Our Learning Problem, Again

Size: px
Start display at page:

Download "Our Learning Problem, Again"

Transcription

1 Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig the fuctios i a kow parametric form Today, we relax that assumptio 1

2 Let s Start with a Obvious Idea Nearest-eighbor classificatio Algorithm: Start with poits of traiig data: = { x,,x } 1 Give test poit x Fid traiig poit x closest to x Assig x the same category as x How Well Does This Work? Hard to say uless you have a lot of data But suppose data is o object Label of x is class ω ; true label of x is ω Correct aswer if ω = ω: What s P(ω = ω)? p(ω x ) i geeral p(ω x) as x becomes closer to x 2

3 How Well Does This Work? cotiued Probability of error at x is therefore: c i = 1 1 P( ω x) P( ω x) i i.e., wrog i all cases except those where x ad x happe to agree. I priciple, best you could do is: 1 P( ω i x) i.e., guess most likely i How Well Does This Work? some perspective Ayoe who s ayoe gets 95% accuracy Whe Bayes error is 5% 1 P( ω i x) Limit earest-eighbor error is ~9% 1 P( ω x) P( ω x) c i = 1 i Could be better, if distributios are favorable Could be worse, because you do t have ifiite data i 3

4 How Well Does This Work? some perspective Surprisigly good (sice it s so easy) But it may ot be eough for your task Classifyig sequeces At 7 elemets, Bayes could get 2/3 right Nearest eighbor is just gettig 1/2 right A Possible Improvemet K-Nearest Neighbor Classificatio Start with poits of traiig data: = { x,,x } 1 Give test poit x Fid k traiig poits X closest to x Assig x the most frequet category of X 4

5 K-Nearest Neighbor Good poits: More likely data ca overcome rare evets I earest eighbor, each rare data poit traslates ito a ball of likely mistakes I 3-earest eighbor, you eed two rare data poits together to get a ball of likely mistakes Ca get better ad better the more poits vote K-Nearest Neighbor Bad poits: Need tos more data Oly if voters are close to x does vote provide good desity iformatio about x Oly by cosiderig lots of voters do you coverge o a accurate likelihood for x 5

6 Returig to Desity Estimatio Have t we chaged the problem? K-earest eighbor is a classifier Maximum likelihood builds a distributio Wat to get a distributio for KNN Compare approaches Mix KNN ad other ifo probabilistically Returig to Desity Estimatio Basic earest eighbor idea works To fid p( x, ωi ) Place a cell of volume V aroud x Capture k samples, of which i are i Calculate i k p(x,ω i ) = V p( x, ωi ) p( x ωi ) = P( ω ) i ω i 6

7 Returig to Desity Estimatio Basic earest eighbor idea works Well, almost Real probabilities should itegrate to oe (Although you do t always eed real ω i probabilities to build discrimiat fuctios) Volume V varies as a fuctio of x so you may have trouble across the whole space i k p(x,ω i ) = V Sample-based Desity Estimatio We ll ow cosider a close variat of KNN that represets the desity more coveietly Parze Widows 7

8 Parze Widows Treat each sample as cotributig a small Gaussia desity that peaks aroud it ad drops off quickly Use parameter h (dummy for variace σ) to cotrol drop off Desity aroud u is: ϕ( x; u) = 1 ( x u) ( x u) exp 2 2πh 2h T Parze Widows Overall desity for data = { x,,x } 1 is 1 p( x) = ϕ( x; xi ) i = 1 8

9 Cute Implemetatio 3 Layer Network: Layer Oe: Iputs Each ode gets a feature of the patter that you re classifyig Patter is ormalized to have uit legth Cute Implemetatio 3 Layer Network: Layer Two: Patters Each ode gets a ormalized traiig vector w; o iput x it computes z = w T x 9

10 Cute Implemetatio 3 Layer Network: Layer Two: Patters The ode will output likelihood compoet e 2 2 ( z 1) σ Cute Implemetatio 3 Layer Network: Layer Three: Categories Oe ode per class 2 2 Sums iput from ( patter z 1) σ e odes for traiig data i the class 10

11 Kid of Neural Network Easy to trai Add a ew patter ode for each sample Easy to iterpret probabilistically Approximates arbitrary iput distributios (usig samples) Outputs Bayes optimal classificatio give its assumed distributio of iputs 11

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions CS 111: Program Desig I Lecture # 7: First Loop, Web Crawler, Fuctios Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 18, 2018 What will this prit? x = 5 if x == 3: prit("hi!")

