Efficient use of hybrid computing clusters for nanosciences

Size: px
Start display at page:

Download "Efficient use of hybrid computing clusters for nanosciences"

Transcription

1 International Conference on Parallel Computing ÉCOLE NORMALE SUPÉRIEURE LYON Efficient use of hybrid computing clusters for nanosciences Luigi Genovese CEA, ESRF, BULL, LIG 16 Octobre 2008 with Matthieu Ospici, Jean-François Méhaut, Thierry Deutsch

2 Outline 1 Electronic structure calculations Main operations, parallelisation 2 The library 3 4

3 Ab initio calculations with DFT Several advantages Ab initio: No adjustable parameters DFT: Quantum mechanical (fundamental) treatment Main limitations Approximated approach Requires high computer power, limited to few hundreds atoms in most cases Wide range of applications: nanoscience, biology, materials

4 Performing a DFT calculation (KS formalism) Find a set of orthonormal orbitals Ψ i (r) that minimizes: E = 1 2 N/2 i=1 with ρ(r) = Ψ i (r)ψ i (r) i Z (Kohn-Sham) DFT Actors Ψ i (r) 2 Ψ i (r)dr + 1 Z ρ(r)ρ(r ) 2 r r dr dr Z +E LDA xc [ρ(r)] + V ext (r)ρ(r)dr A set of wavefunctions ψ i, one for each electron A computational approach on a finite basis One array for each Ψ i A set of computational operations on these arrays which depend on the basis set A (good) computer...

5 A basis for nanosciences: the project STREP European project: ( ) Four partners, 15 contributors: CEA-INAC Grenoble, U. Basel, U. Louvain-la-Neuve, U. Kiel Aim: To develop an ab-initio DFT code based on Daubechies, to be integrated in ABINIT, distributed freely (GNU-GPL license) L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, et al., Daubechies wavelets as a basis set for density functional pseudopotential calculations, J. Chem. Phys. 129, (2008)

6 A DFT code based on Daubechies wavelets A basis with optimal properties for expanding localised information Localised in real space Smooth (localised in Fourier space) Orthogonal basis Multi-resolution basis Adaptive Systematic From early 80 s Applied in several domains Interesting properties for DFT Daubechies x φ(x) ψ(x)

7 Wavelet properties: adaptivity Adaptivity Resolution can be refined following the grid point. The grid is divided in Low (1 DoF) and High (8 DoF) resolution points. Points of different resolution belong to the same grid. Empty regions must not be filled with basis functions. Localization property,real space description Optimal for big & inhomogeneous systems, highly flexible

8 Some ongoing applications Study of favorable adsorption sites of NaCl clusters on Si tips during AFM experiments ( 250 at.) (Group of S. Goedecker, Basel University) 350 at.: DFT calculation to assess the accuracy of force fields at. : Organic Cu surface. HOMO-LUMO chg. dens. are compared to STM expts.

9 Operations performed Different numerical operations performed: For each wavefunction (Hamiltonian application) Between wavefunctions (Linear algebra) Comput. operations Convolutions with short filters BLAS routines FFT (Poisson Solver) Interpolating Daubechies

10 Orbital distribution scheme Used for the application of the hamiltonian The hamiltonian (convolutions) is applied separately onto each wavefunction ψ 1 MPI 0 ψ 2 ψ 3 ψ 4 MPI 1 ψ 5 MPI 2

11 Coefficient distribution scheme Used for scalar product & orthonormalisation BLAS routines (level 3) are called, then result is reduced MPI 0 MPI 1 MPI 2 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 Communications are performed via MPI_ALLTOALLV

12 High Performance Computing Localisation & Orthogonality Data locality Principal code operations can be intensively optimised Optimal for application on supercomputers Little communication, big packets of data No need of fast network Optimal speedup Efficiency of the order of 90%, up to thousands of processors Efficiency (%) at 65 at 173 at 257 at 1025 at (with orbitals/proc) Number of processors Data repartition optimal for material accelerators (GPU) Graphic Processing Units can be used to speed up the computation

