Real-Time 2D to 2D+Depth Video Conversion. OzViz David McKinnon QUT

Size: px
Start display at page:

Download "Real-Time 2D to 2D+Depth Video Conversion. OzViz David McKinnon QUT"

Transcription

1 Real-Time 2D to 2D+Depth Video Conversion OzViz David McKinnon QUT

2 Why? The goal is to by able to convert video sequences where the camera undergoes motion but the scene is stationary, fast. This is one piece of the puzzle for the conversion of old video footage to 3D to be compatible with 3D TV s, also useful for robotics and VFX. Would like to convert this type of algorithm into a plugin for an Autodesk match mover or Nuke.

3 System Overview Matching moving to recover the camera path There a number of GPU accelerated stages within this stage, such as feature extraction and matching Stereo Local Stereo (Inaccurate, Fast, Per-Pixel Reasoning, WTA Unreliable, GPU Implementations Easy) Global Stereo (Accurate, Slow, Memory Intensive, Whole Image Reasoning, Reliable, GPU Implementations Hard) Consistency Checking OpenGL is designed to accelerate 3D graphics. This can be exploited for consistency between depths maps.

4 Matchmoving/Camera Tracking Tracks some points Work out where the photos were taken

5 Cross-Based Local Method Real-Time Stereo Matching Cross-Based Local Approach, Jiangbo Lu et. al. Calculate Arm Lengths Metric Aggregation : Vertical + Horizontal WTA Depth Selection

6 Cross-Based Local Method Trade-off between window size and reliability of the window metric on areas with less texture. Bilateral filtering is the top performing window metric, but is very slow! Other methods over-segment the image into super-pixels and work on regions. The cross-based approach straddles the two concepts but it is more efficient.

7 Cross-Based Local Method Multi-view plane sweeping method are used to compile a photo-consistency cost volume.

8 Cross-Based Local Method Metric Aggregation : Vertical + Horizontal Passes 1. // turn on blending (set to accumulate uniformly) 2. glenable(gl_blend); 3. glblendfunc(gl_one, GL_ONE); 4. // render to the FBO 5. for(int z = 0; z < cost->depth(); z++) { 6. // attach and draw 7. cost->attach_fbo(z); 8. gldrawbuffer(gl_color_attachment0_ext); 9. if(vwgl_fbo::is_fbo_ready()) { 10. // setup the viewport and matrices 11. cost->height()); cost->fit_viewport(0, 0, cost->width(), 12. >height()); cost->fit_matrices(0, 0, cost->width(), cost- 13. // draw the quad 14. cost->draw_quad(z); 15. } else 16. vcl_cout << "FBO not ready" << vcl_endl; 17. }

9 Cross-Based Local Method The Results

10 Temporal Consistency For stereo through time, the results should temporally consistent. Cut down on frame-flicker. Solution : smooth each frame s depth-image through time using robust means. Real-Time Visibility-Based Fusion of Depth Maps, Paul Merrell et. al.

