Exokernels. Robert Grimm New York University OS Extensibility: SPIN and Exokernels Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? OS Abstraction Barrier

More information

CS 179: GPU Programming LECTURE 5: GPU COMPUTE ARCHITECTURE FOR THE LAST TIME

CS 179: GPU Programming LECTURE 5: GPU COMPUTE ARCHITECTURE FOR THE LAST TIME CS 179: GPU Programming LECTURE 5: GPU COMPUTE ARCHITECTURE FOR THE LAST TIME 1 Last time... GPU Memory System Different kinds of memory pools, caches, etc Different optimization techniques 2 Warp Schedulers

More information

Eleos: Exit-Less OS Services for SGX Enclaves

Eleos: Exit-Less OS Services for SGX Enclaves Eleos: Exit-Less OS Services for SGX Enclaves Meni Orenbach Marina Minkin Pavel Lifshits Mark Silberstein Accelerated Computing Systems Lab Haifa, Israel What do we do? Improve performance: I/O intensive

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

An Evaluation of Unified Memory Technology on NVIDIA GPUs

An Evaluation of Unified Memory Technology on NVIDIA GPUs An Evaluation of Unified Memory Technology on NVIDIA GPUs Wenqiang Li 1, Guanghao Jin 2, Xuewen Cui 1, Simon See 1,3 Center for High Performance Computing, Shanghai Jiao Tong University, China 1 Tokyo

More information

Flexible Architecture Research Machine (FARM)

Flexible Architecture Research Machine (FARM) Flexible Architecture Research Machine (FARM) RAMP Retreat June 25, 2009 Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan Bronson Christos Kozyrakis, Kunle Olukotun Motivation Why CPUs + FPGAs make sense

More information

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut TR-2014-17 An Overview of NVIDIA Tegra K1 Architecture Ang Li, Radu Serban, Dan Negrut November 20, 2014 Abstract This paperwork gives an overview of NVIDIA s Jetson TK1 Development Kit and its Tegra K1

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Fall 2017-2018, Lecture 24 2 Last Time: File Systems Introduced the concept of file systems Explored several ways of managing the contents of files Contiguous

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

Push-button verification of Files Systems via Crash Refinement

Push-button verification of Files Systems via Crash Refinement Push-button verification of Files Systems via Crash Refinement Verification Primer Behavioral Specification and implementation are both programs Equivalence check proves the functional correctness Hoare

More information

When MPPDB Meets GPU:

When MPPDB Meets GPU: When MPPDB Meets GPU: An Extendible Framework for Acceleration Laura Chen, Le Cai, Yongyan Wang Background: Heterogeneous Computing Hardware Trend stops growing with Moore s Law Fast development of GPU

More information

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018 S8630 - WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS Jakob Progsch, Mathias Wagner GTC 2018 1. Know your hardware BEFORE YOU START What are the target machines, how many nodes? Machine-specific

More information

Distributed File Systems

Distributed File Systems Distributed File Systems Today l Basic distributed file systems l Two classical examples Next time l Naming things xkdc Distributed File Systems " A DFS supports network-wide sharing of files and devices

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 12

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

CSE 506: Opera.ng Systems. The Page Cache. Don Porter

CSE 506: Opera.ng Systems. The Page Cache. Don Porter The Page Cache Don Porter 1 Logical Diagram Binary Formats RCU Memory Management File System Memory Allocators Threads System Calls Today s Lecture Networking (kernel level Sync mem. management) Device

More information

Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache

Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache Frank Feinbube, Peter Tröger, Johannes Henning, Andreas Polze Hasso Plattner Institute Operating Systems and Middleware Prof. Dr. Andreas Polze

More information

Red Fox: An Execution Environment for Relational Query Processing on GPUs

Red Fox: An Execution Environment for Relational Query Processing on GPUs Red Fox: An Execution Environment for Relational Query Processing on GPUs Georgia Institute of Technology: Haicheng Wu, Ifrah Saeed, Sudhakar Yalamanchili LogicBlox Inc.: Daniel Zinn, Martin Bravenboer,

More information

Massively Parallel Computing with CUDA. Carlos Alberto Martínez Angeles Cinvestav-IPN

Massively Parallel Computing with CUDA. Carlos Alberto Martínez Angeles Cinvestav-IPN Massively Parallel Computing with CUDA Carlos Alberto Martínez Angeles Cinvestav-IPN What is a GPU? A graphics processing unit (GPU) The term GPU was popularized by Nvidia in 1999 marketed the GeForce

More information

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Yannis Klonatos, Thanos Makatos, Manolis Marazakis, Michail D. Flouris, Angelos Bilas {klonatos, makatos, maraz, flouris, bilas}@ics.forth.gr

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Gernot Ziegler, Developer Technology (Compute) (Material by Thomas Bradley) Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction

More information

Compute-mode GPU Programming Interfaces

Compute-mode GPU Programming Interfaces Lecture 8: Compute-mode GPU Programming Interfaces Visual Computing Systems What is a programming model? Programming models impose structure A programming model provides a set of primitives/abstractions

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2017 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Дмитрий Рябцев, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies

Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies Alexander Merritt, Vishakha Gupta, Abhishek Verma, Ada Gavrilovska, Karsten Schwan {merritt.alex,abhishek.verma}@gatech.edu {vishakha,ada,schwan}@cc.gtaech.edu

More information

Deterministic Process Groups in

Deterministic Process Groups in Deterministic Process Groups in Tom Bergan Nicholas Hunt, Luis Ceze, Steven D. Gribble University of Washington A Nondeterministic Program global x=0 Thread 1 Thread 2 t := x x := t + 1 t := x x := t +

More information

Lecture 8: GPU Programming. CSE599G1: Spring 2017

Lecture 8: GPU Programming. CSE599G1: Spring 2017 Lecture 8: GPU Programming CSE599G1: Spring 2017 Announcements Project proposal due on Thursday (4/28) 5pm. Assignment 2 will be out today, due in two weeks. Implement GPU kernels and use cublas library

More information