13 Separable convolutions We must calculate F(I 1,I 2,I 3 ) = = L j 1,j 2,j 3 =0 L j 1 =0 h j1 h j1 h j2 h j3 G(I 1 j 1,I 2 j 2,I 3 j 3 ) L j 2 =0 h j2 L j 3 =0 h j3 G(i 1 j 1,i 2 j 2,i 3 j 3 ) Application of three successive operations 1 A 3 (I 3,i 1,i 2 ) = j h j G(i 1,i 2,I 3 j) i 1,i 2 ; 2 A 2 (I 2,I 3,i 1 ) = j h j A 3 (I 3,i 1,I 2 j) I 3,i 1 ; 3 F(I 1,I 2,i 3 ) = j h j A 2 (I 2,I 3,I 1 j) I 2,I 3. Main routine: Convolution + transposition F(I,a) = h j G(a,I j) a ; j

14 GPU-ported operations in (double precision) 20 Convolutions (CUDA rewritten) GPU speedups between and 20 can be 6 obtained for different 4 sections 2 GPU speedup (Double prec.) locden locham precond Wavefunction size (MB) GPU speedup (Double prec.) DGEMM DSYRK Number of orbitals Linear algebra (CUBLAS library) The interfacing with CUBLAS is immediate, with considerable speedups

15 Distribute the data on hybrid supercomputer should be executed on hybrid CPU-GPU architectures CPU CPU GPU GPU Data transfer is still MPI-based Network CPU CPU GPU GPU Only internode communication between CPU Data distribution should depend on the presence of GPUs on the nodes

16 Data repartition on a node Non-hybrid case GPU not used homogeneous repartition GPU MPI 0 MPI 1 MPI 2 MPI 3 DATA DATA DATA DATA

17 Data repartition on a node Naive repartition All the cores use the GPU at the same time GPU MPI 0 MPI 1 MPI 2 MPI 3 DATA DATA DATA DATA

18 Data repartition on a node Inhomogeneous repartition Only one node use the GPU with more data GPU MPI 0 MPI 1 MPI 2 MPI 3 DATA DATA DATA DATA

19 Data repartition on a node The approach library manages GPU resource within the node GPU MPI 0 MPI 1 MPI 2 MPI 3 DATA DATA DATA DATA

20 library (M. Ospici, LIG / Bull / CEA) De-synchronisation of operations Two semaphores are activated for each card on the node: Data transfer (CPU GPU CPU) Calculation on the GPU Each operation (e.g. convolution of a wavefunction) is associated to a stream. Operation overlap Calculation and data transfer of different stream may overlap Operation are scheduled on a first come - first served basis Several advantages The time for memory transfers is saved Heavy calculation can be passed to the card one - by - one, avoiding scheduling problems

21 Example of a time chart The GPU can be viewed as a shared co-processor CPU GPU Calculation GPU CPU MPI 0 MPI 1 MPI 2 MPI 3 Time

22 Convenince of approach Different tests thanks to flexibility We have performed many tests, with different ratios GPU/CPU on the same node Speedup on the full code (exemples) is the best compromise speedup/easiness Examples: CPU -GPU Inhomogeneous (best) Full code tested on Multi-GPU platforms CINES -Iblis 48 GPU, Prototype calculations CCRT - Titane Up to 196 GPU (Grand challenge 2009)

23 on Hybrid architectures can run on hybrid CPU/GPU supercomputers In multi-gpu environments, double precision calculations No Hot-spot operations Different code sections can be ported on GPU up to 20x speedup for some operations, 7x for the full parallel code (under improvements) Percent Seconds (log. scale) CPU code (rel.) Number of cores 1 Time (sec) Comm Other PureCPU precond locham locden LinAlg

