Congurations in Non-Desarguesian Planes

Size: px
Start display at page:

Download "Congurations in Non-Desarguesian Planes"

Transcription

1 CEU Budapest, Hungary September 25, 2012

2 Ane and Projective Planes Ane Plane A set, the elements of which are called points, together with a collection of subsets, called lines, satisfying A1 For every two dierent points there is a unique line containing them. A2 For every line l and a point P not in l, there is a unique line containing P and disjoint from l. A3 There are three points such that no line contains all three of them. Projective Plane A set, the elements of which are called points, together with a collection of subsets, called lines, satisfying the following three axioms. P1. Any two distinct points belong to exactly one line. P2. Any two distinct lines intersect in exactly one point. P3. There are four points such that no line contains any three of them.

3 Ane and Projective Planes Projective Closure of an Ane Plane

4 Ane and Projective Planes Examples

5 Ane and Projective Planes Examples AG(2, R) and PG(2, R)

6 Ane and Projective Planes Examples AG(2, R) and PG(2, R) AG(2, F p ) and PG(2, F p )

7 Ane and Projective Planes PG(2,2)

8 Ane and Projective Planes Recall... A nite projective plane of order t has t 2 + t + 1 points, t 2 + t + 1 lines, each line contains t + 1 points and and each point is contained by t + 1 lines. A nite ane plane of order t has t 2 points, t 2 + t lines, each line contains t points and and each point is contained by t + 1 lines.

9 Ane and Projective Planes Examples

10 Ane and Projective Planes Examples AG(2, R) and PG(2, R)

11 Ane and Projective Planes Examples AG(2, R) and PG(2, R) AG(2, F p ) and PG(2, F p )

12 Ane and Projective Planes Examples AG(2, R) and PG(2, R) AG(2, F p ) and PG(2, F p )...

13 Ane and Projective Planes Examples AG(2, R) and PG(2, R) AG(2, F p ) and PG(2, F p )... Question How can we gain further examples?

14 Ane and Projective Planes Idea 1 P = R R we dene the set of lines as the union of vertical lines in (i.e. x = c for all c R) and the graphs of the functions f (x) = m x 3 + b for all m, b R.

15 Ane and Projective Planes Idea 1 P = R R we dene the set of lines as the union of vertical lines in (i.e. x = c for all c R) and the graphs of the functions f (x) = m x 3 + b for all m, b R. WRONG! ϕ: (x, y) ( 3 x, y) is isomorphism!

16 Ane and Projective Planes Idea 2 P = R R We redene the set of lines in AG(2, R) as the union of vertical lines (that is, x = c for all c R) and the translates of f (x) = x 2 with all vectors v R 2.

17 Ane and Projective Planes Idea 2 P = R R We redene the set of lines in AG(2, R) as the union of vertical lines (that is, x = c for all c R) and the translates of f (x) = x 2 with all vectors v R 2. WRONG! Again, ϕ: (x, y) (x, x 2 + y) is isomorphism!

18 Ane and Projective Planes Idea 1 - WRONG!!! P = R R we dene the set of lines as the union of vertical lines in (i.e. x = c for all c R) and the graphs of the functions f (x) = m x 3 + b for all m, b R.

19 Ane and Projective Planes Idea 1 - WRONG!!! P = R R we dene the set of lines as the union of vertical lines in (i.e. x = c for all c R) and the graphs of the functions f (x) = m x 3 + b for all m, b R. Idea 2 - WRONG!!! P = R R We redene the set of lines in AG(2, R) as the union of vertical lines (that is, x = c for all c R) and the translates of f (x) = x 2 with all vectors v R 2.

20 Ane and Projective Planes Idea 1 - WRONG!!! P = R R we dene the set of lines as the union of vertical lines in (i.e. x = c for all c R) and the graphs of the functions f (x) = m x 3 + b for all m, b R. Idea 2 - WRONG!!! P = R R We redene the set of lines in AG(2, R) as the union of vertical lines (that is, x = c for all c R) and the translates of f (x) = x 2 with all vectors v R 2. Question What makes dierence? How could we deviate from PG(2, F)?

