Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x)

Size: px
Start display at page:

Download "Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x)"

Transcription

1 Projectile Motion Consider motion in and y separately Ignore air resistance elocity in -direction is constant Write down positions in and y as a function of time Remember that the projectile traels ertically (up and down y) in the same time that it is traeling aboe the horizontal () The only acceleration is that due to graity, acting downward (a rocket or an object which is self propelled is not considered a projectile and does not undergo projectile motion, because it can be accelerated arbitrarily in any direction.) September 9 1

2 ŷ g is constant ˆ a a y g yˆ m g 9. 8 yˆ s In the absence of air resistance: no forces act in -direction, so, the speed in -direction is constant throughout the path. Speed changes in y-direction because of graity. September 9

3 September 9 3 t t y y Projectile motion therefore follows that of a parabola: 1 a t 1 a y t 1 gt t t t y y 1 gt 1 g y y Equation of an upside down parabola in and y

4 September 9 4

5 Check your understanding 3.3 A projectile has elocity and acceleration. Which one or more of the figures below could not represent the directions for and at any point on the trajectory? a a A) Pictures (a) and (b) B) Pictures (c) and (d) C) Pictures (d) alone D) Pictures (a) and (c) E) Pictures (a), (c), and (d) September 9 5

6 Problem 3.15: A rock climber throws a small first aid kit to a another climber who is higher up the mountain. The initial elocity of the kit is 11 m/s at an angle of 65 degrees aboe the horizontal. At the instant when the kit is caught, it is traeling horizontally, so its ertical speed is zero. What is the ertical distance between the climbers? y 65 September 9 6

7 Problem 3.: A car dries straight off the edge of a cliff that is 54 meters high. The police at the scene of the accident obsere that the point of impact of the car is 13 meters from the base of the cliff. How fast was the car traeling when it went oer the cliff? September 9 7

8 Stones 1 and are thrown with the same speed,, but at an identical angle θ aboe and below the horizontal. Which stone hits the water with the greater speed? A) stone has the larger speed B) stone 1 has the larger speed C) not enough information D) they hae the same speed September 9 8

9 Symmetries: 1) The time required for an object to reach its maimum height, when thrown, up is equal to the time it takes for the object to return to it s starting point. ) At any displacement y aboe the point of release, the coin s upward speed equals its downward speed. September 9 9

10 Problem 3.37: An airplane is flying with a elocity of 4 m/s at and angle of 3 degrees with the horizontal, as the drawing shows. When the altitude of the plane is.4 km, a flare is released from the plane. What is the angle θ? September 9 1

11 What is the maimum height of the ball? At maimum height: y = H ; y = Find the time to reach maimum height, t ma : y = y gt y tma = y gt ma g Find H: 1 y y t gt y 1 y ma ma H t gt y 1 y g g g y sin H g g

12 What is the range of the ball? At range (maimum distance): = R; y = Find the time to reach = R : Find R: y t gt 1 y t 1 y t R t cos gt R sin g t R t (start) y Trig identity: sin cos sin g (range) y For a kickoff with = m/s and = 4, t R =.9 s R = 49 m H = 1 m sin R g g Ma R for = 45

13 Conceptual Question 3.5: A tennis ball is hit upward into the air and moes along an arc. Neglecting air resistance, where along the arc is the speed of the ball a minimum or a maimum? A) Minimum at the beginning maimum at the end B) Maimum both at the beginning and end minimum in the middle C) Maimum at the beginning minimum at the end D) Minimum both at the beginning and the end maimum in the middle E) The ball has the same speed eerywhere on its path September 9 13

14 Question: Suppose you are driing a conertible with the top down. The car is moing to the right at constant elocity. You point a rifle straight up into the air and fire it. In the absence of air resistance, where would the bullet land? (a) behind you (b) ahead of you (c) in the barrel of the rifle

15 Eample tennis players (problem 3.4): The player on the left lobs the ball with an initial speed of 15. m/s, at an angle of 5. aboe the horizontal. At this instant, his opponent is near the net, 1. m away from the ball. He begins moing away from the net.3 s later, hoping to reach the ball and hit it back at the moment that it is.1 m aboe its launch point. With what minimum aerage speed must he moe?

16 September 9 16

17 Problem 3.46: A rifle is aimed at a small can. At the instant the rifle is fired, the can is released. Show that the bullet will always hit the can, regardless of the initial speed of the bullet. y H H D y September 9 17

18 September 9 18

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

2-D Motion: Projectiles at an Angle Physics

2-D Motion: Projectiles at an Angle Physics -D Motion: Projectiles at an Angle Physics Be sure your calculator is set to DEGREES! I. Trigonometry Reiew: 1. Find the alues of the following functions. (Use scientific calculator) i) sin45º ii) cos40º

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication.