11 Temporal Consistency Example of re-projection of depth fields Original Reprojection Comparison

12 Temporal Consistency Vertex Code char *vertex_code = "varying vec4 vpos; varying float conf; uniform float depth_min; uniform float depth_max; uniform float width; uniform float height; uniform float spacing; uniform float ds; uniform mat3 ih; uniform vec3 C; uniform sampler2drect tex; void main(void){ vec3 pix = vec3(gl_color.r*spacing*width*ds, gl_color.g*spacing*height*ds, 1.0); vec2 samp = texture2drect(tex, pix.st/(spacing*ds)).ra; vpos = gl_modelviewmatrix*vec4((samp.r*(depth_max-depth_min)+depth_min)*ih*pix+c, 1.0); conf = samp.g; if(abs(conf)!= 1.0) { gl_position = gl_projectionmatrix*vpos; gl_pointsize = 1.0; } else { gl_pointsize = 0.0; gl_position = vec4(0.0, 0.0, 0.0, 1.0); } }\0"; Fragment Code char *fragment_code = "uniform float qdepth_min; uniform float qdepth_max; varying vec4 vpos; varying float conf; void main(void){ float gray = (vpos.z/vpos.w - qdepth_min)/(qdepth_max - qdepth_min); gl_fragcolor.r = gray; gl_fragcolor.a = conf; }\0"; OpenGL Code glenable(gl_vertex_program_point_size); gldrawbuffer(gl_color_attachment0_ext); glenableclientstate(gl_vertex_array); glenableclientstate(gl_color_array); glbindbufferarb(gl_array_buffer_arb, cbo_); glcolorpointer(3, GL_FLOAT, 0, 0); glbindbufferarb(gl_array_buffer_arb, vbo_); glvertexpointer(3, GL_FLOAT, 0, 0); gldrawarrays(gl_points, 0, width*height*spacing*spacing); gldisableclientstate(gl_vertex_array); gldisableclientstate(gl_color_array);

13 Putting it together Stereo module can run at ~60Hz Consistency checking at > 100Hz Bottleneck is the ego-motion/matchmoving determination running at ~10Hz There are many avenues for parallelisation yet to fully exploited Timings approximate values on a GTX 480

14 That s all Thankyou any questions?

Point-Based rendering on GPU hardware. Advanced Computer Graphics 2008

Point-Based rendering on GPU hardware. Advanced Computer Graphics 2008 Point-Based rendering on GPU hardware Advanced Computer Graphics 2008 Outline Why use the GPU? Splat rasterization Image-aligned squares Perspective correct rasterization Splat shading Flat shading Gouroud

More information

Static Scene Reconstruction

Static Scene Reconstruction GPU supported Real-Time Scene Reconstruction with a Single Camera Jan-Michael Frahm, 3D Computer Vision group, University of North Carolina at Chapel Hill Static Scene Reconstruction 1 Capture on campus

More information

Supplement for Real-Time Soft Shadows in Dynamic Scenes using Spherical Harmonic Exponentiation

Supplement for Real-Time Soft Shadows in Dynamic Scenes using Spherical Harmonic Exponentiation Supplement for Real-Time Soft Shadows in Dynamic Scenes using Spherical Harmonic Exponentiation Zhong Ren 1* Rui Wang 1* John Snyder 2 Kun Zhou 3 Xinguo Liu 3 Bo Sun 4 Peter-Pike Sloan 5 Hujun Bao 1 Qunsheng

More information

CPSC 436D Video Game Programming

CPSC 436D Video Game Programming CPSC 436D Video Game Programming OpenGL/Shaders Opengl RENDERING PIPELINE Copyright: Alla Sheffer 1 Opengl RENDERING PIPELINE C/C++ OpenGL GLSL (automatic) (automatic) GLSL (automatic) opengl Low-level

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 Objectives Simple Shaders - Vertex shader - Fragment shaders Programming shaders with

More information

OpenGL on Android. Lecture 7. Android and Low-level Optimizations Summer School. 27 July 2015

OpenGL on Android. Lecture 7. Android and Low-level Optimizations Summer School. 27 July 2015 OpenGL on Android Lecture 7 Android and Low-level Optimizations Summer School 27 July 2015 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 12 PROGRAMMABLE SHADERS Announcement Programming Assignment #2 deadline next week: Session #7 Review of project proposals 2 Lecture Overview GPU programming 3 GPU Pipeline

More information

Ciril Bohak. - INTRODUCTION TO WEBGL

Ciril Bohak. - INTRODUCTION TO WEBGL 2016 Ciril Bohak ciril.bohak@fri.uni-lj.si - INTRODUCTION TO WEBGL What is WebGL? WebGL (Web Graphics Library) is an implementation of OpenGL interface for cmmunication with graphical hardware, intended

