Announcements. Recognition III. A Rough Recognition Spectrum. Projection, and reconstruction. Face detection using distance to face space

Size: px
Start display at page:

Download "Announcements. Recognition III. A Rough Recognition Spectrum. Projection, and reconstruction. Face detection using distance to face space"

Transcription

1 Aoucemets Assigmet 5: Due Friday, 4:00 III Itroductio to Computer Visio CSE 52 Lecture 20 Fial Exam: ed, 6/9/04, :30-2:30, LH 2207 (here I ll discuss briefly today, ad will be at discussio sectio tomorrow for first 45 miutes. A Rough Spectrum Virtual Ciematography: Makig 'he Matrix' Sequels George Borshukov VFX echology Supervisor, ESC Etertaimet Friday, Jue 4, 2004 :00 p.m. to 2:30 p.m. [Pizza luch will precede the evet from oo to p.m.] Mai Auditorium, Sa Diego Supercomputer Ceter he presetatio will cover the key techologies that had to be developed ad deployed to create the sythetic huma sequeces i the Matrix sequels icludig Uiversal Capture - image-based facial aimatio, realistic huma face rederig, ad use of measured BRDF i film productio. It will also feature a breakdow of he Superpuch shot (pictured above from "he Matrix Revolutios" (the bullet time puch that Neo delivers to Aget Smith durig the film's last face-off. his difficult, importat, expesive, ad challegig shot was etirely computer geerated ad showcased the techological developmets of 3.5+ years at their best by showig a full-frame close-up of a kow huma actor. Appearace-Based (Eigeface, Fisherface Shape Cotexts Local Features + Spatial Relatios Geometric Ivariats Aspect Graphs Icreasig Geerality 3-D Model-Based Image Abstractios/ Volumetric Primitives Fuctio Projectio, ad recostructio A -pixel image x R ca be projected to a low-dimesioal feature space y R m by y = x From y R m, the recostructio of the poit is y he error of the recostructio is: x- x Face detectio usig distace to face space Sca a widow ω across the image, ad classify the widow as face/ot face as follows: Project widow to subspace, ad recostruct as described earlier. Compute distace betwee ω ad recostructio. Local miima of distace over all image locatios less tha some treshold are take as locatios of faces. Repeat at differet scales. Possibly ormalize widows itesity so that ω =.

2 Sigular Value Decompositio Ay m by matrix A may be factored such that A = UΣV [m x ] = [m x m][m x ][ x ] U: m by m, orthogoal matrix Colums of U are the eigevectors of AA V: by, orthogoal matrix, colums are the eigevectors of A A Σ: m by, diagoal with o-egative etries (σ, σ 2,, σ s with s=mi(m, are called the called the sigular values Sigular values are the square roots of eigevalues of both AA ad A A & Colums of U are correspodig Eigevectors!! Performig PCA with SVD Sigular values of A are the square roots of eigevalues of both AA ad A A & Colums of U are correspodig Eigevectors Ad a iai = [ a a2 L a ][ a a2 L a ] = AA i= Covariace matrix is: Σ = i= r r r r ( x i µ ( x µ So, igorig / subtract mea image µ from each iput image, create data matrix, ad perform (thi SVD o the data matrix. i Result of SVD algorithm: σ σ 2 σ s PCA & Fisher s Liear Discrimiat PCA PCA (Eigefaces χ χ 2 PCA = arg max S Maximizes projected total scatter Fisher s Liear Discrimiat FLD fld SB = arg max S Maximizes ratio of projected betwee-class to projected withi-class scatter Variability: Camera positio Illumiatio Iteral parameters ithi-class variatios A example: surfaces of first 3 coefficiets Parameterized Eigespace

