Hierarchical Hybrid Grids

Size: px
Start display at page:

Download "Hierarchical Hybrid Grids"

Transcription

1 Hierarchical Hybrid Grids IDK Summer School 2012 Björn Gmeiner, Ulrich Rüde July, 2012

2 Contents Mantle convection Hierarchical Hybrid Grids Smoothers Geometric approximation Performance modeling 2

3 Mantle convection 3

4 Simulation of seismic velocities Fig. by Schuberth and Moder - Simulation with TERRA (LMU) 4

5 Boussinesq model for mantle convection problems derived from the equations for balance of forces, conservation of mass and energy: T t (2ηɛ(u)) + p = ρ(t )g, u = 0, + u T (κ T ) = γ. u velocity p dynamic pressure T temperature ν viscosity of the material ɛ(u) = 1 2 ( u + ( u)t ) strain rate tensor ρ density κ, γ, g thermal conductivity, heat sources, gravity vector 5

6 Discretization Temporal for the temperature (explicit): Modified Euler BDF-2 scheme Spatial with FE for the Stokes system: Add an artificial compressibility term Choose a pair of FE spaces that satisfy the LBB condition: Q d q+1 xq q, (q 1) - Taylor-Hood elements Q d q+1 xp q, (q 0) - discontinuous elements 6

7 Weak form: Stokes equation (ɛ(ϕ u i ), 2ηɛ(u n h )) ( ϕu i, p n h ) = (ϕu i, ρ(t n h )g), (ϕ p l, un h ) = 0. In matrix notation (saddle point structure with zero diagonal block): ( ) ( ) ( ) A B T U n F n B 0 P n = 0 Pressure correction approach: ( ) ( ) ( ) A B T U n F n 0 BA 1 B T P n = 0 A ij = (ɛ(ϕ u i ), 2ηɛ(ϕu j )) B ij = (ϕ q i, ϕu j ) F n i = (ϕ u i, ρ(t n )g) 7

8 Boussinesq model for mantle convection problems T t Additional challanges: (2ηɛ(u)) + p = ρ(t )g, u = 0, + u T (κ T ) = γ. Viscosity η variations by four orders of magnitude in radial direction High main memory consumption due to the operators Operator evaluations of the Stokes equation are the performance critical parts of a (forward) simulation 8

9 Viscosity profiles (Fig. provided by M. Mohr) 9

10 Two-grid cycle (correction scheme) 10

11 Viscosity η variations by four orders of magnitude in radial direction: Adjust smoother Use matrix-dependent transfer operators Change coarse-grid operator High main memory consumption due to the operators: Matrix-free operator evaluations Operator evaluations of the Stokes equation are the performance critical parts of a (forward) simulation: Avoid indirect addressing by (semi-) structured meshes 11

12 Hierarchical Hybrid Grids 12

13 HHG - Combining finite element and multigrid methods FE mesh may be unstructured. What nodes to remove for coarsening? Not straightforward! Why not start from the coarse grid? The Hierarchical Hybrid Grids (HHG) concept Benjamin Bergen*: prototype Tobias Gradl: tuning, extensions and adaptivity * Dissertation in Erlangen, ISC award in Currently at Los Alamos Labs. 13

14 HHG mesh decomposition into primitives (2d-example) inner point ghost point volume edge memory representation geometric representation vertex 14

15 Regular refinement of a tetrahedral element 15

16 Smoothers 16

17 Operator: 15-point stencil in a refined tetrahedral element 17

18 Different Tetrahedral Shapes (a) Needle (b) Wedge (c) Spindle (d) Spade (e) Sliver (f) Cap Figure: Different classes of degenerated elements 18

19 Comparison between local Fourier analysis (LFA) and HHG Regular Needle Wedge Spindle Spade Sliver Cap LFA HHG edge ratio max angle min angle Table: LFA smoothing factors, µ ν1+ν2, and two grid convergence factors, ρ, of the four-color smoother for different tetrahedra Results of the LFA are provided by Francisco Gaspar 19