24 on Hybrid architectures can run on hybrid CPU/GPU supercomputers In multi-gpu environments, double precision calculations No Hot-spot operations Different code sections can be ported on GPU up to 20x speedup for some operations, 7x for the full parallel code (under improvements) LG: Prix Bull-Fourier 2009 (Bull-GENCI) Reference Paper: LG et al., J. Chem. Phys. 131, (2009) Grand Challenge 2009 on CEA Hybrid Cluster Titane (192 GPU, 768 Intel Xeon Nehalem cores)

25 : a modern approach for nanosciences Flexible, reliable formalism (wavelet properties) Conceived for massive parallel architecture Open a path toward the diffusion of Hybrid architectures The library (M. Ospici) Share efficiently the GPU resource between the cores Works efficiently on massive supercomputers Can be generalised for other applications 1.3 GNU-GPL license Lots of applications & developments with team: D. Caliste, T. Deutsch (L_Sim - CEA INAC Grenoble) S. Goedecker (U. Basel) M. Ospici, J-F. Méhaut (LIG INRIA UJF Bull Grenoble)

Parallel Codes and High Performance Computing: Massively parallelism and Multi-GPU

Parallel Codes and High Performance Computing: Massively parallelism and Multi-GPU Ècole Programmation Hybride : une étape vers le many-cœurs Multi- S_ Ĺ ÉSCANDILLE AUTRANS, FRANCE Parallel Codes and High Computing: Massively parallelism and Multi- Luigi Genovese L_Sim CEA Grenoble October

More information

Parallel codes and High Performance Computing: General Introduction to Massively Parallelism

Parallel codes and High Performance Computing: General Introduction to Massively Parallelism Séminaire MaiMoSiNE ST. MARTIN D HÈRES GRENOBLE, FRANCE nowadays Parallel codes and High Computing: General Introduction to Massively Luigi Genovese L_Sim CEA Grenoble March 14, 2012 A basis for nanosciences:

More information

NUMA Support for Charm++

NUMA Support for Charm++ NUMA Support for Charm++ Christiane Pousa Ribeiro (INRIA) Filippo Gioachin (UIUC) Chao Mei (UIUC) Jean-François Méhaut (INRIA) Gengbin Zheng(UIUC) Laxmikant Kalé (UIUC) Outline Introduction Motivation

More information

Approaches to acceleration: GPUs vs Intel MIC. Fabio AFFINITO SCAI department

Approaches to acceleration: GPUs vs Intel MIC. Fabio AFFINITO SCAI department Approaches to acceleration: GPUs vs Intel MIC Fabio AFFINITO SCAI department Single core Multi core Many core GPU Intel MIC 61 cores 512bit-SIMD units from http://www.karlrupp.net/ from http://www.karlrupp.net/

More information

Quantum ESPRESSO on GPU accelerated systems

Quantum ESPRESSO on GPU accelerated systems Quantum ESPRESSO on GPU accelerated systems Massimiliano Fatica, Everett Phillips, Josh Romero - NVIDIA Filippo Spiga - University of Cambridge/ARM (UK) MaX International Conference, Trieste, Italy, January

More information

An Innovative Massively Parallelized Molecular Dynamic Software

An Innovative Massively Parallelized Molecular Dynamic Software Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources An Innovative Massively Parallelized Molecular Dynamic Software Mohamed Hacene, Ani Anciaux,

More information

Porting CASTEP to GPGPUs. Adrian Jackson, Toni Collis, EPCC, University of Edinburgh Graeme Ackland University of Edinburgh

Porting CASTEP to GPGPUs. Adrian Jackson, Toni Collis, EPCC, University of Edinburgh Graeme Ackland University of Edinburgh Porting CASTEP to GPGPUs Adrian Jackson, Toni Collis, EPCC, University of Edinburgh Graeme Ackland University of Edinburgh CASTEP Density Functional Theory Plane-wave basis set with pseudo potentials Heavy

More information

STRATEGIES TO ACCELERATE VASP WITH GPUS USING OPENACC. Stefan Maintz, Dr. Markus Wetzstein

