Physics 2210 Fall smartphysics 02 Kinematics in 2- and 3-d 08/31/2015

Size: px
Start display at page:

Download "Physics 2210 Fall smartphysics 02 Kinematics in 2- and 3-d 08/31/2015"

Transcription

1 Physics 2210 Fall 2015 smartphysics 02 Kinematics in 2- and 3-d 08/31/2015

2 Supplemental Instruction Schedule Tuesdays 8:30-9:20 am..jwb 308 Wednesdays 3:00-3:50 pm JFB B-1 Thursdays 11:30am - 12:20 pm...lcb 121 Reminder of Important Dates Events Dates Labor Day holiday Monday, September 7 Tuition payment due Friday, September 4 Classes begin Monday, August 24 Last day to add without a permission code Sunday, August 30 Last day to add, drop (delete), elect CR/NC, or audit classes Friday, September 4 Last day to withdraw from classes Friday, October 23

3 Unit 02

4 Unit 02

5 More than 1D Spherical coordinate System used in Physics x = r sin θ cos φ y = r sin θ sin φ z= r cos θ θ : Polar Angle φ: Azimuthal Angle NOTE PHYSICS TEXTBOOKS GENERALLY USE THIS CONVENTION for θ and φ backward from MATH Sometimes δ =90 θ : Elevation Angle x East up i z z k (x, y, z) j The x, y and z axes must point in mutually perpendicular directions Position Vector r = xi + yj + zk y North A simple 3d vector visualizer can be found at

6 2D motion in horizontal Plane We also assume unit 02 to be mostly review. For extra help, you might try Khan s Academy: Cartesian coordinates ( x, y ) Polar coordinates ( r, φ ) x = r cos φ y = r sin φ j i Position Vector r = 3i + 4j Common Convention Horizontal plane +x: east +y: north Projectile Motion +x: down range +y: up

7 Example 2.1 (1/3) You spot a plane that is 1.44 km north, 2.7 km east, and at an altitude 5.12 km above your position. (a) How far from you is the plane? (b) At what angle from due north (in the horizontal plane) are you looking? (give answer in E of N) (%i1) /* this is a 3d problem */ y: 1.44; x: 2.7; z: 5.12; (%o1) 1.44 (%o2) 2.7 (%o3) 5.12 (%i4) r : sqrt(x^2+y^2+z^2); (%o4) Answer (a) 5.96 km A simple 3d vector visualizer can be found at ary/curriculum/precalculusdiscrete/demos/vector-3d/ (%i6) phi : atan2(y,x)*180/%pi, numer; (%o6) (%i7) 90-phi; (%o7) Answer (b) 61.9 degrees East of North

8 Example 2.1 (2/3) You spot a plane that is 1.44 km north, 2.7 km east, and at an altitude 5.12 km above your position. (c) Determine the plane's position vector (from your location) in terms of the unit vectors, letting be toward the east direction, be toward the north direction, and be in vertically upward. In other words, write down the x, y, and z projections of the position vector along the coordinate directions. Answer: X-projection: 2.7 km i X-component: 2.7 km y-projection: 1.44 km j y-component: 1.44 km Z-projection: 5.12km k Z-component: 5.12 km r = 2.7 km i km j km k

9 Example 2.1 (3/3) You spot a plane that is 1.44 km north, 2.7 km east, and at an altitude 5.12 km above your position. (d) At what elevation angle (above the horizontal plane of Earth) is the airplane? (give the answer in degrees above the horizon) (%i8) theta : acos(z/r)*180/%pi, numer; (%o8) (%i9) 90-theta; (%o9) (%i10) Answer: (d) elevation angle is 59.1 degrees above horizon

10 Rule of Thumb If you use Cartesian coordinates i.e. x, y (z) are mutually orthogonal, Then motion in x, y (and z) are independent for the cases of (a) Constant velocity (b) Constant acceleration

11 Projectile Motion: x and y are independent 25 fps

12 Poll A physics demo launches a ball horizontally while dropping a second ball vertically at exactly the same time. Which ball hits the ground first? A. Dropped ball B. Both hit at the same time. C. Launched (horizontally) ball