More information

GLSL Applications: 2 of 2

GLSL Applications: 2 of 2 Administrivia GLSL Applications: 2 of 2 Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 2 due today 11:59pm on Blackboard Assignment 3 handed out today Due Wednesday, 02/09 at

More information

CMSC427 OpenGL and JOGL

CMSC427 OpenGL and JOGL CMSC427 OpenGL and JOGL Step 1: Configuring and compiling In Eclipse following previous instructions Get from web page CMSC427OpenGLCode.zip Add graphics3dlib.jar to JOGL project From command line Add

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico 0 Objectives Shader Basics Simple Shaders Vertex shader Fragment shaders 1 Vertex

More information

Sign up for crits! Announcments

Sign up for crits! Announcments Sign up for crits! Announcments Reading for Next Week FvD 16.1-16.3 local lighting models GL 5 lighting GL 9 (skim) texture mapping Modern Game Techniques CS248 Lecture Nov 13 Andrew Adams Overview The

More information

Animation Essentially a question of flipping between many still images, fast enough

Animation Essentially a question of flipping between many still images, fast enough 33(70) Information Coding / Computer Graphics, ISY, LiTH Animation Essentially a question of flipping between many still images, fast enough 33(70) Animation as a topic Page flipping, double-buffering

More information

CS 432 Interactive Computer Graphics

CS 432 Interactive Computer Graphics CS 432 Interactive Computer Graphics Lecture 7 Part 2 Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 1 Topics Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 2

More information

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 1 Teaching GL Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 2 Agenda Overview of OpenGL family of APIs Comparison

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

Geometry Shaders. And how to use them

Geometry Shaders. And how to use them Geometry Shaders And how to use them OpenGL Pipeline (part of it) Vertex data Vertex shader Vertices Primitives Geometry shader Primitives Fragments Fragment shader Color Depth Stencil Vertex Data Attributes

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Basic shader for texture mapping Texture coordinate assignment Antialiasing Fancy textures 3 Texture mapping Glue textures (images)

More information

Shadows. Prof. George Wolberg Dept. of Computer Science City College of New York

Shadows. Prof. George Wolberg Dept. of Computer Science City College of New York Shadows Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce Shadow Algorithms Expand to projective textures 2 Flashlight in the Eye Graphics When do we not see

More information

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program Comp 410/510 Computer Graphics Spring 2017 Programming with OpenGL Part 2: First Program Objectives Refine the first program Introduce a standard program structure - Initialization Program Structure Most

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel The Mandelbrot Set Fractals Fractal (fractional geometry) objects generate some of the most complex and beautiful graphics - The mathematics describing

More information

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1 Programmable GPUs Real Time Graphics Virtua Fighter 1995 (SEGA Corporation) NV1 Dead or Alive 3 2001 (Tecmo Corporation) Xbox (NV2A) Nalu 2004 (NVIDIA Corporation) GeForce 6 Human Head 2006 (NVIDIA Corporation)

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

OPENGL RENDERING PIPELINE

OPENGL RENDERING PIPELINE CPSC 314 03 SHADERS, OPENGL, & JS UGRAD.CS.UBC.CA/~CS314 Textbook: Appendix A* (helpful, but different version of OpenGL) Alla Sheffer Sep 2016 OPENGL RENDERING PIPELINE 1 OPENGL RENDERING PIPELINE Javascript

More information

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system GRAPHICS PIPELINE 1 OUTLINE Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system 2 IMAGE FORMATION REVISITED Can we mimic the synthetic

More information

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction TEXTURE MAPPING 1 OUTLINE Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction 2 BASIC STRAGEGY Three steps to applying a texture 1. specify the texture

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Objectives Shader Programming Basics Simple Shaders Vertex shader Fragment shaders

More information

GPGPU: Parallel Reduction and Scan

GPGPU: Parallel Reduction and Scan Administrivia GPGPU: Parallel Reduction and Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 3 due Wednesday 11:59pm on Blackboard Assignment 4 handed out Monday, 02/14 Final Wednesday