21 Desargues Theorem Point Perspectivity Two triangles, with their vertices named in a particular order, are said to be perspective from a point P if their three pairs of corresponding vertices are joined by concurrent lines. Figure : Point-perspective triangles with respect P

22 Desargues Theorem Line Perspectivity Two triangles are said to be perspective from a line l (line-perspective) if their three pairs of corresponding sides meet in collinear points. Figure : Line-perspective triangles with respect l

23 Desargues Theorem and Hilbert's Theorem Desargues Theorem Two triangles in R 2 are perspective from a point if and only if they are perspective from a line.

24 Desargues Theorem and Hilbert's Theorem Desargues Theorem Two triangles in R 2 are perspective from a point if and only if they are perspective from a line. Generalized Desargues Theorem (Hilbert) Let F be any eld or skeweld. Two triangles are perspective from a point if and only if they are perspective from a line.

25 Desargues Theorem and Hilbert's Theorem Desargues Theorem Two triangles in R 2 are perspective from a point if and only if they are perspective from a line. Generalized Desargues Theorem (Hilbert) Let F be any eld or skeweld. Two triangles are perspective from a point if and only if they are perspective from a line. Hilbert's Theorem A projective plane is desarguesian if and only if it can be coordinatized with a skew-eld.

26 Non-Desarguesian Planes Moulton Plane Figure : Moulton plane: the lines of positive slopes "refract" on the x-axis.

27 Non-Desarguesian Planes The Moulton Plane is not desarguesian Figure : The triangles ABC and A B C are certainly point-perspective with respect P. The lines AB,AC, B C have positive slopes and so they refract on the x-axis. It yields that AC does not meet A C on the y-axis (as it would do in AG (2, R)) and so the intersections X, Y, Z are not collinear in the Moulton plane, which disproves Desargues theorem.

28 Non-Desarguesian Planes Further Examples

29 Non-Desarguesian Planes Further Examples Shifting Planar functions such as f (x) = x 4

30 Non-Desarguesian Planes Further Examples Shifting Planar functions such as f (x) = x 4 Coordinatization using Nearelds

31 Non-Desarguesian Planes Further Examples Shifting Planar functions such as f (x) = x 4 Coordinatization using Nearelds Hall-planes

32 Non-Desarguesian Planes Further Examples Shifting Planar functions such as f (x) = x 4 Coordinatization using Nearelds Hall-planes...

33 Non-Desarguesian Planes Construction of Hall-planes

34 Non-Desarguesian Planes Construction of Hall-planes AG(2, q 2 ) has an obvious subplane isomorphic to AG(2, q).

35 Non-Desarguesian Planes Construction of Hall-planes AG(2, q 2 ) has an obvious subplane isomorphic to AG(2, q). Let D be the set of ideal points of AG(2, q) in PG(2, q 2 ).

36 Non-Desarguesian Planes Construction of Hall-planes AG(2, q 2 ) has an obvious subplane isomorphic to AG(2, q). Let D be the set of ideal points of AG(2, q) in PG(2, q 2 ). We redene the set of lines on AG(2, q 2 ) as the union of:

37 Non-Desarguesian Planes Construction of Hall-planes AG(2, q 2 ) has an obvious subplane isomorphic to AG(2, q). Let D be the set of ideal points of AG(2, q) in PG(2, q 2 ). We redene the set of lines on AG(2, q 2 ) as the union of: original lines with ideal points not in D,

38 Non-Desarguesian Planes Construction of Hall-planes AG(2, q 2 ) has an obvious subplane isomorphic to AG(2, q). Let D be the set of ideal points of AG(2, q) in PG(2, q 2 ). We redene the set of lines on AG(2, q 2 ) as the union of: original lines with ideal points not in D, the translates of the point-set of AG (2, q), i.e. {(a u + b, a v + c) : u, v F q } for all a, b, c F q 2, a 0.