20 (a) Wedge (b) Spade (a) ν(1, 1) four-color Gauss-Seidel: ν(1, 1) line-wise smoothing: (b) ν(1, 1) four-color Gauss-Seidel: ν(1, 1) line-wise smoothing: ν(1, 0) zebra-plane smoothing:

21 (c) Needle (d) Spindle (c) ν(1, 1) four-color Gauss-Seidel: ν(1, 0) lex. plane smoothing: ν(1, 0) zebra-plane smoothing: (d) ν(1, 1) four-color Gauss-Seidel: ν(1, 0) zebra-plane smoothing:

22 (e) Sliver (f) Cap (e), (f)??? 22

23 (e) Sliver (f) Cap But: Acc. to Shewchuk: good tetrahedra are of two types: those that are not flat, and those that can grow arbitrarily flat without having a large planar or dihedral angle. The bad tetrahedra have error bounds that explode, and a dihedral angle or a planar angle that approaches 180 0, as they are flattened. J.R. Shewchuk. What Is a Good Linear Finite Element? - Interpolation, Conditioning, Anisotropy, and Quality Measures. In Proc. of the 11th International Meshing Roundtable (2002). 23

24 putting blocks together... (coarsest mesh is generated by Gmsh) 24

25 Locally adaptive smoothing We can predict the convergence rate for the single blocks of our domain by LFA. How to improve the convergence of the whole domain? 25

26 Locally adaptive smoothing We can predict the convergence rate for the single blocks of our domain by LFA. How to improve the convergence of the whole domain? Choose for each block: Different smoothers Optimal relaxation parameters Suitable number of pre-/post smoothing steps 25

27 Locally adaptive smoothing We can predict the convergence rate for the single blocks of our domain by LFA. How to improve the convergence of the whole domain? Choose for each block part: Different smoothers Optimal relaxation parameters Suitable number of pre-/post smoothing steps 26

28 Chaotic smoothing (mixed smoothers) Figure: Domain consisting of wedge, regular and needle tetrahedral types Shape edge ratio max angle min angle smoothing ν 1, ν 2 ρ Needle plane-wise 1, Regular color 2, Wedge line-wise 2, Table: Convergence factor for the single blocks Global convergence factor for the whole domain: using damping parameter at the interface:

29 Mantle convection Hierarchical Hybrid Grids Smoothers Geometric approximation Performance modeling Anisotropic smoothing (a) Connection in isotropic direction (b) Connection in anisotropic direction Gauss-Seidel: single region, line-wise smoother: (a) line-wise smoother: (b) line-wise smoother:

30 Locally adaptive smoothing We can predict the convergence rate for the single blocks of our domain by LFA. How to improve the convergence of the whole domain? Choose for each block: Different smoothers Optimal relaxation parameters Suitable number of pre-/post smoothing steps 29

31 Redistributing the number of smoothing steps Elements colored by convergence rates ν(pre-smoothing steps, post-smoothing steps) Keeping the total number of smoothing steps constant 30

32 Model Domain: Box in a Half Sphere Coarsest mesh: 293 elements 8 times refined unknowns lex. Gauss-Seidel β min = 0.241, β avg = Please note that this is a serial run! 31

33 Model Domain: Box in a Half Sphere We set up two conditions: 1. The required amount of communication is the same for all following methods. We are exchanging eight times all ghost boundary points at the interfaces during the smoothing procedure. 2. The total smoothing workload has to be comparable to the unoptimized version in the solving phase. The additional time for the setup phase strongly depends on the implementation of a LFA evaluation in some of the following smoothing strategies. 32

34 Local Adaptive Smoothing Smoothing strategy W-cycle V-cycle ω Unoptimized Exact block-wise solving Adaptive smoothing steps Additional interface smoothing Full damping Interior damping / Additional interface smoothing / 1.0 Adaptive interior damping (simplex) variable + Additional interface smoothing variable Combined Methods / 1.0 Table: Measured convergence factors for different smoothing strategies 33