STRATEGIES TO ACCELERATE VASP WITH GPUS USING OPENACC. Stefan Maintz, Dr. Markus Wetzstein STRATEGIES TO ACCELERATE VASP WITH GPUS USING OPENACC Stefan Maintz, Dr. Markus Wetzstein smaintz@nvidia.com; mwetzstein@nvidia.com Companies Academia VASP USERS AND USAGE 12-25% of CPU cycles @ supercomputing

More information

Fast Quantum Molecular Dynamics on Multi-GPU Architectures in LATTE

Fast Quantum Molecular Dynamics on Multi-GPU Architectures in LATTE Fast Quantum Molecular Dynamics on Multi-GPU Architectures in LATTE S. Mniszewski*, M. Cawkwell, A. Niklasson GPU Technology Conference San Jose, California March 18-21, 2013 *smm@lanl.gov Slide 1 Background:

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Introduction Case Studies A Parametrized Generator Evaluation Conclusions and Future Work BOAST. A Generative Language for Intensive Computing Kernels

Introduction Case Studies A Parametrized Generator Evaluation Conclusions and Future Work BOAST. A Generative Language for Intensive Computing Kernels A Generative Language for Intensive Computing Kernels Porting HPC applications to the Mont-Blanc Prototype Kevin Pouget, Brice Videau, Jean-François Méhaut UJF-CEA, CNRS, INRIA, LIG International Laboratory

More information

Goals of parallel computing

Goals of parallel computing Goals of parallel computing Typical goals of (non-trivial) parallel computing in electronic-structure calculations: To speed up calculations that would take too much time on a single processor. A good

More information

Time-dependent density-functional theory with massively parallel computers. Jussi Enkovaara CSC IT Center for Science, Finland

Time-dependent density-functional theory with massively parallel computers. Jussi Enkovaara CSC IT Center for Science, Finland Time-dependent density-functional theory with massively parallel computers Jussi Enkovaara CSC IT Center for Science, Finland Outline Overview of the GPAW software package Parallelization for time-dependent

More information

First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster

First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster YALES2: Semi-industrial code for turbulent combustion and flows Jean-Matthieu Etancelin, ROMEO, NVIDIA GPU Application

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor * Some names and brands may be claimed as the property of others. Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor E.J. Bylaska 1, M. Jacquelin

More information

Electronic structure calculations on Thousands of CPU's and GPU's

Electronic structure calculations on Thousands of CPU's and GPU's Electronic structure calculations on Thousands of CPU's and GPU's Emil Briggs, North Carolina State University 1. Outline of real-space Multigrid (RMG) 2. Trends in high performance computing 3. Scalability

More information

Building NVLink for Developers

Building NVLink for Developers Building NVLink for Developers Unleashing programmatic, architectural and performance capabilities for accelerated computing Why NVLink TM? Simpler, Better and Faster Simplified Programming No specialized

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet Swamy N. Kandadai and Xinghong He swamy@us.ibm.com and xinghong@us.ibm.com ABSTRACT: We compare the performance of several applications

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

Splotch: High Performance Visualization using MPI, OpenMP and CUDA

Splotch: High Performance Visualization using MPI, OpenMP and CUDA Splotch: High Performance Visualization using MPI, OpenMP and CUDA Klaus Dolag (Munich University Observatory) Martin Reinecke (MPA, Garching) Claudio Gheller (CSCS, Switzerland), Marzia Rivi (CINECA,

More information

What is!?! Fortran95: math&sci. libxc etsf-io.

What is!?! Fortran95: math&sci. libxc etsf-io. What is!?! Theory&approximations Many-Body Perturbation Theory Time-dependent density functional theory Bethe-Salpeter equation, GWA AHC electron-phonon coupling... Languages www.yambo-code.org Interfaces

More information

Is GPU the future of Scientific Computing?