More information

Real Time Tracking System using 3D Vision

Real Time Tracking System using 3D Vision Real Time Tracking System using 3D Vision Arunava Nag, Sanket Deshmukh December 04,2015 Abstract In this report a Skeleton Tracking approach has been described, using the Xbox 360 Kinect camera, as a solution

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Building Models. Objectives. Introduce simple data structures for building polygonal models. OpenGL vertex arrays. Vertex lists Edge lists

Building Models. Objectives. Introduce simple data structures for building polygonal models. OpenGL vertex arrays. Vertex lists Edge lists Building Models Objectives Introduce simple data structures for building polygonal models Vertex lists Edge lists OpenGL vertex arrays 2 Representing a Mesh Consider a mesh v 5 v e e e 3 v 9 8 8 v e 4

More information

OPENGL AND GLSL. Computer Graphics

OPENGL AND GLSL. Computer Graphics OPENGL AND GLSL Computer Graphics 1 OUTLINE I. Detecting GLSL Errors II. Drawing a (gasp) Triangle! III. (Simple) Animation 2 Interactive Computer Graphics, http://www.mechapen.com/projects.html WHAT IS

More information

Computer Graphics Coursework 1

Computer Graphics Coursework 1 Computer Graphics Coursework 1 Deadline Deadline: 4pm, 24/10/2016 4pm 23/10/2015 Outline The aim of the coursework is to modify the vertex and fragment shaders in the provided OpenGL framework to implement

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

Today. Texture mapping in OpenGL. Texture mapping. Basic shaders for texturing. Today. Computergrafik

Today. Texture mapping in OpenGL. Texture mapping. Basic shaders for texturing. Today. Computergrafik Computergrafik Today Basic shader for texture mapping Texture coordinate assignment Antialiasing Fancy textures Matthias Zwicker Universität Bern Herbst 2009 Texture mapping Glue textures (images) onto

More information

CS 432 Interactive Computer Graphics

CS 432 Interactive Computer Graphics CS 432 Interactive Computer Graphics Lecture 2 Part 2 Introduction to Shaders Matt Burlick - Drexel University - CS 432 1 Shaders To understand shaders, let s look at the graphics pipeline again The job

More information

The Graphics Pipeline and OpenGL IV: Stereo Rendering, Depth of Field Rendering, Multi-pass Rendering!

The Graphics Pipeline and OpenGL IV: Stereo Rendering, Depth of Field Rendering, Multi-pass Rendering! ! The Graphics Pipeline and OpenGL IV: Stereo Rendering, Depth of Field Rendering, Multi-pass Rendering! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 6! stanford.edu/class/ee267/!!

More information

OpenGL Performances and Flexibility. Visual Computing Laboratory ISTI CNR, Italy

OpenGL Performances and Flexibility. Visual Computing Laboratory ISTI CNR, Italy OpenGL Performances and Flexibility Visual Computing Laboratory ISTI CNR, Italy The Abstract Graphics Pipeline Application 1. The application specifies vertices & connectivity. Vertex Processing 2. The

More information

Vincent Nozick. Graduate School of Science and Technology, Keio University, Japan.

Vincent Nozick. Graduate School of Science and Technology, Keio University, Japan. Accelerated Stereoscopic Rendering using GPU François de Sorbier Université Paris Est LABINFO IGM UMR CNRS 8049 fdesorbi@univ mlv.fr Vincent Nozick Graduate School of Science and Technology, Keio University,

More information

Vincent Nozick. Graduate School of Science and Technology, Université Paris Est LABINFO IGM UMR CNRS Keio University, Japan

Vincent Nozick. Graduate School of Science and Technology, Université Paris Est LABINFO IGM UMR CNRS Keio University, Japan Accelerated Stereoscopic Rendering using GPU François de Sorbier Vincent Nozick Venceslas Biri Université Paris Est LABINFO IGM Graduate School of Science and Technology, Université Paris Est LABINFO IGM