3 Basic ideas i classifiers Bayesia Classificatio Discussed o blackboard, but slides may be helpful Loss some errors may be more expesive tha others e.g. a fatal disease that is easily cured by a cheap medicie with o side-effects -> false positives i diagosis are better tha false egatives e discuss two class classificatio: L(->2 is the loss caused by callig a 2 otal risk of usig classifier s Basic ideas i classifiers Geerally, we should classify as if the expected loss of classifyig as is better tha for 2 gives Some loss may be ievitable: the miimum risk (shaded area is called the Bayes risk if 2 if Crucial otio: Decisio boudary poits where the loss is the same for either case Example: kow distributios Fidig a decisio boudary is ot the same as modellig a coditioal desity. pxk ( = 2π p 2 Σ 2 exp 2 x µ k ( Σ ( x µ k Assume ormal class desities, p-dimesioal measuremets with commo (kow covariace ad differet (kow πmeas k Class priors are Ca igore a commo factor i posteriors - importat; posteriors are the: pk ( x ( π k p 2 Σ 2 exp 2π 2 x µ k ( Σ ( x µ k

4 Classifier boils dow to: choose class that miimizes: Mahalaobis distace δ( x, µ k 2 2 log π k where δ x, µ ( k = x µ k ( Σ x µ ( k because covariace is commo, this simplifies to sig of a liear expressio (i.e. Vorooi diagram i 2D for Σ=I 2 Fidig ski Ski has a very small rage of (itesity idepedet colours, ad little texture Compute a itesity-idepedet colour measure, check if colour is i this rage, check if there is little texture (media filter See this as a classifier - we ca set up the tests by had, or lear them. get class coditioal desities (histograms, priors from data (coutig Classifier is Receiver Operatig Curve Figure from Statistical color models with applicatio to ski detectio, M.J. Joes ad J. Rehg, Proc. Computer Visio ad Patter, 999 copyright 999, IEEE Figure from Statistical color models with applicatio to ski detectio, M.J. Joes ad J. Rehg, Proc. Computer Visio ad Patter, 999 copyright 999, IEEE Appearace-Based Visio: Lessos Stregths Posig the recogitio metric i the image space rather tha a derived represetatio is more powerful tha expected. Modelig objects from may images is ot ureasoable give hardware developmets. he data (images may provide a better represetatios tha abstractios for may tasks. Appearace-Based Visio: Lessos eakesses Segmetatio or object detectio is still a issue. o trai the method, objects have to be observed uder a wide rage of coditios (e.g. pose, lightig, shape deformatio. Limited power to extrapolate or geeralize (abstract to ovel coditios.

5 Model-Based Visio A Rough Spectrum Appearace-Based (Eigeface, Fisherface Shape Cotexts Geometric Ivariats Image Abstractios/ Volumetric Primitives Give 3-D models of each object Detect image features (ofte edges, lie segmets, coic sectios Establish correspodece betwee model &image features Estimate pose Cosistecy of projected model with image. Local Features + Spatial Relatios Aspect Graphs 3-D Model-Based Fuctio by Hypothesize ad est Geeral idea Hypothesize object idetity ad pose Recover camera parameters (widely kow as backprojectio Reder object usig camera parameters Compare to image Issues where do the hypotheses come from? How do we compare to image (verificatio? Simplest approach Costruct a correspodece for all object features to every correctly sized subset of image poits hese are the hypotheses Expesive search, which is also redudat. Correspodeces betwee image features ad model features are ot idepedet. A small umber of correspodeces yields a camera matrix --- the others correspodeces must be cosistet with this. Pose cosistecy Strategy: Geerate hypotheses usig small umbers of correspodeces (e.g. triples of poits for a calibrated perspective camera, etc., etc. Backproject ad verify Scee Iterpretatio he Swig Fragoard, 766 Fial Exam Closed book Oe cheat sheet Sigle piece of paper, hadwritte, o photocopyig, o physical cut & paste. you ca start with sheet from the midterm, if you wat. hat to study Basically material preseted i class, ad supportig material from text If it was i text, but NEVER metioed i class, it is very ulikely to be o the exam Questio style: Short aswer Some loger problems to be worked out.