13 Projectile Motion Objects flying without power at the surface of the Earth: (neglecting air resistance) X (horizontal down range): constant velocity v xi = v i cosθ (θ: angle the projectile s velocity at time ti makes to horizontal) Y (up/dow): constant acceleration with magnitude of g =9.81m/s downward v yi = v i sinθ a y = - g (up is +y)

14 Poll Destroyer Enemy 1 Enemy 2 A destroyer simultaneously fires two shells with different initial speeds at two different enemy ships. The shells follow the parabolic trajectories shown. Which ship gets hit first? A. Enemy 2 B. Both ships are hit at about the same time. C. Enemy 1

15 (politically incorrect) Example 2.2 (1/4) From ground level, a hunter shoots at a monkey hanging in a tree. The monkey is originally at height h and distance D from the hunter. When the gun is fired, the monkey hears the shot instantaneously (assume sound travels very fast), lets go of the tree branch, and falls. (a) Treating h, D, and v 0 (initial velocity of the bullet) as given parameters, at what angle θ above the ground should the hunter aim in order to hit the monkey? (b) What is the minimum v 0 required for success? Monkey starts dropping vertically at t = 0 y Gun fired from origin at t = 0 v 0 h O θ x D

16 (politically incorrect) Example 2.2 (2/4) The monkey is originally at height h and distance D from the hunter. When the gun is fired, the monkey starts dropping. At what angle θ above the ground should the hunter aim in order to hit the monkey (%i1) /* The bullet travels according to projectile motion: constant velocity in the x-direction (horizontal, right+) and constant acceleration at aby=-g in the y (vertical, up+) direction. Staring at t=0 from the origin: xb0=0 and yb0=0, the bullet's position is given by */ xb: vbx0*t; (%o1) (%i2) yb: vby0*t - g/2*t^2; t vbx0 g t (%o2) t vby (%i3) /* The monkey starts at initial position (D, h) from rest, so its position is given by */ xm: D; (%o3) D (%i4) ym: h - g/2*t^2; 2 g t (%o4) h

17 (politically incorrect) Example 2.2 (3/4) The monkey is originally at height h and distance D from the hunter. When the gun is fired, the monkey starts dropping. (a) At what angle θ above the ground should the hunter aim in order to hit the monkey? (%i5) /* First find time t1 at which the bullets reaches the horizontal position of the monkey */ t1: rhs(solve(xb = xm, t)[1]); D (%o5) ---- vbx0 (%i6) /* at t=t1, the bullet and monkey are at height yb1 and ym1, respectively, given by */ yb1: yb, t=t1; 2 D vby0 g D (%o6) vbx0 2 2 vbx0 (%i9) sol2: solve(yb1 = ym1,vby0); h vbx0 (%o9) [vby0 = ] D Answer (a) vby0/vbx0 = h/d = tan(theta) it means you aim right at the monkey i.e. theta = arctan(h/d)

18 (politically incorrect) Example 2.2 (3/4) The monkey is originally at height h and distance D from the hunter. When the gun is fired, the monkey starts dropping. (a) At what angle θ above the ground should the hunter aim in order to hit the monkey? (b) What is the minimum v 0 required for success? (%i10) /* we want to make sure yb1 > 0 *, so we solve for vby0 such that yb1=0 as the limiting case */ sol3: solve(yb1=0, vby0); g D (%o10) [vby0 = ] So the requirement is that 2*vBy0*vBx0 > g*d But vbx0 = v0*cos(theta) And vby0 = v0*sin(theta) 2 vbx0 where theta is NOW the optimized angle given by tan(theta)=h/d And 2*sin(theta)*cos(theta) = sin(2*theta) So the minimum v0 is given by v0_min = sqrt( g*d/sin(2*theta) ) = sqrt( g*d/(2*sin(theta)*cos(theta)) )

19 30 fps

20 Extra Example 2.1 (1/4) At a given time you are in ship A heading directly north at 5.0m/s Your radar shows ship B at a distance of 1200 m 30 degrees north of west from you headed directly east at 7.0m/s (a) Taking your current position to be the origin, write down the position of ship B in unit vector form (b) How close do the two ships come to one another (and when)? (%i1) /* t=0 at given moment */ va: 5; (%o1) 5 (%i2) vb: 7; (%o2) 7 (%i3) phi: (180-30)*%pi/180, numer; (%o3) (%i4) R: 1200; (%o4) 1200 (%i5) xb0: R*cos(phi); (%o5) (%i6) yb0: R*sin(phi); (%o6)