More information

CS452/552; EE465/505. Image Processing Frame Buffer Objects

CS452/552; EE465/505. Image Processing Frame Buffer Objects CS452/552; EE465/505 Image Processing Frame Buffer Objects 3-12 15 Outline! Image Processing: Examples! Render to Texture Read: Angel, Chapter 7, 7.10-7.13 Lab3 new due date: Friday, Mar. 13 th Project#1

More information

Building Models. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Building Models. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Building Models Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Introduce simple data structures for building polygonal

More information

UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1

UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1 UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1 1. Explain the complete procedure of converting a world object frame into camera or eye frame, using the model view matrix. (Jun2012) 10M Ans: World Space

More information

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing EECE 478 Rasterization & Scenes Rasterization Learning Objectives Be able to describe the complete graphics pipeline. Describe the process of rasterization for triangles and lines. Compositing Manipulate

More information

Shader Programming. Daniel Wesslén, Stefan Seipel, Examples

Shader Programming. Daniel Wesslén, Stefan Seipel, Examples Shader Programming Daniel Wesslén, dwn@hig.se Stefan Seipel, ssl@hig.se Examples 1 Per-pixel lighting Texture convolution filtering 2 Post-processing, animated procedural textures Vertex displacement mapping

More information

Introduction to Computer Graphics. Hardware Acceleration Review

Introduction to Computer Graphics. Hardware Acceleration Review Introduction to Computer Graphics Hardware Acceleration Review OpenGL Project Setup Create a command-line style project in Xcode 4 Select the project file and click Build Phases tab Add OpenGL.framework

More information

Mobile Application Programing: Android. OpenGL Operation

Mobile Application Programing: Android. OpenGL Operation Mobile Application Programing: Android OpenGL Operation Activities Apps are composed of activities Activities are self-contained tasks made up of one screen-full of information Activities start one another

More information

WebGL: Hands On. DevCon5 NYC Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group

WebGL: Hands On. DevCon5 NYC Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group WebGL: Hands On DevCon5 NYC 2011 Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group Today's Agenda Introduce WebGL and its programming model. Show code for a complete example. Demonstrate

More information

COMP3421. Particle Systems, Rasterisation

COMP3421. Particle Systems, Rasterisation COMP3421 Particle Systems, Rasterisation Particle systems Some visual phenomena are best modelled as collections of small particles. Examples: rain, snow, fire, smoke, dust Particle systems Particles are

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

VGP352 Week March-2008

VGP352 Week March-2008 VGP352 Week 10 Agenda: Texture rectangles Post-processing effects Filter kernels Simple blur Edge detection Separable filter kernels Gaussian blur Depth-of-field Texture Rectangle Cousin to 2D textures

More information

CS559 Computer Graphics Fall 2015

CS559 Computer Graphics Fall 2015 CS559 Computer Graphics Fall 2015 Practice Midterm Exam Time: 2 hrs 1. [XX Y Y % = ZZ%] MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). You do not need to provide a justification

More information

VR Rendering Improvements Featuring Autodesk VRED

VR Rendering Improvements Featuring Autodesk VRED GPU Technology Conference 2017 VR Rendering Improvements Featuring Autodesk VRED Michael Nikelsky Sr. Principal Engineer, Autodesk Ingo Esser Sr. Engineer, Developer Technology, NVIDIA 2017 Autodesk AGENDA

More information

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers Order Independent Transparency with Dual Depth Peeling Louis Bavoil, Kevin Myers Document Change History Version Date Responsible Reason for Change 1.0 February 9 2008 Louis Bavoil Initial release Abstract

More information

Example 1: Color-to-Grayscale Image Processing

Example 1: Color-to-Grayscale Image Processing GPU Teaching Kit Accelerated Computing Lecture 16: CUDA Parallelism Model Examples Example 1: Color-to-Grayscale Image Processing RGB Color Image Representation Each pixel in an image is an RGB value The