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example CSCI 480 Computer Graphics Lecture 9 Lightig ad Shadig Light Sources Phog Illumiatio Model Normal Vectors [Agel Ch. 6.1-6.4] February 13, 2013 Jerej Barbic Uiversity of Souther Califoria http://www-bcf.usc.edu/~jbarbic/cs480-s13/

More information

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t Announcements I Introduction to Computer Vision CSE 152 Lecture 18 Assignment 4: Due Toda Assignment 5: Posted toda Read: Trucco & Verri, Chapter 10 on recognition Final Eam: Wed, 6/9/04, 11:30-2:30, WLH

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Improving Face Recognition Rate by Combining Eigenface Approach and Case-based Reasoning

Improving Face Recognition Rate by Combining Eigenface Approach and Case-based Reasoning Improvig Face Recogitio Rate by Combiig Eigeface Approach ad Case-based Reasoig Haris Supic, ember, IAENG Abstract There are may approaches to the face recogitio. This paper presets a approach that combies

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour Diego Nehab A Trasformatio For Extractig New Descriptors of Shape Locus of poits equidistat from cotour Medial Axis Symmetric Axis Skeleto Shock Graph Shaked 96 1 Shape matchig Aimatio Dimesio reductio

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Neuro Fuzzy Model for Human Face Expression Recognition

Neuro Fuzzy Model for Human Face Expression Recognition IOSR Joural of Computer Egieerig (IOSRJCE) ISSN : 2278-0661 Volume 1, Issue 2 (May-Jue 2012), PP 01-06 Neuro Fuzzy Model for Huma Face Expressio Recogitio Mr. Mayur S. Burage 1, Prof. S. V. Dhopte 2 1

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

Shape Completion and Modeling of 3D Foot Shape While Walking Using Homologous Model Fitting

Shape Completion and Modeling of 3D Foot Shape While Walking Using Homologous Model Fitting Shape Completio ad Modelig of 3D Foot Shape While Walkig Usig Homologous Model Fittig Yuji YOSHIDA* a, Shuta SAITO a, Yoshimitsu AOKI a, Makiko KOUCHI b, Masaaki MOCHIMARU b a Faculty of Sciece ad Techology,

More information

Dynamic Programming and Curve Fitting Based Road Boundary Detection

Dynamic Programming and Curve Fitting Based Road Boundary Detection Dyamic Programmig ad Curve Fittig Based Road Boudary Detectio SHYAM PRASAD ADHIKARI, HYONGSUK KIM, Divisio of Electroics ad Iformatio Egieerig Chobuk Natioal Uiversity 664-4 Ga Deokji-Dog Jeoju-City Jeobuk

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Carnegie Mellon University

Carnegie Mellon University Caregie Mello Uiversity CARNEGIE INSTITUTE OF TECHNOLOGY THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy TITLE Pose Robust Video-Based Face Recogitio

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION METU EE 584 Lecture Notes by A.Aydi ALATAN 0 EE 584 MACHINE VISION Itroductio elatio with other areas Image Formatio & Sesig Projectios Brightess Leses Image Sesig METU EE 584 Lecture Notes by A.Aydi ALATAN

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Image based Cats and Possums Identification for Intelligent Trapping Systems

Image based Cats and Possums Identification for Intelligent Trapping Systems Volume 159 No, February 017 Image based Cats ad Possums Idetificatio for Itelliget Trappig Systems T. A. S. Achala Perera School of Egieerig Aucklad Uiversity of Techology New Zealad Joh Collis School

More information

Convex hull ( 凸殻 ) property

Convex hull ( 凸殻 ) property Covex hull ( 凸殻 ) property The covex hull of a set of poits S i dimesios is the itersectio of all covex sets cotaiig S. For N poits P,..., P N, the covex hull C is the give by the expressio The covex hull

More information

LDA-based Non-negative Matrix Factorization for Supervised Face Recognition

LDA-based Non-negative Matrix Factorization for Supervised Face Recognition 1294 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 LDA-based No-egative Matrix Factorizatio for Supervised Face Recogitio Yu Xue a, Chog Sze Tog b, Jig Yu Yua c a School of Physics ad Telecommuicatio Egieerig,

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

localization error 1st pc pc 3 pc x2=

localization error 1st pc pc 3 pc x2= Proc. IROS'99, IEEE/RSJ It. Cof. o Itelliget Robots ad Systems, Kyogju, Korea, Oct 999 Robot Eviromet Modelig via Pricipal Compoet Regressio Nikos Vlassis Be Krose RWCP Autoomous Learig Fuctios SNN Dept.