39 Non-Desarguesian Planes The Hall-planes are not desarguesian Figure : Violation of the Desargues condition in Hall planes

40 Congurations - Arcs, Ovals and Hyperovals k-arcs A k-arc in a nite projective or ane plane is a set of k points no three of which are collinear.

41 Congurations - Arcs, Ovals and Hyperovals k-arcs A k-arc in a nite projective or ane plane is a set of k points no three of which are collinear. Complete arcs A k-arc is complete if it is not contained in a (k + 1)-arc.

42 Congurations - Arcs, Ovals and Hyperovals Bose - Theorem Theorem: an arc in a nite projective plane of order q contains at most q + 1 points if q is odd and q + 2 if q is even.

43 Congurations - Arcs, Ovals and Hyperovals Bose - Theorem Theorem: an arc in a nite projective plane of order q contains at most q + 1 points if q is odd and q + 2 if q is even. Ovals and Hyperovals (q + 1)-arcs and (q + 2)-arcs of a nite projective plane of order q are called ovals and hyperovals, respectively.

44 Congurations - Arcs, Ovals and Hyperovals Bose - Theorem Theorem: an arc in a nite projective plane of order q contains at most q + 1 points if q is odd and q + 2 if q is even. Ovals and Hyperovals (q + 1)-arcs and (q + 2)-arcs of a nite projective plane of order q are called ovals and hyperovals, respectively. Existence of Ovals and Hyperovals The existence of ovals and hyperovals in a general projective plane is a famous open question.

45 Congurations - Arcs, Ovals and Hyperovals Bose - Theorem Theorem: an arc in a nite projective plane of order q contains at most q + 1 points if q is odd and q + 2 if q is even. Ovals and Hyperovals (q + 1)-arcs and (q + 2)-arcs of a nite projective plane of order q are called ovals and hyperovals, respectively. Existence of Ovals and Hyperovals The existence of ovals and hyperovals in a general projective plane is a famous open question. Note Choosing the elements greedily one can generate a complete - arc of size at least q.

46 Ovals and Hyperovals in PG(2, q) Theorem There exist ovals and hyperovals in PG(2, q).

47 Ovals and Hyperovals in PG(2, q) Theorem There exist ovals and hyperovals in PG(2, q). Proof The graph of f (x) = x 2 together with the ideal point (0, 1, 0) form an oval. If q = 2 k, this oval can be completed to a hyperoval by adding point (1, 0, 0).

48 Ovals and Hyperovals in PG(2, q) Theorem There exist ovals and hyperovals in PG(2, q). Proof The graph of f (x) = x 2 together with the ideal point (0, 1, 0) form an oval. If q = 2 k, this oval can be completed to a hyperoval by adding point (1, 0, 0). Note In a nite projective plane of even order ovals can be completed to hyperovals uniquely.

49 Complete Arcs in PG(2, q) Theorem If K is a k-arc in PG(2, q) and 1 k q+4, if q is even, 2 2 k 2q+5 3, if q is odd, then K is contained in a unique complete arc. Theorem (Segre) If K is a k-arc in PG(2, q) and 1 k > q q + 1, if q is even, 2 k > q q , if q is odd, then K can be completed to an oval. Corollary No complete arc of size q exists in PG(2, q).

50 Complete Arcs in Hall-Planes Theorem (Sz nyi) The set of points C dened by the function f (x) = x 2 (x F q 2\F q ) together with (0, 1, 0) form a complete q 2 q + 1 arc in Hall(q 2 ) for odd q. Theorem (Sz nyi) For an arbitrary, xed non-square c F q 2 the hyperbola H = {(x, c 0 F 2)} is a complete x q (q2 1)-arc in Hall(q 2 ).