35 Geometric approximation 34

36 Spherical refinement of an icosahedron (0) 35

37 Discretization with prismatic elements 36

38 Decomposition of prisms into three tetrahedra d e e a b b f f h c c g 37

39 Non-conforming decomposition of prisms into tetrahedra d e e a b b f f h c c g 38

40 Spherical refinement of an icosahedron (0) 39

41 Spherical refinement of an icosahedron (1) 40

42 Spherical refinement of an icosahedron (2) 41

43 Spherical refinement of an icosahedron (3) 42

44 Spherical refinement of an icosahedron (4) 43

45 Intersection through the spherical refinement - Each tetrahedral element ( 132k) was assigned to one Jugene compute core and further refined without curved boundaries. 44

46 Performance modeling 45

47 Storage of the variable viscosity field Since we store the viscosity like a variable, there are different ways to store them for linear finite elements: Element-wise More storage necessary for tetrahedral elements Clear location of a jump when dealing with jumping coefficients Node-wise Requires averaging No additional data layout necessary for structured tetrahedral elements 46

48 Viscosity averaging for a 15-point stencil e2 e3 e1 Coefficient averaging for each element Naive: 24 elements 3 = 72 adds By partial sums: 16 edges + 24 elements = 40 adds 47

49 Parallel generation of the coarsest mesh 1. Build up a local mesh on each process Loop over all elements in the mesh file: Read own macro-volume Loop over all elements in the mesh file: Read neighbouring macro-volumes 2. Map all other macro-primitives to processes Assign these primitives to the same process as the adjacent element with with the largest ID 3. Assign IDs to edge and face primitives Build tuples for all macro-edges and macro-faces (with one tuple entry per vertex ID) Sort the lists of tuples Assign IDs according to the index of the tuple in the sorted list 48

50 Mantle convection Hierarchical Hybrid Grids Smoothers Geometric approximation Performance modeling Weak and strong scaling on Jugene A triangle has a resolution of 6km2 ; hr = 3km in radial direction. 49

51 Seconds per V-cycle Terabytes Strong scaling on Jugene x1.93 x3.80 x1.85 x Number of compute cores Memory - constant viscosity Strong scaling - constant viscosity Memory - variable viscosity Strong scaling - variable viscosity 50

52 Performance modeling and analysis V-cycle 1. Computation: stencil evaluations 2. Network effects: bandwidth, latency, reductions including all multigrid levels and conjugate gradient on the coarsest mesh Assumptions one inner point on the coarsest mesh per processor hardware information exclusively extracted from IBM System Blue Gene Solution: Blue Gene/P Application Development 51

53 Time [s] BlueGene/P performance model (different setup) 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0, #Cores Bandwidth CG Computation Measurement 52

54 Summary Introduction into challanges of mantle convection simulations Smoothing strategies for anisotropic elements and varying coefficients Presentation of a conforming tetrahedral decomposition of an icosahedral mesh Performance evalution and modeling Current work Multigrid implementation & evaluation of (jumping) variable coefficients for HHG Preparations for SuperMUC 53

55 Thank you for your attention! 54

56 Benchmarks on Blue Gene/P in Jülich (Jugene) Compute node: 4-way SMP processor Processortype: 32-bit PowerPC 450 core 850 MHz Cores: Overall peak performance: 1 Petaflops Main memory: 2 Gbytes per node (aggregate 144 TB) 55

τ-extrapolation on 3D semi-structured finite element meshes

τ-extrapolation on 3D semi-structured finite element meshes τ-extrapolation on 3D semi-structured finite element meshes European Multi-Grid Conference EMG 2010 Björn Gmeiner Joint work with: Tobias Gradl, Ulrich Rüde September, 2010 Contents The HHG Framework τ-extrapolation

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

Finite Volume Discretization on Irregular Voronoi Grids

Finite Volume Discretization on Irregular Voronoi Grids Finite Volume Discretization on Irregular Voronoi Grids C.Huettig 1, W. Moore 1 1 Hampton University / National Institute of Aerospace Folie 1 The earth and its terrestrial neighbors NASA Colin Rose, Dorling

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume, 2, pp. 92. Copyright 2,. ISSN 68-963. ETNA BEHAVIOR OF PLANE RELAXATION METHODS AS MULTIGRID SMOOTHERS IGNACIO M. LLORENTE AND N. DUANE MELSON Abstract.