21 Extra Example 2.1 (2/3) Answer (a): r B = 1039mi + 600mj (%i7) xa: 0; (%o7) 0 (%i8) ya: va*t; (%o8) 5 t (%i9) xb: xb0 + vb*t; (%o9) 7 t (%i10) yb: yb0; (%o10) (%i11) r2: (xb-xa)^2+(yb-ya)^2; 2 2 (%o11) (7 t ) + ( t) (%i12) dr2dt: diff(r2, t); (%o12) 14 (7 t ) - 10 ( t) (%i13) expand(dr2dt=0); (%o13) 148 t = 0 (%i14) soln1: solve(dr2dt=0, t); (%o14) [t = ] (%i15) t1: rhs(soln1[1]), numer; (%o15)

22 Extra Example 2.1 (3/3) (%i18) sqrt(r2), t=t1, numer; (%o18) Answer: They come closest together at a distance of 115.8m (at t=138.85s )

Physics 2210 Fall smartphysics Relative Motion, Circular Motion 04 Newton s Laws 09/04/2015

Physics 2210 Fall smartphysics Relative Motion, Circular Motion 04 Newton s Laws 09/04/2015 Physics 2210 Fall 2015 smartphysics 03-04 03 Relative Motion, Circular Motion 04 Newton s Laws 09/04/2015 Supplemental Instruction Schedule Tuesdays 8:30-9:20 am..jwb 308 Wednesdays 3:00-3:50 pm JFB B-1

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University Chapter 3: Vectors & 2D Motion Brent Royuk Phys-111 Concordia University Vectors What is a vector? Examples? Notation:! a or! a or a 2 Vector Addition Graphical Methods Triangle, parallelogram, polygon

More information

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

2-D Motion: Projectiles at an Angle Physics

2-D Motion: Projectiles at an Angle Physics -D Motion: Projectiles at an Angle Physics Be sure your calculator is set to DEGREES! I. Trigonometry Reiew: 1. Find the alues of the following functions. (Use scientific calculator) i) sin45º ii) cos40º

More information

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram.

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram. 1 v projectile is in free fall! ax = 0 m/s2 ay = -9.8 m/s2 Projectile Motion Problem-Solving Last year s exam equation sheet. 2 What are you getting stuck on in problem-solving? Topics: Chapters 1 3 including:

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x)

Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x) Projectile Motion Consider motion in and y separately Ignore air resistance elocity in -direction is constant Write down positions in and y as a function of time Remember that the projectile traels ertically

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication.

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication. Projectile Motion Key Term projectile motion Two-Dimensional Motion Previously, we showed how quantities such as displacement and velocity were vectors that could be resolved into components. In this section,

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

SPH3U1 Lesson 05 Kinematics

SPH3U1 Lesson 05 Kinematics VECTORS IN TWO-DIMENSIONS LEARNING GOALS Students will Draw vector scale diagrams to visualize and analyze the nature of motion in a plane. Analyze motion by using scale diagrams to add vectors. Solve

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

SPH3U1 Lesson 09 Kinematics

SPH3U1 Lesson 09 Kinematics VECTORS IN TWO-DIMENSIONS LEARNING GOALS Students will Draw vector scale diagrams to visualize and analyze the nature of motion in a plane. Analyze motion by using scale diagrams to add vectors. Solve

More information

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places.