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015 WebGL and GLSL Basics CS559 Fall 2015 Lecture 10 October 6, 2015 Last time Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

Shadow Rendering. CS7GV3 Real-time Rendering

Shadow Rendering. CS7GV3 Real-time Rendering Shadow Rendering CS7GV3 Real-time Rendering Global Illumination The incoming radiance L i (p,l) at some point p is the outgoing L o (r(p,l)-l) from another point A Recursive Term r(r(p,l), l ) r(r(r(p,l),

More information

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation Lecture 17: Shading in OpenGL CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Introduce the OpenGL shading methods - per vertex shading

More information

Programmable Graphics Hardware

Programmable Graphics Hardware CSCI 480 Computer Graphics Lecture 14 Programmable Graphics Hardware [Ch. 9] March 2, 2011 Jernej Barbic University of Southern California OpenGL Extensions Shading Languages Vertex Program Fragment Program

More information

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005 General Purpose computation on GPUs Liangjun Zhang 2/23/2005 Outline Interpretation of GPGPU GPU Programmable interfaces GPU programming sample: Hello, GPGPU More complex programming GPU essentials, opportunity

More information

CSCI E-74. Simulation and Gaming

CSCI E-74. Simulation and Gaming CSCI E-74 Virtual and Augmented Reality for Simulation and Gaming Fall term 2017 Gianluca De Novi, PhD Lesson 7 Multi Texturing Data Structures in a 3D Engine Vertices/Vectors Segments Matrices Polygons

More information

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer Best practices for effective OpenGL programming Dan Omachi OpenGL Development Engineer 2 What Is OpenGL? 3 OpenGL is a software interface to graphics hardware - OpenGL Specification 4 GPU accelerates rendering

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

BCC Optical Stabilizer Filter

BCC Optical Stabilizer Filter BCC Optical Stabilizer Filter The Optical Stabilizer filter allows you to stabilize shaky video footage. The Optical Stabilizer uses optical flow technology to analyze a specified region and then adjusts

More information

GLSL 1: Basics. J.Tumblin-Modified SLIDES from:

GLSL 1: Basics. J.Tumblin-Modified SLIDES from: GLSL 1: Basics J.Tumblin-Modified SLIDES from: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico and

More information

The Projection Matrix

The Projection Matrix The Projection Matrix Lecture 8 Robb T. Koether Hampden-Sydney College Fri, Sep 11, 2015 Robb T. Koether (Hampden-Sydney College) The Projection Matrix Fri, Sep 11, 2015 1 / 43 Outline 1 Coordinate Systems

More information

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation Lecture 5 Vertex and Fragment Shaders-1 CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives The rendering pipeline and the shaders Data

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Optimizing Mobile Games with ARM. Solo Chang Staff Applications Engineer, ARM

Optimizing Mobile Games with ARM. Solo Chang Staff Applications Engineer, ARM Optimizing Mobile Games with ARM Solo Chang Staff Applications Engineer, ARM 1 ARM Ecosystem My first role in ARM was in Developer Relations Developers came to us to ask for help We couldn t share their

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith Advanced Deferred Rendering Techniques NCCA, Thesis Portfolio Peter Smith August 2011 Abstract The following paper catalogues the improvements made to a Deferred Renderer created for an earlier NCCA project.