Is GPU the future of Scientific Computing? Is GPU the future of Scientific Computing? Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe Picard, Florian De Vuyst, Christophe Labourdette To cite this version: Georges-Henri

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

Harnessing GPU speed to accelerate LAMMPS particle simulations

Harnessing GPU speed to accelerate LAMMPS particle simulations Harnessing GPU speed to accelerate LAMMPS particle simulations Paul S. Crozier, W. Michael Brown, Peng Wang pscrozi@sandia.gov, wmbrown@sandia.gov, penwang@nvidia.com SC09, Portland, Oregon November 18,

More information

MAGMA. LAPACK for GPUs. Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville

MAGMA. LAPACK for GPUs. Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville MAGMA LAPACK for GPUs Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville Keeneland GPU Tutorial 2011, Atlanta, GA April 14-15,

More information

Molecular Dynamics and Quantum Mechanics Applications

Molecular Dynamics and Quantum Mechanics Applications Understanding the Performance of Molecular Dynamics and Quantum Mechanics Applications on Dell HPC Clusters High-performance computing (HPC) clusters are proving to be suitable environments for running

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information

VASP Accelerated with GPUs

VASP Accelerated with GPUs VASP Accelerated with GPUs Capabilities, Methods, and Road-Map Max Hutchinson University of Chicago; Carnegie Mellon University GTC, May 17th, 2012 Max Hutchinson (UChicago and CMU) GPU VASP GTC 5/17/12

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Analysis and Visualization Algorithms in VMD

Analysis and Visualization Algorithms in VMD 1 Analysis and Visualization Algorithms in VMD David Hardy Research/~dhardy/ NAIS: State-of-the-Art Algorithms for Molecular Dynamics (Presenting the work of John Stone.) VMD Visual Molecular Dynamics

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs

Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs Parallel Direct Simulation Monte Carlo Computation Using CUDA on GPUs C.-C. Su a, C.-W. Hsieh b, M. R. Smith b, M. C. Jermy c and J.-S. Wu a a Department of Mechanical Engineering, National Chiao Tung

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Introduction A Parametrized Generator Case Study Real Applications Conclusions Bibliography BOAST

Introduction A Parametrized Generator Case Study Real Applications Conclusions Bibliography BOAST Portability Using Meta-Programming and Auto-Tuning Frédéric Desprez 1, Brice Videau 1,3, Kevin Pouget 1, Luigi Genovese 2, Thierry Deutsch 2, Dimitri Komatitsch 3, Jean-François Méhaut 1 1 INRIA/LIG -

More information

PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT

PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT Jean-Yves VET, DDN Storage Patrick CARRIBAULT, CEA Albert COHEN, INRIA CEA, DAM, DIF, F-91297

More information

Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems

Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems Junjie Li (lijunj@iu.edu) Shijie Sheng (shengs@iu.edu) Raymond Sheppard (rsheppar@iu.edu) Pervasive Technology

More information

The VASP Scripter AddOn

The VASP Scripter AddOn The VASP Scripter AddOn Tutorial Version 11.8.1 The VASP Scripter AddOn: Tutorial Version 11.8.1 Copyright 2008 2011 QuantumWise A/S Atomistix ToolKit Copyright Notice All rights reserved. This publication

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

PARALLEL SYSTEMS PROJECT

PARALLEL SYSTEMS PROJECT PARALLEL SYSTEMS PROJECT CSC 548 HW6, under guidance of Dr. Frank Mueller Kaustubh Prabhu (ksprabhu) Narayanan Subramanian (nsubram) Ritesh Anand (ranand) Assessing the benefits of CUDA accelerator on

More information

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 Agenda Introduction to AmgX Current Capabilities Scaling V2.0 Roadmap for the future 2 AmgX Fast, scalable linear solvers, emphasis on iterative

More information

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS ARCHER ECSE 05-14 LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS TECHNICAL REPORT Vladimír Fuka, Zheng-Tong Xie Abstract The atmospheric large eddy simulation code ELMM (Extended Large-eddy

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

International Conference on Computational Science 2011

International Conference on Computational Science 2011 Available online at www.sciencedirect.com Procedia Computer Science 4 (2011) 17 25 International Conference on Computational Science 2011 GPAW - massively parallel electronic structure calculations with