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places. Week 8 Problems Name: Neal Nelson Show Scored View # Points possible:. Total attempts: A pilot is flying over a straight highway. He determines the angles of depression to two mileposts,.6 mi apart, to

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Honors Pre-Calculus. 6.1: Vector Word Problems

Honors Pre-Calculus. 6.1: Vector Word Problems Honors Pre-Calculus 6.1: Vector Word Problems 1. A sled on an inclined plane weighs 00 lb, and the plane makes an angle of 0 degrees with the horizontal. What force, perpendicular to the plane, is exerted

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles Edecel Mechanics Kinematics of a particle Section 1: Projectiles Notes and Eamples These notes contain subsections on Investigating projectiles Modelling assumptions General strateg for projectile questions

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 15, June 29, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 July 2006 Sunday Monday Tuesday

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

2.1 Motion in Two Dimensions A Scale Diagram Approach

2.1 Motion in Two Dimensions A Scale Diagram Approach Figure The motion of these cyclists is two-dimensional in the plane of the road. carr LInK aval offi cers use gyroscopic compasses and satellite navigation to navigate Canada s naval fl eet. However, every

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Youngstown State University Trigonometry Final Exam Review (Math 1511)

Youngstown State University Trigonometry Final Exam Review (Math 1511) Youngstown State University Trigonometry Final Exam Review (Math 1511) 1. Convert each angle measure to decimal degree form. (Round your answers to thousandths place). a) 75 54 30" b) 145 18". Convert

More information

We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length

We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length We ve defined vectors as quantities that have a magnitude and a direction Displacement, velocity, and acceleration Represent by an arrow whose length represents magnitude and head represents direction

More information

AA Simulation: Firing Range

AA Simulation: Firing Range America's Army walkthrough AA Simulation: Firing Range Firing Range This simulation serves as an introduction to uniform motion and the relationship between distance, rate, and time. Gravity is removed

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

1. ORIENTATIONS OF LINES AND PLANES IN SPACE

1. ORIENTATIONS OF LINES AND PLANES IN SPACE I Main Topics A Defini@ons of points, lines, and planes B Geologic methods for describing lines and planes C AMtude symbols for geologic maps D Reference frames 1 II Defini@ons of points, lines, and planes

More information

Computation of Slope

Computation of Slope Computation of Slope Prepared by David R. Maidment and David Tarboton GIS in Water Resources Class University of Texas at Austin September 2011, Revised December 2011 There are various ways in which slope

More information

(40-405) Projectile Launcher

(40-405) Projectile Launcher 611-1410 (40-405) Projectile Launcher Replacement Parts: 24-0405 Instructions 40-030 Aluminum ball with hole 40-069 Steel ball with hole Congratulations on your purchase of a Science First product You

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

Find the component form and magnitude of the vector where P = (-3,4), Q = (-5, 2), R = (-1, 3) and S = (4, 7)

Find the component form and magnitude of the vector where P = (-3,4), Q = (-5, 2), R = (-1, 3) and S = (4, 7) PRE-CALCULUS: by Finney,Demana,Watts and Kennedy Chapter 6: Applications of Trigonometry 6.1: Vectors in the Plane What you'll Learn About Two Dimensional Vectors/Vector Operations/Unit Vectors Direction

More information

Lab #4: 2-Dimensional Kinematics. Projectile Motion

Lab #4: 2-Dimensional Kinematics. Projectile Motion Lab #4: -Dimensional Kinematics Projectile Motion A medieval trebuchet b Kolderer, c1507 http://members.iinet.net.au/~rmine/ht/ht0.html#5 Introduction: In medieval das, people had a ver practical knowledge

More information

2D Kinematics Projectiles Relative motion

2D Kinematics Projectiles Relative motion 2D Kinematics Projectiles Relative motion Lana heridan De Anza College Oct 4, 2017 Last time 2 dimensional motion projectile motion height of a projectile Overview range of a projectile trajectory equation

More information

LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON

LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS ASSIGNMENT DUE TT 1 1 Practice Set D TT 1 6 TT 1 7 TT TT 1 8 & Application Problems 1 9

More information

Computational Physics

Computational Physics Computational Physics Python Programming Basics Prof. Paul Eugenio Department of Physics Florida State University Jan 17, 2019 http://hadron.physics.fsu.edu/~eugenio/comphy/ Announcements Exercise 0 due

More information

Do you know where you are?