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

3-D Wind Field Simulation over Complex Terrain

3-D Wind Field Simulation over Complex Terrain 3-D Wind Field Simulation over Complex Terrain University Institute for Intelligent Systems and Numerical Applications in Engineering Congreso de la RSME 2015 Soluciones Matemáticas e Innovación en la

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Massively Parallel Phase Field Simulations using HPC Framework walberla

Massively Parallel Phase Field Simulations using HPC Framework walberla Massively Parallel Phase Field Simulations using HPC Framework walberla SIAM CSE 2015, March 15 th 2015 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer, Harald Köstler and Ulrich

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Recent developments for the multigrid scheme of the DLR TAU-Code

Recent developments for the multigrid scheme of the DLR TAU-Code www.dlr.de Chart 1 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Recent developments for the multigrid scheme of the DLR TAU-Code

More information

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids Preprint accepted in Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.019 From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers.

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. G. Borrell, J.A. Sillero and J. Jiménez, Corresponding author: guillem@torroja.dmt.upm.es School of Aeronautics, Universidad

More information

A Novel Approach to High Speed Collision

A Novel Approach to High Speed Collision A Novel Approach to High Speed Collision Avril Slone University of Greenwich Motivation High Speed Impact Currently a very active research area. Generic projectile- target collision 11 th September 2001.

More information

PROGRAMMING OF MULTIGRID METHODS

PROGRAMMING OF MULTIGRID METHODS PROGRAMMING OF MULTIGRID METHODS LONG CHEN In this note, we explain the implementation detail of multigrid methods. We will use the approach by space decomposition and subspace correction method; see Chapter:

More information

TAU mesh deformation. Thomas Gerhold

TAU mesh deformation. Thomas Gerhold TAU mesh deformation Thomas Gerhold The parallel mesh deformation of the DLR TAU-Code Introduction Mesh deformation method & Parallelization Results & Applications Conclusion & Outlook Introduction CFD

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Modeling Skills Thermal Analysis J.E. Akin, Rice University

Modeling Skills Thermal Analysis J.E. Akin, Rice University Introduction Modeling Skills Thermal Analysis J.E. Akin, Rice University Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus, you need

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

This is an author-deposited version published in: Eprints ID: 4362

This is an author-deposited version published in:   Eprints ID: 4362 This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 4362 To cite this document: CHIKHAOUI Oussama, GRESSIER Jérémie, GRONDIN Gilles. Assessment of the Spectral

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction Background Scaling results Tensor product geometric multigrid Summary and Outlook 1/21 Scalability of Elliptic Solvers in Numerical Weather and Climate- Prediction Eike Hermann Müller, Robert Scheichl

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Benchmark 3D: the VAG scheme

Benchmark 3D: the VAG scheme Benchmark D: the VAG scheme Robert Eymard, Cindy Guichard and Raphaèle Herbin Presentation of the scheme Let Ω be a bounded open domain of R, let f L 2 Ω) and let Λ be a measurable function from Ω to the

More information

Reporting Mesh Statistics

Reporting Mesh Statistics Chapter 15. Reporting Mesh Statistics The quality of a mesh is determined more effectively by looking at various statistics, such as maximum skewness, rather than just performing a visual inspection. Unlike

More information

simulation framework for piecewise regular grids

simulation framework for piecewise regular grids WALBERLA, an ultra-scalable multiphysics simulation framework for piecewise regular grids ParCo 2015, Edinburgh September 3rd, 2015 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler

More information

Data mining with sparse grids

Data mining with sparse grids Data mining with sparse grids Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Data mining with sparse grids p.1/40 Overview What is Data mining? Regularization networks