More information

12.2 Programmable Graphics Hardware

12.2 Programmable Graphics Hardware Fall 2018 CSCI 420: Computer Graphics 12.2 Programmable Graphics Hardware Kyle Morgenroth http://cs420.hao-li.com 1 Introduction Recent major advance in real time graphics is the programmable pipeline:

More information

Mali Developer Resources. Kevin Ho ARM Taiwan FAE

Mali Developer Resources. Kevin Ho ARM Taiwan FAE Mali Developer Resources Kevin Ho ARM Taiwan FAE ARM Mali Developer Tools Software Development SDKs for OpenGL ES & OpenCL OpenGL ES Emulators Shader Development Studio Shader Library Asset Creation Texture

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

Mobile Application Programing: Android. OpenGL Operation

Mobile Application Programing: Android. OpenGL Operation Mobile Application Programing: Android OpenGL Operation Activities Apps are composed of activities Activities are self-contained tasks made up of one screen-full of information Activities start one another

More information

HD (in) Processing. Andrés Colubri Design Media Arts dept., UCLA Broad Art Center, Suite 2275 Los Angeles, CA

HD (in) Processing. Andrés Colubri Design Media Arts dept., UCLA Broad Art Center, Suite 2275 Los Angeles, CA HD (in) Processing Andrés Colubri Design Media Arts dept., UCLA Broad Art Center, Suite 2275 Los Angeles, CA. 90095-1456 +1 310 825 9007 acolubri@ucla.edu Abstract In this paper I describe the new GLGraphics

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

Moving Mobile Graphics Advanced Real-time Shadowing. Marius Bjørge ARM

Moving Mobile Graphics Advanced Real-time Shadowing. Marius Bjørge ARM Moving Mobile Graphics Advanced Real-time Shadowing Marius Bjørge ARM Shadow algorithms Shadow filters Results Agenda SHADOW ALGORITHMS Shadow Algorithms Shadow mapping Depends on light type Directional,

More information

Quick Shader 0.1 Beta

Quick Shader 0.1 Beta Quick Shader 0.1 Beta Documentation (last update 2014-07-10) QuickShader is a program that allows you to write and test shaders without creating your own rendering engine. Using this tool you can quickly

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

OUTLINE. Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail

OUTLINE. Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail TESSELLATION 1 OUTLINE Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail 2 THE EXAMPLE TESSELLATION SHADING Instead of specifying vertices, you

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Programmable Shaders //per vertex inputs from main attribute aposition; attribute anormal; //outputs to frag. program varying

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

GRAPHICS CONTROLLERS

GRAPHICS CONTROLLERS Fujitsu Semiconductor Europe Application Note an-mb86r1x-optimize-graphics-apps-rev0-10 GRAPHICS CONTROLLERS MB86R1X 'EMERALD-X' OPTIMIZING GRAPHICS APPLICATIONS APPLICATION NOTE Revision History Revision

More information

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a

Model-Based Stereo. Chapter Motivation. The modeling system described in Chapter 5 allows the user to create a basic model of a 96 Chapter 7 Model-Based Stereo 7.1 Motivation The modeling system described in Chapter 5 allows the user to create a basic model of a scene, but in general the scene will have additional geometric detail

More information

CENG 477 Introduction to Computer Graphics. Graphics Hardware and OpenGL

CENG 477 Introduction to Computer Graphics. Graphics Hardware and OpenGL CENG 477 Introduction to Computer Graphics Graphics Hardware and OpenGL Introduction Until now, we focused on graphic algorithms rather than hardware and implementation details But graphics, without using

More information

WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October

WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October WebGL and GLSL Basics CS559 Fall 2016 Lecture 14 October 24 2016 Review Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

Display Lists. Conceptually similar to a graphics file. In client-server environment, display list is placed on server

Display Lists. Conceptually similar to a graphics file. In client-server environment, display list is placed on server Display Lists Conceptually similar to a graphics file Must define (name, create) Add contents Close In client-server environment, display list is placed on server Can be redisplayed without sending primitives

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Abbott, Connor (cwa2112) Pan, Wendy (wp2213) Qinami, Klint (kq2129) Vaccaro, Jason (jhv2111) [System

More information

Pixels and Buffers. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Pixels and Buffers. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Pixels and Buffers CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce additional OpenGL buffers Learn to read from / write to buffers Introduce

More information