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication. Projectile Motion Key Term projectile motion Two-Dimensional Motion Previously, we showed how quantities such as displacement and velocity were vectors that could be resolved into components. In this section,

More information

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles Edecel Mechanics Kinematics of a particle Section 1: Projectiles Notes and Eamples These notes contain subsections on Investigating projectiles Modelling assumptions General strateg for projectile questions

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University Chapter 3: Vectors & 2D Motion Brent Royuk Phys-111 Concordia University Vectors What is a vector? Examples? Notation:! a or! a or a 2 Vector Addition Graphical Methods Triangle, parallelogram, polygon

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w 1 Name Beaumont Middle School 8th Grade, 2015-2016 Advanced Algebra I A = l w P = 2 l + 2w Graphing Quadratic Functions, Using the Zeroes (x-intercepts) EXAMPLES 1) y = x 2 9 2 a) Standard Form: b) a =,

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions.

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions. Chapter 4 No Problem Word Problems! Name: Algebra 2 Period: 1 2 3 4 5 6 A. Solving from Standard Form 1. A ball is thrown so its height, h, in feet, is given by the equation h = 16t! + 10t where t is the

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

4.5 Conservative Forces

4.5 Conservative Forces 4 CONSERVATION LAWS 4.5 Conservative Forces Name: 4.5 Conservative Forces In the last activity, you looked at the case of a block sliding down a curved plane, and determined the work done by gravity as

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram.

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram. 1 v projectile is in free fall! ax = 0 m/s2 ay = -9.8 m/s2 Projectile Motion Problem-Solving Last year s exam equation sheet. 2 What are you getting stuck on in problem-solving? Topics: Chapters 1 3 including:

More information

QUADRATICS Graphing Quadratic Functions Common Core Standard

QUADRATICS Graphing Quadratic Functions Common Core Standard H Quadratics, Lesson 6, Graphing Quadratic Functions (r. 2018) QUADRATICS Graphing Quadratic Functions Common Core Standard Next Generation Standard F-IF.B.4 For a function that models a relationship between

More information

Do you know where you are?

Do you know where you are? Do ou know where ou are? The missile knows where it is at all times. It knows this because it knows where it isn't. B subtracting where it is from where it isn't, or where it isn't from where it is (whichever

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

Physics 2210 Fall smartphysics 02 Kinematics in 2- and 3-d 08/31/2015

Physics 2210 Fall smartphysics 02 Kinematics in 2- and 3-d 08/31/2015 Physics 2210 Fall 2015 smartphysics 02 Kinematics in 2- and 3-d 08/31/2015 Supplemental Instruction Schedule Tuesdays 8:30-9:20 am..jwb 308 Wednesdays 3:00-3:50 pm JFB B-1 Thursdays 11:30am - 12:20 pm...lcb

More information

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal Topic 2.0 Review Concepts What are non linear equations? Student Notes Unit 2 Non linear Equations Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

Lab #4: 2-Dimensional Kinematics. Projectile Motion

Lab #4: 2-Dimensional Kinematics. Projectile Motion Lab #4: -Dimensional Kinematics Projectile Motion A medieval trebuchet b Kolderer, c1507 http://members.iinet.net.au/~rmine/ht/ht0.html#5 Introduction: In medieval das, people had a ver practical knowledge

More information

We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length

We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length represents magnitude and head represents direction

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right

More information

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications Name Period Date QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications QUAD 4.1 Vertex Form of a Quadratic Function 1 Explore how changing the values of h and

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

/ \ 1=- -<+-3 j=cas. +c-o. Introduction to Quadratic Relations. Student Handout Unit 3 Lesson 1

/ \ 1=- -<+-3 j=cas. +c-o. Introduction to Quadratic Relations. Student Handout Unit 3 Lesson 1 Graph / \ Linear Relations Nonlinear Relations ie following chart compares of relations that are linear vs nonlinear Introduction to Quadratic Relations constant constant but the second differences are

More information

BLM Answers. BLM 4-1 Prerequisite Skills. BLM 4-3 Section 4.1 Modelling With Quadratic Relations. 10. a)

BLM Answers. BLM 4-1 Prerequisite Skills. BLM 4-3 Section 4.1 Modelling With Quadratic Relations. 10. a) BLM Answers (page 1) BLM 4-1 Prerequisite Skills 1. a) 11.1 2.7 9.0 d) 20.2 2. a) 1.7 10.7 6.5 d) 25.1 3. a) 9.5 20.7 96 d) 31.85 4. a) 3x 6x 2 + 6x + 5 10x 2 2x + 6 d) 12x 2 + 10x 6 5. a) 5 0 12 d) 2