51 THANK YOU FOR YOUR ATTENTION!

An introduction to Finite Geometry

An introduction to Finite Geometry An introduction to Finite Geometry Geertrui Van de Voorde Ghent University, Belgium Pre-ICM International Convention on Mathematical Sciences Delhi INCIDENCE STRUCTURES EXAMPLES Designs Graphs Linear spaces

More information

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe:

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: 27.10.2005 1. Übung Geometrie I (Lines in P 2 (R), Separation, Desargues) 1. Aufgabe Line equations

More information

talk in Boca Raton in Part of the reason for not publishing the result for such a long time was his hope for an improvement in terms of the size

talk in Boca Raton in Part of the reason for not publishing the result for such a long time was his hope for an improvement in terms of the size Embedding arbitrary nite simple graphs into small strongly regular graphs. Robert Jajcay Indiana State University Department of Mathematics and Computer Science Terre Haute, IN 47809 jajcay@laurel.indstate.edu

More information

Extending Partial Projective Planes

Extending Partial Projective Planes J. B. University of Hawai i at Mānoa CUNY, October 2017 Axioms for a projective plane Two points determine a unique line. Two lines intersect in a unique point. There exist four points, no three on a line.

More information

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class.

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. Resolvable BIBDs Definition Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. A partition of B into parallel classes (there must be r of them) is

More information

Tilings of the Euclidean plane

Tilings of the Euclidean plane Tilings of the Euclidean plane Yan Der, Robin, Cécile January 9, 2017 Abstract This document gives a quick overview of a eld of mathematics which lies in the intersection of geometry and algebra : tilings.

More information

The statement implies that any three intersection points of two distinct planes lie on a line.

The statement implies that any three intersection points of two distinct planes lie on a line. Math 3181 Dr. Franz Rothe February 23, 2015 All3181\3181_spr15ts1.tex 1 Solution of Test Name: Problem 1.1. The second part of Hilbert s Proposition 1 states: Any two different planes have either no point

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in .

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in  . 0.1 More on innity.math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in email. 0.1.1 If you haven't read 1.3, do so now! In notes#1

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann 10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann During the course of this lecture we encountered several situations where it was convenient to assume

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

An alternative way to generalise the pentagon

An alternative way to generalise the pentagon An alternative way to generalise the pentagon joint work with John Bamberg, Alice Devillers and Klara Stokes Let P be a set whose elements are called points. Let L be a set of subsets of P, whose elements

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( ) The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( ) 1 The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Blocking sets for substructures and reducing the diameter

Blocking sets for substructures and reducing the diameter Blocking sets for substructures and reducing the diameter Tamás Szőnyi Eötvös Loránd University and MTA-ELTE GAC Research Group Budapest 14th September, 2017 5th Irsee Conference on Finite Geometry Coauthors

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

A Short Introduction to Projective Geometry

A Short Introduction to Projective Geometry A Short Introduction to Projective Geometry Vector Spaces over Finite Fields We are interested only in vector spaces of finite dimension. To avoid a notational difficulty that will become apparent later,

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

A Communications Network???

A Communications Network??? A Communications Network??? A Communications Network What are the desirable properties of the switching box? 1. Every two users must be connected at a switch. 2. Every switch must "look alike". 3. The

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Extending partial projective planes

Extending partial projective planes Extending partial projective planes J. B. Nation In honor of my colleagues, Ralph Freese and Bill Lampe Abstract. This note discusses a computational method for constructing finite projective planes. Mathematics

More information

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C.

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Betweenness and the Crossbar Theorem Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Suppose that both A*B*C and A*C*B. Thus AB+BC =AC, and AC +CB = AB. From this we

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

Weak Dynamic Coloring of Planar Graphs

Weak Dynamic Coloring of Planar Graphs Weak Dynamic Coloring of Planar Graphs Caroline Accurso 1,5, Vitaliy Chernyshov 2,5, Leaha Hand 3,5, Sogol Jahanbekam 2,4,5, and Paul Wenger 2 Abstract The k-weak-dynamic number of a graph G is the smallest

More information

1 Solution of Homework I

1 Solution of Homework I Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13h1.tex 1 Solution of Homework I 10 Problem 1.1. As far as two-dimensional geometry is concerned, Hilbert s Proposition 1 reduces to one simple statement:

More information

TWO COORDINATIZATION THEOREMS FOR PROJECTIVE PLANES

TWO COORDINATIZATION THEOREMS FOR PROJECTIVE PLANES TWO COORDINATIZATION THEOREMS FOR PROJECTIVE PLANES HARRY ALTMAN A projective plane Π consists of a set of points Π p, a set of lines Π L, and a relation between them, denoted and read on, satisfying the

More information

Extending partial projective planes

Extending partial projective planes Extending partial projective planes J. B. Nation In honor of my colleagues, Ralph Freese and Bill Lampe Abstract. This note discusses a computational method for constructing finite projective planes. Mathematics

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

CHAPTER - 10 STRAIGHT LINES Slope or gradient of a line is defined as m = tan, ( 90 ), where is angle which the line makes with positive direction of x-axis measured in anticlockwise direction, 0 < 180

More information

Euclid s Axioms. 1 There is exactly one line that contains any two points.

Euclid s Axioms. 1 There is exactly one line that contains any two points. 11.1 Basic Notions Euclid s Axioms 1 There is exactly one line that contains any two points. Euclid s Axioms 1 There is exactly one line that contains any two points. 2 If two points line in a plane then

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Axioms for polar spaces

Axioms for polar spaces 7 Axioms for polar spaces The axiomatisation of polar spaces was begun by Veldkamp, completed by Tits, and simplified by Buekenhout, Shult, Hanssens, and others. In this chapter, the analogue of Chapter

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

SELF-DUAL CONFIGURATIONS AND THEIR LEVI GRAPHS

SELF-DUAL CONFIGURATIONS AND THEIR LEVI GRAPHS SELF-DUAL CONFIGURATIONS AND THEIR LEVI GRAPHS RAFAEL ARTZY Introduction. By a configuration we shall mean a set of points and straight lines (or planes) between which certain well-determined incidences

More information

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry IMporTAnT TErMs, definitions And results l In geometry, we take a point, a line and a plane as undefined terms. l An axiom

More information

Enumeration of Full Graphs: Onset of the Asymptotic Region. Department of Mathematics. Massachusetts Institute of Technology. Cambridge, MA 02139

Enumeration of Full Graphs: Onset of the Asymptotic Region. Department of Mathematics. Massachusetts Institute of Technology. Cambridge, MA 02139 Enumeration of Full Graphs: Onset of the Asymptotic Region L. J. Cowen D. J. Kleitman y F. Lasaga D. E. Sussman Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 Abstract

More information

Network flows and Menger s theorem

Network flows and Menger s theorem Network flows and Menger s theorem Recall... Theorem (max flow, min cut strong duality). Let G be a network. The maximum value of a flow equals the minimum capacity of a cut. We prove this strong duality

More information

The Graphs of Triangulations of Polygons

The Graphs of Triangulations of Polygons The Graphs of Triangulations of Polygons Matthew O Meara Research Experience for Undergraduates Summer 006 Basic Considerations Let Γ(n) be the graph with vertices being the labeled planar triangulation

More information

On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9

On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9 NTMSCI 4, No. 4, 266-275 (2016) 266 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016.113 On the complete arcs containing the quadrangles constructing the Fano planes of the left

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

Random strongly regular graphs?

Random strongly regular graphs? Graphs with 3 vertices Random strongly regular graphs? Peter J Cameron School of Mathematical Sciences Queen Mary, University of London London E1 NS, U.K. p.j.cameron@qmul.ac.uk COMB01, Barcelona, 1 September

More information

Intersection of sets *

Intersection of sets * OpenStax-CNX module: m15196 1 Intersection of sets * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 We have pointed out that a set

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

GEOMETRY HONORS COORDINATE GEOMETRY PACKET

GEOMETRY HONORS COORDINATE GEOMETRY PACKET GEOMETRY HONORS COORDINATE GEOMETRY PACKET Name Period 1 Day 1 - Directed Line Segments DO NOW Distance formula 1 2 1 2 2 2 D x x y y Midpoint formula x x, y y 2 2 M 1 2 1 2 Slope formula y y m x x 2 1

More information

Find the locus of the center of a bicycle wheel touching the floor and two corner walls.