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

SNAC: a tutorial. Eunseo Choi. July 29, Lamont-Doherty Earth Observatory

SNAC: a tutorial. Eunseo Choi. July 29, Lamont-Doherty Earth Observatory SNAC: a tutorial Eunseo Choi Lamont-Doherty Earth Observatory July 29, 2010 What is SNAC? StGermaiN Analysis of Continua 2 of 20 What is SNAC? StGermaiN Analysis of Continua 3-D Version of FLAC 2 of 20

More information

Sustainability and Efficiency for Simulation Software in the Exascale Era

Sustainability and Efficiency for Simulation Software in the Exascale Era Sustainability and Efficiency for Simulation Software in the Exascale Era Dominik Thönnes, Ulrich Rüde, Nils Kohl Chair for System Simulation, University of Erlangen-Nürnberg March 09, 2018 SIAM Conference

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Stefan Vater 1 Kaveh Rahnema 2 Jörn Behrens 1 Michael Bader 2 1 Universität Hamburg 2014 PDES Workshop 2 TU München Partial

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Per-Olof Persson University of California, Berkeley, Berkeley, CA 9472-384, U.S.A. Jaime Peraire Massachusetts Institute of Technology,

More information

Finite Volume Methodology for Contact Problems of Linear Elastic Solids

Finite Volume Methodology for Contact Problems of Linear Elastic Solids Finite Volume Methodology for Contact Problems of Linear Elastic Solids H. Jasak Computational Dynamics Ltd. Hythe House 200 Shepherds Bush Road London W6 7NY, England E-mail: h.jasak@cd.co.uk H.G. Weller

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Cycle of Visualization Storage De noising/filtering Down sampling

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

Massively Parallel Finite Element Simulations with deal.ii

Massively Parallel Finite Element Simulations with deal.ii Massively Parallel Finite Element Simulations with deal.ii Timo Heister, Texas A&M University 2012-02-16 SIAM PP2012 joint work with: Wolfgang Bangerth, Carsten Burstedde, Thomas Geenen, Martin Kronbichler

More information

Best Practices: Electronics Cooling. Ruben Bons - CD-adapco

Best Practices: Electronics Cooling. Ruben Bons - CD-adapco Best Practices: Electronics Cooling Ruben Bons - CD-adapco Best Practices Outline Geometry Mesh Materials Conditions Solution Results Design exploration / Optimization Best Practices Outline Geometry Solids

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

High Order Nédélec Elements with local complete sequence properties

High Order Nédélec Elements with local complete sequence properties High Order Nédélec Elements with local complete sequence properties Joachim Schöberl and Sabine Zaglmayr Institute for Computational Mathematics, Johannes Kepler University Linz, Austria E-mail: {js,sz}@jku.at

More information

GEOMETRIC MULTIGRID METHODS ON STRUCTURED TRIANGULAR GRIDS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS AT LOW REYNOLDS NUMBERS

GEOMETRIC MULTIGRID METHODS ON STRUCTURED TRIANGULAR GRIDS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS AT LOW REYNOLDS NUMBERS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 11, Number 2, Pages 400 411 c 2014 Institute for Scientific Computing and Information GEOMETRIC MULTIGRID METHODS ON STRUCTURED TRIANGULAR

More information

Parallel Mesh Multiplication for Code_Saturne

Parallel Mesh Multiplication for Code_Saturne Parallel Mesh Multiplication for Code_Saturne Pavla Kabelikova, Ales Ronovsky, Vit Vondrak a Dept. of Applied Mathematics, VSB-Technical University of Ostrava, Tr. 17. listopadu 15, 708 00 Ostrava, Czech

More information

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions 1 n Efficient, Geometric Multigrid Solver for the nisotropic Diffusion Equation in Two and Three Dimensions Tolga Tasdizen, Ross Whitaker UUSCI-2004-002 Scientific Computing and Imaging Institute University

More information

Computational Models for the Analysis of positive displacement machines: Real Gas and Dynamic Mesh

Computational Models for the Analysis of positive displacement machines: Real Gas and Dynamic Mesh Nicola Casari Alessio Suman Davide Ziviani Michel De Paepe Martijn van den Broek Michele Pinelli nicola.casari@unife.it alessio.suman@unife.it davide.ziviani@ugent.be dziviani@purdue.edu michel.depaepe@ugent.be