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

Exploiting CUDA Dynamic Parallelism for low power ARM based prototypes

Exploiting CUDA Dynamic Parallelism for low power ARM based prototypes www.bsc.es Exploiting CUDA Dynamic Parallelism for low power ARM based prototypes Vishal Mehta Engineer, Barcelona Supercomputing Center vishal.mehta@bsc.es BSC/UPC CUDA Centre of Excellence (CCOE) Training

More information

Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method

Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method Josh Romero, Massimiliano Fatica - NVIDIA Vamsi Spandan, Roberto Verzicco -

More information

Parallelization issues

Parallelization issues Parallelization issues Georg Huhs June 15, 2014 1 Introduction Not too many years ago overclocking CPUs and estimating the clock frequencies of the next processor generation were the hot topics in the

More information

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Sadaf Alam & Thomas Schulthess CSCS & ETHzürich CUG 2014 * Timelines & releases are not precise Top 500

More information

GPU Programming. Ringberg Theorie Seminar 2010

GPU Programming. Ringberg Theorie Seminar 2010 or How to tremendously accelerate your code? Michael Kraus, Christian Konz Max-Planck-Institut für Plasmaphysik, Garching Ringberg Theorie Seminar 2010 Introduction? GPU? GPUs can do more than just render

More information

An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ.

An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ. An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ. Of Pisa Italy 29/02/2012, Nuremberg, Germany ARTEMIS ARTEMIS Joint Joint Undertaking

More information

Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators

Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators Francisco D. Igual Enrique S. Quintana-Ortí Gregorio Quintana-Ortí Universidad Jaime I de Castellón (Spain) Robert A. van de

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C.

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C. The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy! Thomas C. Schulthess ENES HPC Workshop, Hamburg, March 17, 2014 T. Schulthess!1

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications TESLA V100 PERFORMANCE GUIDE Life Sciences Applications NOVEMBER 2017 TESLA V100 PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Solvers and partitioners in the Bacchus project

Solvers and partitioners in the Bacchus project 1 Solvers and partitioners in the Bacchus project 11/06/2009 François Pellegrini INRIA-UIUC joint laboratory The Bacchus team 2 Purpose Develop and validate numerical methods and tools adapted to problems

More information

Premiers retours d expérience sur l utilisation de GPU pour des applications de mécanique des structures

Premiers retours d expérience sur l utilisation de GPU pour des applications de mécanique des structures Premiers retours d expérience sur l utilisation de GPU pour des applications de mécanique des structures Antoine Petitet et Stefanos Vlachoutsis Juin 2011 Copyright ESI Group, 2009. 2010. All rights reserved.

More information

Partial Wave Analysis using Graphics Cards

Partial Wave Analysis using Graphics Cards Partial Wave Analysis using Graphics Cards Niklaus Berger IHEP Beijing Hadron 2011, München The (computational) problem with partial wave analysis n rec * * i=1 * 1 Ngen MC NMC * i=1 A complex calculation

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Overview of OpenMX: 3. Ongoing and planned works. 2. Implementation. 1. Introduction. 4. Summary. Implementation and practical aspects

Overview of OpenMX: 3. Ongoing and planned works. 2. Implementation. 1. Introduction. 4. Summary. Implementation and practical aspects Overview of OpenMX: Implementation and practical aspects 1. Introduction 2. Implementation Total energy, forces, numerical integrations, basis functions, getting SCF, geometry optimization, parallelization,

More information

Performance Evaluation of Quantum ESPRESSO on SX-ACE. REV-A Workshop held on conjunction with the IEEE Cluster 2017 Hawaii, USA September 5th, 2017

Performance Evaluation of Quantum ESPRESSO on SX-ACE. REV-A Workshop held on conjunction with the IEEE Cluster 2017 Hawaii, USA September 5th, 2017 Performance Evaluation of Quantum ESPRESSO on SX-ACE REV-A Workshop held on conjunction with the IEEE Cluster 2017 Hawaii, USA September 5th, 2017 Osamu Watanabe Akihiro Musa Hiroaki Hokari Shivanshu Singh