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Fast Fourier Transform (FFT) Algorithms

Fast Fourier Transform (FFT) Algorithms Fast Fourier Trasform FFT Algorithms Relatio to the z-trasform elsewhere, ozero, z x z X x [ ] 2 ~ elsewhere,, ~ e j x X x x π j e z z X X π 2 ~ The DFS X represets evely spaced samples of the z- trasform

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

Quality of Service. Spring 2018 CS 438 Staff - University of Illinois 1

Quality of Service. Spring 2018 CS 438 Staff - University of Illinois 1 Quality of Service Sprig 2018 CS 438 Staff - Uiversity of Illiois 1 Quality of Service How good are late data ad lowthroughput chaels? It depeds o the applicatio. Do you care if... Your e-mail takes 1/2

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Recursive Estimation

Recursive Estimation Recursive Estimatio Raffaello D Adrea Sprig 2 Problem Set: Probability Review Last updated: February 28, 2 Notes: Notatio: Uless otherwise oted, x, y, ad z deote radom variables, f x (x) (or the short

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Lecture 9: Exam I Review

Lecture 9: Exam I Review CS 111 (Law): Program Desig I Lecture 9: Exam I Review Robert H. Sloa & Richard Warer Uiversity of Illiois, Chicago September 22, 2016 This Class Discuss midterm topics Go over practice examples Aswer

More information

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway.

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway. Bjare Stroustrup www.stroustrup.com/programmig Chapter 5 Errors Abstract Whe we program, we have to deal with errors. Our most basic aim is correctess, but we must deal with icomplete problem specificatios,

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1 Reliable Trasmissio Sprig 2018 CS 438 Staff - Uiversity of Illiois 1 Reliable Trasmissio Hello! My computer s ame is Alice. Alice Bob Hello! Alice. Sprig 2018 CS 438 Staff - Uiversity of Illiois 2 Reliable

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

CSE 111 Bio: Program Design I Class 11: loops

CSE 111 Bio: Program Design I Class 11: loops SE 111 Bio: Program Desig I lass 11: loops Radall Muroe, xkcd.com/1411/ Robert H. Sloa (S) & Rachel Poretsky (Bio) Uiversity of Illiois, hicago October 2, 2016 Pytho ets Loopy! he Pytho, Busch ardes Florida

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Investigation Monitoring Inventory

Investigation Monitoring Inventory Ivestigatio Moitorig Ivetory Name Period Date Art Smith has bee providig the prits of a egravig to FieArt Gallery. He plas to make just 2000 more prits. FieArt has already received 70 of Art s prits. The

More information

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists CS 111: Program Desig I Lecture 16: Module Review, Ecodigs, Lists Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 18, 2016 Last time Dot otatio ad methods Padas: user maual poit

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Introduction to Sigma Notation

Introduction to Sigma Notation Itroductio to Siga Notatio Steph de Silva //207 What is siga otatio? is the capital Greek letter for the soud s I this case, it s just shorthad for su Siga otatio is what we use whe we have a series of

More information

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup Chapter 18 Vectors ad Arrays Bjare Stroustrup Vector revisited How are they implemeted? Poiters ad free store Destructors Iitializatio Copy ad move Arrays Array ad poiter problems Chagig size Templates

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

Kernel Smoothing Function and Choosing Bandwidth for Non-Parametric Regression Methods 1

Kernel Smoothing Function and Choosing Bandwidth for Non-Parametric Regression Methods 1 Ozea Joural of Applied Scieces (), 009 Ozea Joural of Applied Scieces (), 009 ISSN 943-49 009 Ozea Publicatio Kerel Smoothig Fuctio ad Choosig Badwidth for No-Parametric Regressio Methods Murat Kayri ad

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Workflow model GM AR. Gumpy. Dynagump. At a very high level, this is what gump does. We ll be looking at each of the items described here seperately.

Workflow model GM AR. Gumpy. Dynagump. At a very high level, this is what gump does. We ll be looking at each of the items described here seperately. Workflow model GM AR Gumpy RM Dyagump At a very high level, this is what gump does. We ll be lookig at each of the items described here seperately. User edits project descriptor ad commits s maitai their

More information

ENGR Spring Exam 1

ENGR Spring Exam 1 ENGR 300 Sprig 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB ad

More information

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015 Readig Required: Agel 0.-0.3, 0.5., 0.6-0.7, 0.9 Parametric curves Bria Curless CSE 457 Sprig 05 Optioal Bartels, Beatty, ad Barsy. A Itroductio to Splies for use i Computer Graphics ad Geometric Modelig,

More information

x x 2 x Iput layer = quatity of classificatio mode X T = traspositio matrix The core of such coditioal probability estimatig method is calculatig the

x x 2 x Iput layer = quatity of classificatio mode X T = traspositio matrix The core of such coditioal probability estimatig method is calculatig the COMPARATIVE RESEARCHES ON PROBABILISTIC NEURAL NETWORKS AND MULTI-LAYER PERCEPTRON NETWORKS FOR REMOTE SENSING IMAGE SEGMENTATION Liu Gag a, b, * a School of Electroic Iformatio, Wuha Uiversity, 430079,

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits:

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits: Itro Admiistrivia. Sigup sheet. prerequisites: 6.046, 6.041/2, ability to do proofs homework weekly (first ext week) collaboratio idepedet homeworks gradig requiremet term project books. questio: scribig?