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

2. Find the muzzle speed of a gun whose maximum range is 24.5 km.

2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 1. A projectile is fired at a speed of 840 m/sec at an angle of 60. How long will it take to get 21 km downrange? 2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 3. A projectile is fired

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

The ball is at a height of 8 m at x = and x = b. Substitute that value into the equation:

The ball is at a height of 8 m at x = and x = b. Substitute that value into the equation: MPMD Day : Intro to Quadratic Equations... and solving them graphically. Task : The Quadratic Equation Warm-Up: The equation h = -0.05x + x represents the height, h, in metres of one kick of a soccer ball

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

Lesson 17: Graphing Quadratic Functions from the Standard Form,

Lesson 17: Graphing Quadratic Functions from the Standard Form, : Graphing Quadratic Functions from the Standard Form, Student Outcomes Students graph a variety of quadratic functions using the form 2 (standard form). Students analyze and draw conclusions about contextual

More information

AA Simulation: Firing Range

AA Simulation: Firing Range America's Army walkthrough AA Simulation: Firing Range Firing Range This simulation serves as an introduction to uniform motion and the relationship between distance, rate, and time. Gravity is removed

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve.

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve. Parametric Equations: Motion in a Plane Notes for Section 6.3 In Laman s terms: Parametric equations allow us to put and into terms of a single variable known as the parameter. Time, t, is a common parameter

More information

Ch 8: Right Triangles and Trigonometry 8-1 The Pythagorean Theorem and Its Converse 8-2 Special Right Triangles 8-3 The Tangent Ratio

Ch 8: Right Triangles and Trigonometry 8-1 The Pythagorean Theorem and Its Converse 8-2 Special Right Triangles 8-3 The Tangent Ratio Ch 8: Right Triangles and Trigonometry 8-1 The Pythagorean Theorem and Its Converse 8- Special Right Triangles 8-3 The Tangent Ratio 8-1: The Pythagorean Theorem and Its Converse Focused Learning Target:

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Stomp Rocket Lab Physics

Stomp Rocket Lab Physics Stomp Rocket Lab Physics Stomp Rockets are plastic projectiles that are launched when a bladder of air is hit or stomped with a foot. Typically the launch angle can be changed, but should be left at 90

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Up and Down or Down and Up

Up and Down or Down and Up Lesson.1 Skills Practice Name Date Up and Down or Down and Up Eploring Quadratic Functions Vocabular Write the given quadratic function in standard form. Then describe the shape of the graph and whether

More information

8-4 Transforming Quadratic Functions

8-4 Transforming Quadratic Functions 8-4 Transforming Quadratic Functions Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions.

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions. Warm Up Lesson Presentation Lesson Quiz Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward or downward. 1. y = x 2 + 3 2. y = 2x 2 x

More information

Solving Quadratics Algebraically Investigation

Solving Quadratics Algebraically Investigation Unit NOTES Honors Common Core Math 1 Day 1: Factoring Review and Solving For Zeroes Algebraically Warm-Up: 1. Write an equivalent epression for each of the problems below: a. ( + )( + 4) b. ( 5)( + 8)

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR EXERCISE SET 10. STUDENT MATD 090 DUE DATE: INSTRUCTOR You have studied the method known as "completing the square" to solve quadratic equations. Another use for this method is in transforming the equation

More information

Recitation 1-6 Projectile Motion

Recitation 1-6 Projectile Motion Preliminaries Recitation 1-6 Projectile Motion The Recorder is the youngest person at your table. The Recorder Should write down everyone s name on the worksheet and put your Table No. on the worksheet.

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3.

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3. 1-4 Inverses of Trigonometric Functions Objectives Evaluate inverse trigonometric functions. Use trigonometric equations and inverse trigonometric functions to solve problems. Vocabulary inverse sine function

More information

Worksheet: Transformations of Quadratic Functions

Worksheet: Transformations of Quadratic Functions Worksheet: Transformations of Quadratic Functions Multiple Choice Identif the choice that best completes the statement or answers the question.. Which correctl identifies the values of the parameters a,

More information

Algebra II Quadratic Functions and Equations - Extrema Unit 05b

Algebra II Quadratic Functions and Equations - Extrema Unit 05b Big Idea: Quadratic Functions can be used to find the maximum or minimum that relates to real world application such as determining the maximum height of a ball thrown into the air or solving problems

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

More information

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places.