Do you know where you are? Do ou know where ou are? The missile knows where it is at all times. It knows this because it knows where it isn't. B subtracting where it is from where it isn't, or where it isn't from where it is (whichever

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

COORDINATE TRANSFORMATION. Lecture 6

COORDINATE TRANSFORMATION. Lecture 6 COORDINATE TRANSFORMATION Lecture 6 SGU 1053 SURVEY COMPUTATION 1 Introduction Geomatic professional are mostly confronted in their work with transformations from one two/three-dimensional coordinate system

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer 8//2010 Assignment Previewer Week 8 Friday Homework (1324223) Question 12345789101112131415117181920 1. Question Detailsscalcet 3.9.ae.05.nva [129124] EXAMPLE 5 A man walks along a straight path at a speed

More information

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2015 N Final Exam Precalculus Student ooklet opyright 2015

More information

Coordinate Transformations for VERITAS in OAWG - Stage 4

Coordinate Transformations for VERITAS in OAWG - Stage 4 Coordinate Transformations for VERITAS in OAWG - Stage 4 (11 June 2006) Tülün Ergin 1 Contents 1 COORDINATE TRANSFORMATIONS 1 1.1 Rotation Matrices......................... 1 1.2 Rotations of the Coordinates...................

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

Toy animal ball poppers provide a great way to use projectile motion in the classroom. We used

Toy animal ball poppers provide a great way to use projectile motion in the classroom. We used Using Toy Animal Ball Poppers to Explore Projectile Motion in Algebra and Calculus Classes Marsha Nicol Guntharp, Palm Beach Atlantic University Fred Browning, Palm Beach Atlantic University Gloria Royle,

More information

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right

More information

Y36MVR Second Life inclined plane

Y36MVR Second Life inclined plane Y36MVR Second Life inclined plane Ondřej Bartas, Petr Minařík, Radek Okrajek - Wednesday, 11:00 License: GNU LGPL http://www.gnu.org/licenses/lgpl-3.0.txt Inclined plane The inclined plane is one of the

More information

Navigation coordinate systems

Navigation coordinate systems Lecture 3 Navigation coordinate systems Topic items: 1. Basic Coordinate Systems. 2. Plane Cartesian Coordinate Systems. 3. Polar Coordinate Systems. 4. Earth-Based Locational Reference Systems. 5. Reference

More information

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space:

The points (2, 2, 1) and (0, 1, 2) are graphed below in 3-space: Three-Dimensional Coordinate Systems The plane is a two-dimensional coordinate system in the sense that any point in the plane can be uniquely described using two coordinates (usually x and y, but we have

More information

Impact detection. You can get the latest firmware and configurator from our documentation website: doc.ruptela.lt

Impact detection. You can get the latest firmware and configurator from our documentation website: doc.ruptela.lt Impact detection Introduction When impact detection feature is active, FM device monitors its acceleration in all directions and generates records every time when the acceleration exceeds configured limits.

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

Patterning Math Lab 4a

Patterning Math Lab 4a Patterning Math Lab 4a This lab is an exploration of transformations of functions, a topic covered in your Precalculus textbook in Section 1.5. As you do the exercises in this lab you will be closely reading

More information

2. Find the muzzle speed of a gun whose maximum range is 24.5 km.

2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 1. A projectile is fired at a speed of 840 m/sec at an angle of 60. How long will it take to get 21 km downrange? 2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 3. A projectile is fired

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

YEAR 9 MATHS. Monday Wednesday Thursday - - Friday Introduce: 10A Distance between two points 10A.1. WEEK 3 Coordinate Geometry.

YEAR 9 MATHS. Monday Wednesday Thursday - - Friday Introduce: 10A Distance between two points 10A.1. WEEK 3 Coordinate Geometry. WEEK 3 Coordinate Geometry WEEK 4 Coordinate Geometry WEEK 5 Coordinate Geometry WEEK 6 Coordinate Geometry WEEK 7 Coordinate Geometry WEEK 8 Coordinate Geometry Monday Wednesday Thursday - - Friday Introduce:

More information

1. Determine the remaining sides and angles of the triangle ABC. Show all work and / or support your answer.

1. Determine the remaining sides and angles of the triangle ABC. Show all work and / or support your answer. Trigonometry Final Exam Review: Chapters 7, 8 Chapter 7: Applications of Trigonometry and Vectors 1. Determine the remaining sides and angles of the triangle ABC. 2. Determine the remaining sides and angles