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion M. Stürmer, H. Köstler, and U. Rüde Lehrstuhl für Systemsimulation Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Oleg Bessonov (B) Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, Vernadsky Avenue, 119526 Moscow, Russia

More information

Coupled Analysis of FSI

Coupled Analysis of FSI Coupled Analysis of FSI Qin Yin Fan Oct. 11, 2008 Important Key Words Fluid Structure Interface = FSI Computational Fluid Dynamics = CFD Pressure Displacement Analysis = PDA Thermal Stress Analysis = TSA

More information

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Juan J. Alonso Department of Aeronautics & Astronautics Stanford University CME342 Lecture 14 May 26, 2014 Outline Non-linear

More information

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

Element Quality Metrics for Higher-Order Bernstein Bézier Elements Element Quality Metrics for Higher-Order Bernstein Bézier Elements Luke Engvall and John A. Evans Abstract In this note, we review the interpolation theory for curvilinear finite elements originally derived

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Natasha Flyer National Center for Atmospheric Research Boulder, CO Meshes vs. Mesh-free

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL

VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL VOLCANIC DEFORMATION MODELLING: NUMERICAL BENCHMARKING WITH COMSOL The following is a description of the model setups and input/output parameters for benchmarking analytical volcanic deformation models

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Performance and Software-Engineering Considerations for Massively Parallel Simulations

Performance and Software-Engineering Considerations for Massively Parallel Simulations Performance and Software-Engineering Considerations for Massively Parallel Simulations Ulrich Rüde (ruede@cs.fau.de) Ben Bergen, Frank Hülsemann, Christoph Freundl Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung Explicit and Implicit Coupling Strategies for s Outline FreSCo+ Grid Coupling Interpolation Schemes Implementation Mass Conservation Examples Lid-driven Cavity Flow Cylinder in a Channel Oscillating Cylinder

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

ALF USER GUIDE. Date: September

ALF USER GUIDE. Date: September ALF USER GUIDE R. VERFÜRTH Contents 1. Introduction 1 2. User interface 2 3. Domain and initial grid 3 4. Differential equation 9 5. Discretization 12 6. Solver 12 7. Mesh refinement 14 8. Number of nodes

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Iterative Solvers Numerical Results Conclusion and outlook 1/18 Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Eike Hermann Müller, Robert Scheichl, Eero Vainikko

More information

NOISE PROPAGATION FROM VIBRATING STRUCTURES

NOISE PROPAGATION FROM VIBRATING STRUCTURES NOISE PROPAGATION FROM VIBRATING STRUCTURES Abstract R. Helfrich, M. Spriegel (INTES GmbH, Germany) Noise and noise exposure are becoming more important in product development due to environmental legislation.

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Handling Parallelisation in OpenFOAM

Handling Parallelisation in OpenFOAM Handling Parallelisation in OpenFOAM Hrvoje Jasak hrvoje.jasak@fsb.hr Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia Handling Parallelisation in OpenFOAM p. 1 Parallelisation

More information

Discontinuous Galerkin Spectral Element Approximations for CFD

Discontinuous Galerkin Spectral Element Approximations for CFD Discontinuous Galerkin Spectral Element Approimations for CFD D.A. Kopriva Florida State Universit Tallahassee, FL 3236 G.B. Jacobs San Diego State Universit San Diego, CA 92182 September 3, 211 1 Code

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver www.dlr.de Folie 1 > HONOM 2013 > Marcel Wallraff, Tobias Leicht 21. 03. 2013 Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver Marcel Wallraff, Tobias Leicht DLR Braunschweig (AS - C

More information

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean 5 Kragujevac J. Math. 25 (2003) 5 18. PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS Ioana Chiorean Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania (Received May 28,

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs 3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs H. Knibbe, C. W. Oosterlee, C. Vuik Abstract We are focusing on an iterative solver for the three-dimensional

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information