More information

ENABLING NEW SCIENCE GPU SOLUTIONS

ENABLING NEW SCIENCE GPU SOLUTIONS ENABLING NEW SCIENCE TESLA BIO Workbench The NVIDIA Tesla Bio Workbench enables biophysicists and computational chemists to push the boundaries of life sciences research. It turns a standard PC into a

More information

CURRENT STATUS OF THE PROJECT TO ENABLE GAUSSIAN 09 ON GPGPUS

CURRENT STATUS OF THE PROJECT TO ENABLE GAUSSIAN 09 ON GPGPUS CURRENT STATUS OF THE PROJECT TO ENABLE GAUSSIAN 09 ON GPGPUS Roberto Gomperts (NVIDIA, Corp.) Michael Frisch (Gaussian, Inc.) Giovanni Scalmani (Gaussian, Inc.) Brent Leback (PGI) TOPICS Gaussian Design

More information

Performance Analysis and Optimization of Gyrokinetic Torodial Code on TH-1A Supercomputer

Performance Analysis and Optimization of Gyrokinetic Torodial Code on TH-1A Supercomputer Performance Analysis and Optimization of Gyrokinetic Torodial Code on TH-1A Supercomputer Xiaoqian Zhu 1,2, Xin Liu 1, Xiangfei Meng 2, Jinghua Feng 2 1 School of Computer, National University of Defense

More information

ABSTRACT 1. INTRODUCTION. * phone ; fax ; emphotonics.com

ABSTRACT 1. INTRODUCTION. * phone ; fax ; emphotonics.com CULA: Hybrid GPU Accelerated Linear Algebra Routines John R. Humphrey *, Daniel K. Price, Kyle E. Spagnoli, Aaron L. Paolini, Eric J. Kelmelis EM Photonics, Inc, 51 E Main St, Suite 203, Newark, DE, USA

More information

High performance Computing and O&G Challenges

High performance Computing and O&G Challenges High performance Computing and O&G Challenges 2 Seismic exploration challenges High Performance Computing and O&G challenges Worldwide Context Seismic,sub-surface imaging Computing Power needs Accelerating

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Developing PIC Codes for the Next Generation Supercomputer using GPUs. Viktor K. Decyk UCLA

Developing PIC Codes for the Next Generation Supercomputer using GPUs. Viktor K. Decyk UCLA Developing PIC Codes for the Next Generation Supercomputer using GPUs Viktor K. Decyk UCLA Abstract The current generation of supercomputer (petaflops scale) cannot be scaled up to exaflops (1000 petaflops),

More information

MAGMA: a New Generation

MAGMA: a New Generation 1.3 MAGMA: a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Jack Dongarra T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki University of Tennessee, Knoxville Release

More information

A GPU Sparse Direct Solver for AX=B

A GPU Sparse Direct Solver for AX=B 1 / 25 A GPU Sparse Direct Solver for AX=B Jonathan Hogg, Evgueni Ovtchinnikov, Jennifer Scott* STFC Rutherford Appleton Laboratory 26 March 2014 GPU Technology Conference San Jose, California * Thanks

More information

Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs

Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs Laércio Lima Pilla llpilla@inf.ufrgs.br LIG Laboratory INRIA Grenoble University Grenoble, France Institute of Informatics

More information

Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters

Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben, Stanimire Tomov, Jack Dongarra Innovative Computing Laboratory, University

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

Intel Math Kernel Library

Intel Math Kernel Library Intel Math Kernel Library Release 7.0 March 2005 Intel MKL Purpose Performance, performance, performance! Intel s scientific and engineering floating point math library Initially only basic linear algebra

More information

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany Computing on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Summary: The increasing power of GPUs has led to the intent to transfer computing load from CPUs to GPUs. A first example has been

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Introduction to Parallel Computing!