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places. Week 8 Problems Name: Neal Nelson Show Scored View # Points possible:. Total attempts: A pilot is flying over a straight highway. He determines the angles of depression to two mileposts,.6 mi apart, to

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

Unit 7. Quadratic Applications. Math 2 Spring 2017

Unit 7. Quadratic Applications. Math 2 Spring 2017 1 Unit 7 Quadratic Applications Math 2 Spring 2017 1 Contents Graphing Key Features of Quadratic Equations...3 Vertex Form of a Quadratic...3 Practice and Closure...6 Graphing Quadratics from Standard

More information

ASSIGNMENT #1 - EXAM REVIEW TEST

ASSIGNMENT #1 - EXAM REVIEW TEST UNIT 1 ASSIGNMENT #1 - EXAM REVIEW TEST 1) List 4 types of problems in this unit. a) break even b) mixture c) rate d) relative value /4 2) A sales clerk can choose between two maoney plans: straight 15%

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

NAME DATE PERIOD. Study Guide and Intervention. Parent Functions and Transformations. Name Characteristics Parent Function

NAME DATE PERIOD. Study Guide and Intervention. Parent Functions and Transformations. Name Characteristics Parent Function -7 Stud Guide and Intervention Parent Graphs The parent graph, which is the graph of the parent function, is the simplest of the graphs in a famil. Each graph in a famil of graphs has similar characteristics.

More information

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means.

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means. Ball Toss Experiment 34 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs.

More information

2D Kinematics Projectiles Relative motion

2D Kinematics Projectiles Relative motion 2D Kinematics Projectiles Relative motion Lana heridan De Anza College Oct 4, 2017 Last time 2 dimensional motion projectile motion height of a projectile Overview range of a projectile trajectory equation

More information

Wiley Plus. Assignment 1 is online:

Wiley Plus. Assignment 1 is online: Wile Plus Assignmen 1 is online: 6 problems from chapers and 3 1D and D Kinemaics Due Monda Ocober 5 Before 11 pm! Chaper II: Kinemaics In One Dimension Displacemen Speed and Veloci Acceleraion Equaions

More information

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0 8. Graphs of Quadratic Functions In an earlier section, we have learned that the graph of the linear function = m + b, where the highest power of is 1, is a straight line. What would the shape of the graph

More information

Honors Pre-Calculus. 6.1: Vector Word Problems

Honors Pre-Calculus. 6.1: Vector Word Problems Honors Pre-Calculus 6.1: Vector Word Problems 1. A sled on an inclined plane weighs 00 lb, and the plane makes an angle of 0 degrees with the horizontal. What force, perpendicular to the plane, is exerted

More information

6.3 Creating and Comparing Quadratics

6.3 Creating and Comparing Quadratics 6.3 Creating and Comparing Quadratics Just like with exponentials and linear functions, to be able to compare quadratics, we ll need to be able to create equation forms of the quadratic functions. Let

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

ASSIGNMENT BETA COVER SHEET

ASSIGNMENT BETA COVER SHEET Question Done Backpack Ready for test ASSIGNMENT BETA COVER SHEET Name Teacher Topic Teacher/student comment Drill A indices Drill B tangents Drill C differentiation Drill D normals Drill E gradient Section

More information

Goals: - to be able to recognize the position-time, velocity-time and acceleration-time graphs of each of these main types of motion:

Goals: - to be able to recognize the position-time, velocity-time and acceleration-time graphs of each of these main types of motion: Unit: One-Dimensional Kinematics Level: 1 Prerequisites: None Points to: Goals: - to be able to recognize the position-time, velocity-time and acceleration-time graphs of each of these main types of motion:

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

PLANE TRIGONOMETRY Exam I September 13, 2007

PLANE TRIGONOMETRY Exam I September 13, 2007 Name Rec. Instr. Rec. Time PLANE TRIGONOMETRY Exam I September 13, 2007 Page 1 Page 2 Page 3 Page 4 TOTAL (10 pts.) (30 pts.) (30 pts.) (30 pts.) (100 pts.) Below you will find 10 problems, each worth

More information

2.3 Maximum and Minimum Applications

2.3 Maximum and Minimum Applications Section. 55. Maimum and Minimum Applications Maimizing (or minimizing) is an important technique used in various fields of study. In business, it is important to know how to find the maimum profit and

More information

Refraction Seismology. Chapter :: 6

Refraction Seismology. Chapter :: 6 Refraction Seismology Chapter :: 6 Snell s Law & Critical Refraction Because seismic sources radiate waes in all directions Some ray must hit interface at exactly the critical angle, i c This critically

More information