More information

Real-Time Secure System for Detection and Recognition the Face of Criminals

Real-Time Secure System for Detection and Recognition the Face of Criminals Available Olie at www.ijcsmc.com Iteratioal Joural of Computer Sciece ad Mobile Computig A Mothly Joural of Computer Sciece ad Iformatio Techology IJCSMC, Vol. 4, Issue. 9, September 2015, pg.58 83 RESEARCH

More information

Dimension Reduction and Manifold Learning. Xin Zhang

Dimension Reduction and Manifold Learning. Xin Zhang Dimesio Reductio ad Maifold Learig Xi Zhag eeizhag@scut.edu.c Cotet Motivatio of maifold learig Pricipal compoet aalysis ad its etesio Maifold learig Global oliear maifold learig (IsoMap) Local oliear

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

EigenFairing: 3D Model Fairing using Image Coherence

EigenFairing: 3D Model Fairing using Image Coherence EigeFairig: 3D Model Fairig usig Image Coherece Pragyaa Mishra, Omead Amidi, ad Takeo Kaade Robotics Istitute, Caregie Mello Uiversity Pittsburgh, Pesylvaia 15213, USA Abstract A surface is ofte modeled

More information

1.8 What Comes Next? What Comes Later?

1.8 What Comes Next? What Comes Later? 35 1.8 What Comes Next? What Comes Later? A Practice Uderstadig Task For each of the followig tables, CC BY Hiroaki Maeda https://flic.kr/p/6r8odk describe how to fid the ext term i the sequece, write

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Mobile terminal 3D image reconstruction program development based on Android Lin Qinhua

Mobile terminal 3D image reconstruction program development based on Android Lin Qinhua Iteratioal Coferece o Automatio, Mechaical Cotrol ad Computatioal Egieerig (AMCCE 05) Mobile termial 3D image recostructio program developmet based o Adroid Li Qihua Sichua Iformatio Techology College

More information

VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING

VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING Yasufumi Suzuki ad Tadashi Shibata Departmet of Frotier Iformatics, School of

More information

Image Analysis. Segmentation by Fitting a Model

Image Analysis. Segmentation by Fitting a Model Image Aalysis Segmetatio by Fittig a Model Christophoros Nikou cikou@cs.uoi.gr Images take from: D. Forsyth ad J. Poce. Computer Visio: A Moder Approach, Pretice Hall, 2003. Computer Visio course by Svetlaa

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

V.T. Chow, Open Channel Hydraulics, 1959 problem 9-8. for each reach computed in file below and placed here. = 5.436' yc = 2.688'

V.T. Chow, Open Channel Hydraulics, 1959 problem 9-8. for each reach computed in file below and placed here. = 5.436' yc = 2.688' V.T. Chow, Ope Chael Hydraulics, 959 problem 9-8 y c ad y for each reach computed i file below ad placed here WSE =47.0' 7.0' 70.0' y =.86' yc =.688' So =.0 y = 5.46' yc =.688' So =.0004 y =.70' yc =.688'

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual) Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter

More information

Eigendecomposition of Correlated Images Characterized by Three Parameters

Eigendecomposition of Correlated Images Characterized by Three Parameters Eigedecompositio of Correlated Images Characterized by Three Parameters Kishor Saitwal ad Athoy A. Maciejewski Dept. of Electrical ad Computer Eg. Colorado State Uiversity Fort Collis, CO 8053-373, USA

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

Describing data with graphics and numbers

Describing data with graphics and numbers Describig data with graphics ad umbers Types of Data Categorical Variables also kow as class variables, omial variables Quatitative Variables aka umerical ariables either cotiuous or discrete. Graphig