Find the locus of the center of a bicycle wheel touching the floor and two corner walls. WFNMC conference - Riga - July 00 Maurice Starck - mstarck@canl.nc Three problems My choice of three problems, ordered in increasing difficulty. The first is elementary, but the last is a very difficult

More information

Arithmetic and Geometry: Uncomfortable Allies? Bill Cherowitzo University of Colorado Denver

Arithmetic and Geometry: Uncomfortable Allies? Bill Cherowitzo University of Colorado Denver Arithmetic and Geometry: Uncomfortable Allies? Bill Cherowitzo University of Colorado Denver MAA Rocky Mountain Sectional Meeting April 25, 2008 In the beginning... there was Geometry Only ^ Euclid XII.2

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Important!!! First homework is due on Monday, September 26 at 8:00 am.

Important!!! First homework is due on Monday, September 26 at 8:00 am. Important!!! First homework is due on Monday, September 26 at 8:00 am. You can solve and submit the homework on line using webwork: http://webwork.dartmouth.edu/webwork2/m3cod/. If you do not have a user

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Lecture 4: Bipartite graphs and planarity

Lecture 4: Bipartite graphs and planarity Lecture 4: Bipartite graphs and planarity Anders Johansson 2011-10-22 lör Outline Bipartite graphs A graph G is bipartite with bipartition V1, V2 if V = V1 V2 and all edges ij E has one end in V1 and V2.

More information

The Gewirtz Graph Morgan J. Rodgers Design Theory Fall 2007

The Gewirtz Graph Morgan J. Rodgers Design Theory Fall 2007 The Gewirtz Graph Morgan J. Rodgers Design Theory Fall 2007 The Gewirtz Graph is the unique strongly regular graph having parameters (56, 10, 0, 2). We will call this graph Γ. This graph was actually discovered

More information

Honors 213. Third Hour Exam. Name

Honors 213. Third Hour Exam. Name Honors 213 Third Hour Exam Name Monday, March 27, 2000 100 points Page 1 Please note: Because of multiple exams given Monday, this exam will be returned by Thursday, March 30. 1. (5 pts.) Define what it

More information

Section 17. Closed Sets and Limit Points

Section 17. Closed Sets and Limit Points 17. Closed Sets and Limit Points 1 Section 17. Closed Sets and Limit Points Note. In this section, we finally define a closed set. We also introduce several traditional topological concepts, such as limit

More information

Graph Theory Mini-course

Graph Theory Mini-course Graph Theory Mini-course Anthony Varilly PROMYS, Boston University, Boston, MA 02215 Abstract Intuitively speaking, a graph is a collection of dots and lines joining some of these dots. Many problems in

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

Introduction to Geometry (Autumn Tertm 2012) Exercises 3. Section A. Figure 1

Introduction to Geometry (Autumn Tertm 2012) Exercises 3. Section A. Figure 1 Introduction to Geometry (utumn ertm 2012) Exercises 3 Section 1. Show that in Figure 1(i) below, = (Euclid III.35). p (i) (ii) Figure 1 (iii) 2. What is the angle-sum in a quadrilateral on the sphere,

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written?

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Solutions to the Test Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Answer: The first comprehensive text on geometry is called The Elements

More information

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1.

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1. ASSIGNMENT ON STRAIGHT LINES LEVEL 1 (CBSE/NCERT/STATE BOARDS) 1 Find the angle between the lines joining the points (0, 0), (2, 3) and the points (2, 2), (3, 5). 2 What is the value of y so that the line

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. r. r. Jürgen Richter-ebert, ernhard Werner Projective eometry SS 8 https://www-m.ma.tum.de/bin/view/lehre/ss8/pss8/webome Solutions for Worksheet

More information

The Visibility Problem and Binary Space Partition. (slides by Nati Srebro)

The Visibility Problem and Binary Space Partition. (slides by Nati Srebro) The Visibility Problem and Binary Space Partition (slides by Nati Srebro) The Visibility Problem b a c d e Algorithms Z-buffer: Draw objects in arbitrary order For each pixel, maintain distance to the

More information

Provide a drawing. Mark any line with three points in blue color.