Introduction to Parallel Computing! Introduction to Parallel Computing! SDSC Summer Institute! August 6-10, 2012 San Diego, CA! Rick Wagner! HPC Systems Manager! Purpose, Goals, Outline, etc.! Introduce broad concepts " Define terms " Explore

More information

Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs

Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs Presented at the 2014 ANSYS Regional Conference- Detroit, June 5, 2014 Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs Bhushan Desam, Ph.D. NVIDIA Corporation 1 NVIDIA Enterprise

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Large-scale Gas Turbine Simulations on GPU clusters

Large-scale Gas Turbine Simulations on GPU clusters Large-scale Gas Turbine Simulations on GPU clusters Tobias Brandvik and Graham Pullan Whittle Laboratory University of Cambridge A large-scale simulation Overview PART I: Turbomachinery PART II: Stencil-based

More information

GROMACS (GPU) Performance Benchmark and Profiling. February 2016

GROMACS (GPU) Performance Benchmark and Profiling. February 2016 GROMACS (GPU) Performance Benchmark and Profiling February 2016 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Mellanox, NVIDIA Compute

More information

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging Saoni Mukherjee, Nicholas Moore, James Brock and Miriam Leeser September 12, 2012 1 Outline Introduction to CT Scan, 3D reconstruction

More information

2006: Short-Range Molecular Dynamics on GPU. San Jose, CA September 22, 2010 Peng Wang, NVIDIA

2006: Short-Range Molecular Dynamics on GPU. San Jose, CA September 22, 2010 Peng Wang, NVIDIA 2006: Short-Range Molecular Dynamics on GPU San Jose, CA September 22, 2010 Peng Wang, NVIDIA Overview The LAMMPS molecular dynamics (MD) code Cell-list generation and force calculation Algorithm & performance

More information

designing a GPU Computing Solution

designing a GPU Computing Solution designing a GPU Computing Solution Patrick Van Reeth EMEA HPC Competency Center - GPU Computing Solutions Saturday, May the 29th, 2010 1 2010 Hewlett-Packard Development Company, L.P. The information contained

More information

An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC

An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC Pi-Yueh Chuang The George Washington University Fernanda S. Foertter Oak Ridge National Laboratory Goal Develop an OpenACC

More information

Workpackage 5: High Performance Mathematical Computing

Workpackage 5: High Performance Mathematical Computing Clément Pernet: Workpackage 5 1 Brussels, April 26, 2017 Workpackage 5: High Performance Mathematical Computing Clément Pernet First OpenDreamKit Project review Brussels, April 26, 2017 Clément Pernet:

More information

FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms

FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms Luna Xu (Virginia Tech) Seung-Hwan Lim (ORNL) Ali R. Butt (Virginia Tech) Sreenivas R. Sukumar (ORNL) Ramakrishnan

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

GPU Linear algebra extensions for GNU/Octave

GPU Linear algebra extensions for GNU/Octave Journal of Physics: Conference Series GPU Linear algebra extensions for GNU/Octave To cite this article: L B Bosi et al 2012 J. Phys.: Conf. Ser. 368 012062 View the article online for updates and enhancements.

More information

Debugging for the hybrid-multicore age (A HPC Perspective) David Lecomber CTO, Allinea Software

Debugging for the hybrid-multicore age (A HPC Perspective) David Lecomber CTO, Allinea Software Debugging for the hybrid-multicore age (A HPC Perspective) David Lecomber CTO, Allinea Software david@allinea.com Agenda What is HPC? How is scale affecting HPC? Achieving tool scalability Scale in practice

More information

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 Hsi-Yu Schive ( 薛熙于 ), Tzihong Chiueh ( 闕志鴻 ), Yu-Chih Tsai ( 蔡御之 ), Ui-Han Zhang ( 張瑋瀚 ) Graduate Institute

More information

Energy issues of GPU computing clusters

Energy issues of GPU computing clusters AlGorille INRIA Project Team Energy issues of GPU computing clusters Stéphane Vialle SUPELEC UMI GT CNRS 2958 & AlGorille INRIA Project Team EJC 19 20/11/2012 Lyon, France What means «using a GPU cluster»?

More information