More information

The Virtual Point Light Source Model the Practical Realisation of Photometric Stereo for Dynamic Surface Inspection

The Virtual Point Light Source Model the Practical Realisation of Photometric Stereo for Dynamic Surface Inspection The Virtual Poit Light Source Model the Practical Realisatio of Photometric Stereo for Dyamic Surface Ispectio Lydo Smith ad Melvy Smith Machie Visio Laboratory, Faculty of Computig, Egieerig ad Mathematical

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Chapter 3: Introduction to Principal components analysis with MATLAB

Chapter 3: Introduction to Principal components analysis with MATLAB Chapter 3: Itroductio to Pricipal compoets aalysis with MATLAB The vriety of mathematical tools are avilable ad successfully workig to i the field of image processig. The mai problem with graphical autheticatio

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Protected points in ordered trees

Protected points in ordered trees Applied Mathematics Letters 008 56 50 www.elsevier.com/locate/aml Protected poits i ordered trees Gi-Sag Cheo a, Louis W. Shapiro b, a Departmet of Mathematics, Sugkyukwa Uiversity, Suwo 440-746, Republic

More information

1. Introduction o Microscopic property responsible for MRI Show and discuss graphics that go from macro to H nucleus with N-S pole

1. Introduction o Microscopic property responsible for MRI Show and discuss graphics that go from macro to H nucleus with N-S pole Page 1 Very Quick Itroductio to MRI The poit of this itroductio is to give the studet a sufficietly accurate metal picture of MRI to help uderstad its impact o image registratio. The two major aspects

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Nonlinear Mean Shift for Clustering over Analytic Manifolds

Nonlinear Mean Shift for Clustering over Analytic Manifolds Noliear Mea Shift for Clusterig over Aalytic Maifolds Raghav Subbarao ad Peter Meer Departmet of Electrical ad Computer Egieerig Rutgers Uiversity, Piscataway NJ 08854, USA rsubbara,meer@caip.rutgers.edu

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

New HSL Distance Based Colour Clustering Algorithm

New HSL Distance Based Colour Clustering Algorithm The 4th Midwest Artificial Itelligece ad Cogitive Scieces Coferece (MAICS 03 pp 85-9 New Albay Idiaa USA April 3-4 03 New HSL Distace Based Colour Clusterig Algorithm Vasile Patrascu Departemet of Iformatics

More information

Theory of Fuzzy Soft Matrix and its Multi Criteria in Decision Making Based on Three Basic t-norm Operators

Theory of Fuzzy Soft Matrix and its Multi Criteria in Decision Making Based on Three Basic t-norm Operators Theory of Fuzzy Soft Matrix ad its Multi Criteria i Decisio Makig Based o Three Basic t-norm Operators Md. Jalilul Islam Modal 1, Dr. Tapa Kumar Roy 2 Research Scholar, Dept. of Mathematics, BESUS, Howrah-711103,

More information

Texture Analysis and Indexing Using Gabor-like Hermite Filters

Texture Analysis and Indexing Using Gabor-like Hermite Filters Submitted to Image ad Visio Computig, Elsevier, 2004 Texture Aalysis ad Idexig Usig Gabor-like Hermite Filters Carlos Joel Rivero-Moreo Stéphae Bres LIRIS, FRE 2672 CNRS, Lab. d'iformatique e Images et

More information

BASED ON ITERATIVE ERROR-CORRECTION

BASED ON ITERATIVE ERROR-CORRECTION A COHPARISO OF CRYPTAALYTIC PRICIPLES BASED O ITERATIVE ERROR-CORRECTIO Miodrag J. MihaljeviC ad Jova Dj. GoliC Istitute of Applied Mathematics ad Electroics. Belgrade School of Electrical Egieerig. Uiversity

More information

Behavioral Modeling in Verilog

Behavioral Modeling in Verilog Behavioral Modelig i Verilog COE 202 Digital Logic Desig Dr. Muhamed Mudawar Kig Fahd Uiversity of Petroleum ad Mierals Presetatio Outlie Itroductio to Dataflow ad Behavioral Modelig Verilog Operators