Provide a drawing. Mark any line with three points in blue color. Math 3181 Name: Dr. Franz Rothe August 18, 2014 All3181\3181_fall14h1.tex Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

The Geodesic Integral on Medial Graphs

The Geodesic Integral on Medial Graphs The Geodesic Integral on Medial Graphs Kolya Malkin August 013 We define the geodesic integral defined on paths in the duals of medial graphs on surfaces and use it to study lens elimination and connection

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Laguerre Planes: A Basic Introduction

Laguerre Planes: A Basic Introduction Laguerre Planes: A Basic Introduction Tam Knox Spring 2009 1 1 Introduction Like a projective plane, a Laguerre plane is a type of incidence structure, defined in terms of sets of elements and an incidence

More information

Tomaz Pisanski, University of Ljubljana, Slovenia. Thomas W. Tucker, Colgate University. Arjana Zitnik, University of Ljubljana, Slovenia

Tomaz Pisanski, University of Ljubljana, Slovenia. Thomas W. Tucker, Colgate University. Arjana Zitnik, University of Ljubljana, Slovenia Eulerian Embeddings of Graphs Tomaz Pisanski, University of Ljubljana, Slovenia Thomas W. Tucker, Colgate University Arjana Zitnik, University of Ljubljana, Slovenia Abstract A straight-ahead walk in an

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

A Decomposition for Chordal graphs and Applications

A Decomposition for Chordal graphs and Applications A Decomposition for Chordal graphs and Applications Michel Habib Joint work with Vincent Limouzy and Juraj Stacho Pretty Structure, Existencial Polytime Jack Edmonds Birthday, 7-9 april 2009 Schedule Chordal

More information

Characterization of Boolean Topological Logics

Characterization of Boolean Topological Logics Characterization of Boolean Topological Logics Short Form: Boolean Topological Logics Anthony R. Fressola Denison University Granville, OH 43023 University of Illinois Urbana-Champaign, IL USA 61801-61802

More information

Generalized Cell Decompositions of Nested Lorenz Links

Generalized Cell Decompositions of Nested Lorenz Links Generalized Cell Decompositions of Nested Lorenz Links illiam Coenen August 20, 2018 Abstract This paper focuses on generalizing the cell decompositions of various nested Lorenz links to determine types

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 A labelled peer code is a descriptive syntax for a diagram of a knot or link on a two dimensional sphere. The syntax is able to describe

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( )

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( ) Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers (1879 1935) Investigation Exercise 3.1. (a) Construct a tessellation. (Directions for construction.)

More information

On the number of distinct directions of planes determined by n points in R 3

On the number of distinct directions of planes determined by n points in R 3 On the number of distinct directions of planes determined by n points in R 3 Rom Pinchasi August 27, 2007 Abstract We show that any set of n points in R 3, that is not contained in a plane, determines

More information

the projective completion of the affine plane with four points

the projective completion of the affine plane with four points Math 3181 Dr. Franz Rothe November 23, 20 1 Test Name: 50 Problem 1.1. Here are once more: a highly symmetric illustration for the Fano plane based on an equilateral triangle the projective completion

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Lesson 18: There is Only One Line Passing Through a Given Point with a Given

Lesson 18: There is Only One Line Passing Through a Given Point with a Given Lesson 18: There is Only One Line Passing Through a Given Point with a Given Student Outcomes Students graph equations in the form of using information about slope and intercept. Students know that if

More information

Select the best answer. Bubble the corresponding choice on your scantron. Team 13. Geometry

Select the best answer. Bubble the corresponding choice on your scantron. Team 13. Geometry Team Geometry . What is the sum of the interior angles of an equilateral triangle? a. 60 b. 90 c. 80 d. 60. The sine of angle A is. What is the cosine of angle A? 6 4 6 a. b. c.. A parallelogram has all

More information