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

MATH 229 TRIGONOMETRY. COURSE PACK (Fall 2018) Mark Turner Mathematics Division Cuesta College

MATH 229 TRIGONOMETRY. COURSE PACK (Fall 2018) Mark Turner Mathematics Division Cuesta College MATH 9 TRIGONOMETRY COURSE PACK (Fall 08) Mark Turner Mathematics Division Cuesta College Angles and Triangles. Find the complement and supplement of 60. Complement = Supplement =. Use the Pythagorean

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Example. Section: PS 709 Examples of Calculations of Reduced Hours of Work Last Revised: February 2017 Last Reviewed: February 2017 Next Review:

Example. Section: PS 709 Examples of Calculations of Reduced Hours of Work Last Revised: February 2017 Last Reviewed: February 2017 Next Review: Following are three examples of calculations for MCP employees (undefined hours of work) and three examples for MCP office employees. Examples use the data from the table below. For your calculations use

More information

Pre-Calculus Right Triangle Trigonometry Review Name Dec π

Pre-Calculus Right Triangle Trigonometry Review Name Dec π Pre-Calculus Right Triangle Trigonometry Review Name Dec 201 Convert from Radians to Degrees, or Degrees to Radians 7π 1. 0 2.. 1. 11π. Find the si trig functions of θ. If sin θ =, find the other five

More information

LOCAL GEODETIC HORIZON COORDINATES

LOCAL GEODETIC HORIZON COORDINATES LOCAL GEODETIC HOIZON COODINATES In many surveying applications it is necessary to convert geocentric Cartesian coordinates X,,Z to local geodetic horizon Cartesian coordinates E,N,U (East,North,Up). Figure

More information

Two-Dimensional Waves

Two-Dimensional Waves Two-Dimensional Waves In our previous lessons, we discussed one-dimensional waves waves that can only travel in straight lines, such as along the length of a spring. In this next part of the unit, we will

More information

Recitation 1-6 Projectile Motion

Recitation 1-6 Projectile Motion Preliminaries Recitation 1-6 Projectile Motion The Recorder is the youngest person at your table. The Recorder Should write down everyone s name on the worksheet and put your Table No. on the worksheet.

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

Physics 251 Laboratory Introduction to Spreadsheets

Physics 251 Laboratory Introduction to Spreadsheets Physics 251 Laboratory Introduction to Spreadsheets Pre-Lab: Please do the lab-prep exercises on the web. Introduction Spreadsheets have a wide variety of uses in both the business and academic worlds.

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

TCRSR Band Angles. (Draft 02) October 1, 2008

TCRSR Band Angles. (Draft 02) October 1, 2008 TCRSR Band Angles (Draft 02) October 1, 2008 1 Coordinate system The origin of the coordinate system is at the top-center of the MFR head diffuser. The TCRSR is aligned so the axis of rotation is N-S and

More information

Lecture 26, March 16, Chapter 35, Polarization

Lecture 26, March 16, Chapter 35, Polarization Physics 5B Lecture 26, March 16, 2012 Chapter 35, Polarization Simple Spectrometer d sin m Resolving power, to separate two lines closely spaced in wavelength by : R mn Resolving Power Two lines not resolved.

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

ORIENTATIONS OF LINES AND PLANES IN SPACE

ORIENTATIONS OF LINES AND PLANES IN SPACE GG303 Lab 1 8/21/09 1 ORIENTATIONS OF LINES AND PLANES IN SPACE I Main Topics A Definitions of points, lines, and planes B Geologic methods for describing lines and planes C Attitude symbols for geologic

More information

Displacement-time and Velocity-time Graphs

Displacement-time and Velocity-time Graphs PhysicsFactsheet April Number Displacement- and Velocity- Graphs This Factsheet explains how motion can be described using graphs, in particular how - graphs and - graphs can be used. Displacement- graphs

More information

You are going to need to access the video that was taken of your device - it can be accessed here:

You are going to need to access the video that was taken of your device - it can be accessed here: Part 2: Projectile Launcher Analysis Report Submit Assignment Due Dec 17, 2015 by 10:30am Points 100 Submitting a file upload Available after Dec 17, 2015 at 6am Step 2 - Now We Look At The Real World

More information