More information

Hand Gesture Recognition for Human-Machine Interaction

Hand Gesture Recognition for Human-Machine Interaction Had Gesture Recogitio for Huma-Machie Iteractio Elea Sáchez-Nielse Departmet of Statistic, O.R. ad Computer Sciece, Uiversity of La Lagua Edificio de Física y Matemáticas 38271, La Lagua, Spai eielse@ull.es

More information

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software Structurig Redudacy for Fault Tolerace CSE 598D: Fault Tolerat Software What do we wat to achieve? Versios Damage Assessmet Versio 1 Error Detectio Iputs Versio 2 Voter Outputs State Restoratio Cotiued

More information

BOOLEAN MATHEMATICS: GENERAL THEORY

BOOLEAN MATHEMATICS: GENERAL THEORY CHAPTER 3 BOOLEAN MATHEMATICS: GENERAL THEORY 3.1 ISOMORPHIC PROPERTIES The ame Boolea Arithmetic was chose because it was discovered that literal Boolea Algebra could have a isomorphic umerical aspect.

More information

RADIAL BASIS FUNCTION USE FOR THE RESTORATION OF DAMAGED IMAGES

RADIAL BASIS FUNCTION USE FOR THE RESTORATION OF DAMAGED IMAGES RADIAL BASIS FUNCION USE FOR HE RESORAION OF DAMAGED IMAGES Karel Uhlir, Vaclav Skala Uiversity of West Bohemia, Uiverziti 8, 3064 Plze, Czech Republic Abstract: Key words: Radial Basis Fuctio (RBF) ca

More information

Soft Computing Based Range Facial Recognition Using Eigenface

Soft Computing Based Range Facial Recognition Using Eigenface Soft Computig Based Rage Facial Recogitio Usig Eigeface Yeug-Hak Lee, Chag-Wook Ha, ad Tae-Su Kim School of Electrical Egieerig ad Computer Sciece, Yeugam Uiversity, 4- Dae-dog, Gyogsa, Gyogbuk, 7-749

More information

ON THE QUALITY OF AUTOMATIC RELATIVE ORIENTATION PROCEDURES

ON THE QUALITY OF AUTOMATIC RELATIVE ORIENTATION PROCEDURES ON THE QUALITY OF AUTOMATIC RELATIVE ORIENTATION PROCEDURES Thomas Läbe, Timo Dickscheid ad Wolfgag Förster Istitute of Geodesy ad Geoiformatio, Departmet of Photogrammetry, Uiversity of Bo laebe@ipb.ui-bo.de,

More information

Cubic Polynomial Curves with a Shape Parameter

Cubic Polynomial Curves with a Shape Parameter roceedigs of the th WSEAS Iteratioal Coferece o Robotics Cotrol ad Maufacturig Techology Hagzhou Chia April -8 00 (pp5-70) Cubic olyomial Curves with a Shape arameter MO GUOLIANG ZHAO YANAN Iformatio ad

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

Evaluation of Support Vector Machine Kernels for Detecting Network Anomalies

Evaluation of Support Vector Machine Kernels for Detecting Network Anomalies Evaluatio of Support Vector Machie Kerels for Detectig Network Aomalies Prera Batta, Maider Sigh, Zhida Li, Qigye Dig, ad Ljiljaa Trajković Commuicatio Networks Laboratory http://www.esc.sfu.ca/~ljilja/cl/

More information

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer Departmet of Computer ciece Columbia Uiversity olutios to Fial COM W45 Programmig Laguages ad Traslators Moday, May 4, 2009 4:0-5:25pm, 309 Havemeyer Closed book, o aids. Do questios 5. Each questio is

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard 1 A wireless keyboard is supplied with your computer. The wireless keyboard uses a stadard key arragemet with additioal keys that perform specific fuctios. Usig the Wireless Keyboard Two AA alkalie batteries

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information