More information

CS 111: Program Design I Lecture # 7: Web Crawler, Functions; Open Access

CS 111: Program Design I Lecture # 7: Web Crawler, Functions; Open Access CS 111: Program Desig I Lecture # 7: Web Crawler, Fuctios; Ope Access Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 13, 2016 Lab Hit/Remider word = "hi" word.upper() à "HI" Questio

More information

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer Data structures DATA STRUCTURES Static problems. Give a iput, produce a output. Ex. Sortig, FFT, edit distace, shortest paths, MST, max-flow,... amortized aalysis biomial heaps Fiboacci heaps uio-fid Dyamic

More information

CS 11 C track: lecture 1

CS 11 C track: lecture 1 CS 11 C track: lecture 1 Prelimiaries Need a CMS cluster accout http://acctreq.cms.caltech.edu/cgi-bi/request.cgi Need to kow UNIX IMSS tutorial liked from track home page Track home page: http://courses.cms.caltech.edu/courses/cs11/material

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended:

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended: Readig Recommeded: Stollitz, DeRose, ad Salesi. Wavelets for Computer Graphics: Theory ad Applicatios, 996, sectio 6.-6.3, 0., A.5. Subdivisio curves ad surfaces Note: there is a error i Stollitz, et al.,

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation Slides Preared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 What is the differece betwee a statisticia ad a morticia? Nobody's dyig to see the statisticia! Slide Chater 8 Iterval Estimatio Poulatio

More information

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Virtual Memory Prof. Yajig Li Uiversity of Chicago A System with Physical Memory Oly Examples: most Cray machies early PCs Memory early all embedded systems

More information

Force Network Analysis using Complementary Energy

Force Network Analysis using Complementary Energy orce Network Aalysis usig Complemetary Eergy Adrew BORGART Assistat Professor Delft Uiversity of Techology Delft, The Netherlads A.Borgart@tudelft.l Yaick LIEM Studet Delft Uiversity of Techology Delft,

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

ENGR 132. Fall Exam 1

ENGR 132. Fall Exam 1 ENGR 3 Fall 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work. Keep your work covered at all times.. Each studet is resposible for followig directios. Read carefully.. MATLAB ad Excel

More information

top() Applications of Stacks

top() Applications of Stacks CS22 Algorithms ad Data Structures MW :00 am - 2: pm, MSEC 0 Istructor: Xiao Qi Lecture 6: Stacks ad Queues Aoucemets Quiz results Homework 2 is available Due o September 29 th, 2004 www.cs.mt.edu~xqicoursescs22

More information

4.3 Modeling with Arithmetic Sequences

4.3 Modeling with Arithmetic Sequences Name Class Date 4.3 Modelig with Arithmetic Sequeces Essetial Questio: How ca you solve real-world problems usig arithmetic sequeces? Resource Locker Explore Iterpretig Models of Arithmetic Sequeces You

More information

Exceptions. Your computer takes exception. The Exception Class. Causes of Exceptions

Exceptions. Your computer takes exception. The Exception Class. Causes of Exceptions Your computer takes exceptio s s are errors i the logic of a program (ru-time errors). Examples: i thread mai java.io.filenotfoud: studet.txt (The system caot fid the file specified.) i thread mai java.lag.nullpoiter:

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Comparison of classification algorithms in the task of object recognition on radar images of the MSTAR base

Comparison of classification algorithms in the task of object recognition on radar images of the MSTAR base Compariso of classificatio algorithms i the task of object recogitio o radar images of the MSTAR base A.A. Borodiov 1, V.V. Myasikov 1,2 1 Samara Natioal Research Uiversity, 34 Moskovskoe Shosse, 443086,

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Improved Random Graph Isomorphism

Improved Random Graph Isomorphism Improved Radom Graph Isomorphism Tomek Czajka Gopal Paduraga Abstract Caoical labelig of a graph cosists of assigig a uique label to each vertex such that the labels are ivariat uder isomorphism. Such

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information