Modelling Workflow Tool

Size: px
Start display at page:

Download "Modelling Workflow Tool"

Transcription

1 A Reservoir Simulation Uncertainty ty Modelling Workflow Tool Brennan Williams Geo Visual Systems Ltd

2 Contents 1. Introduction 2. Simulation model overview 3. What are the problems? 4. What do we need? 5. The tool 6. Case study 7. What comes next?

3 1. Introduction describe the ongoing development of a software tool for uncertainty modelling and history matching in the reservoir simulation discipline i of the oil and gas industry. brief overview of simulation models over the last decade what are the problems? data management etc. What do we need? aims of the tool run manager, uncertainty modelling, data analysis case study uncertainty modelling example what comes next? history matching, support for other simulators

4 2. Simulation Model Overview computer model used to predict the flow of fluids (typically, oil, water, and gas) through porous media dominated by finite difference simulators Eclipse, VIP some finite element and streamline simulators Output grid geometry initial grid property data one value per cell in the grid porosity,permeability etc recurrent grid property data one value per cell in the grid for each report timestep pressure, oil/water/gas saturations plot vectors e.g. production rate for each well for each plot timestep

5 2. Simulation Model Overview Then. built a single (incorrect) simulation model to describe the reservoir. manually history match this single model use the matched model in a series of prediction runs to compare different field production scenarios. Now. Build multiple models to gauge uncertainty history match multiple models prediction runs using multiple history matched models

6 2. Simulation Model Overview 1992 small model, cells, 15 year simulation, 300 plot vectors, 20MB

7 2. Simulation Model Overview 1998 medium model, 200,000 cells, 150 wells, 2,000 plot vectors, 70MB

8 2. Simulation Model Overview 1998 small model, 60,000 cells, 600 wells, 18,000 plot vectors, 127MB

9 2. Simulation Model Overview 2002 very large model, 3,000,000 cells, 800MB

10 2. Simulation Model Overview 2003 medium model with coarsening and local grid refinement 120,000 cells, 200MB

11 2. Simulation Model Overview 2006 large model with nested LGR, 300,000+ cells, 12,000 plot vectors, 1.3GB

12 2. Simulation Model Overview 2006 large model, 300,000 cells, 300+ wells, 360,000 plot vectors, 1.8GB

13 3. What are the problems? Single Model only one representation of an unlimited number of possible models that match reasonably well the known history. no understanding of uncertainty in a single model

14 3. What are the problems? Multiple Models. Models are getting bigger file size issues runtime issues Data analysis How do we model uncertainty in as few a number of simulation runs as possible?

15 3. What are the problems? Model size of 200,000 cells 40 wells 2,000 plot vectors 500MB output files per run 9 uncertainty variables with 3 values each (low,mid,high) = 3 9 or 20,000 runs, 40,000 hours (4 years) 2 hours per run and 10 TB data 2*9+1=19 Tornado runs = 38 hours runtime, 10GB data

16 4. What do we need? multiple models to model uncertainty Engineer/user designed workflow - capture steps in the simulation study process select/define independent/control variables Choice of algorithms to use to change our control variables run/deck generation and submission i.e. a run manager data analysis tools assisted history matching simulator independent

17 5. The tool - rezen Phase 1 - Run Manager Phase 2 - Data Analysis open box Phase 3 - Uncertainty Modelling Phase 4 - History Matching ongoing

18 5. The tool data hierarchy terminology ensemble : a set of related simulation decks varying around a core model deck : an individual simulator dataset or run (both input & output files) variable : a simulation parameter whose uncertainty or sensitivity we wish to investigate deck vector : plot vector imported from simulation output files (e.g. FOPT) ensemble vector : set of related deck vectors, one for each deck

19 5. The tool run manager Run Manager manage multiple reservoir simulation runs supports Eclipse manage the submission i of decks to the simulator queues provides convenience tools such as scan simulation input & output files (including binary) conversion tools (binary to text) built-in i diff between related.data files

20 5. The tool uncertainty modelling Uncertainty Modelling supports the engineer/user designed uncertainty modelling workflow select uncertainty modelling algorithm, define ensemble variables and build an ensemble control file with directiveses generate simulation decks and submit decks to the simulator queues built-in diff utility between related decks plots of objective function vs generated ensemble variable values

21 5. The tool uncertainty modelling Uncertainty modelling algorithms Discrete cases e.g. create n runs by specifying n values of each variable. Combination e.g. create n1*n2* runs by specifying n i values for the i th variable Tornado method or one-at-a-time uncertainty analysis. Requires 3 discrete values (low, min, high) of each variable. Monte-Carlo simulation. User can specify continuous or discrete distributions which are randomly sampled for each run. User specifies the number of runs to do. Plackett-Burman experimental design. Requires "+1" and "1" values of each variable, but it's usually a good idea to test for curvature, so run an allzero case too.

22 5. The tool uncertainty modelling Multiple Scenario Approach need to identify most significant reservoir uncertainties and ranges varying one-parameter-at-a-time (Tornado) is a starting point then a reliable method for combining parameters in an efficient set of simulations is needed (experimental design) and then the ability to use statistics to gauge the impact of the results

23 5. The tool data analysis Data Analysis import output vector data from simulator output files (for all decks) partially filter the data that is imported plot deck vectors (i.e. vectors for a specific deck) plot simulated with history (e.g. FOPT & FOPTH) plot ensemble vector against deck number or against ensemble variable simple statistics on individual vectors

24 5. The tool workflow description 1. create ensemble 2. define core model 3. define variables & generate range of values 4. generate & submit decks, import output data 5. plot vectors & analyze results differences between ensembles and/or decks may be: subsurface unknowns e.g. geological realizations etc. development scenarios e.g. infill location, water injection start date numerical issues e.g. model sizes, computational parameters etc.

25 5. The tool ensemble vector plot 1

26 5. The tool ensemble vector plot 2

27 5. The tool ensemble vector plot 3

28 5. The tool ensemble vector table

29 5. The tool ensemble vector plot vs deck

30 5. The tool ensemble vector plot vs ensemble variable

31 5. The tool ensemble variable plot

32 5. The tool ensemble variable table

33 6. Case Study - Infill Well Infill well vs no infill well 11 different geological realisations (perm & poro distribution) Want to identify what model variables are most significant Tornado algorithm on 9 variables to reduce to 4 variables Combine algorithm on 4 variables Allocate probabilities to variable values to generate an S-curve Select a number of models to use in future runs

34 6. Case Study Infill Well Project Workflow Task Workflow repeat for prediction case create base case define tornado values run hmatch cases visually inspect hmatch calculate incrementals identify most significant variables copy base case define combined values run hmatch cases visually inspect hmatch generate S-curve repeat for prediction case Stage 1 Identify Key Variables and Valid Cases determine P Stage 2 In Depth Analysis of Key Variables

35 6. Case Study Infill Well Project Workflow Stage 1 repeat for prediction case create base case define tornado values run hmatch cases visually inspect hmatch calculate incrementals identify most significant variables copy base case define combined values run hmatch cases visually inspect hmatch generate S-curve repeat for prediction case Stage 1 Identify Key Variables and Valid Cases determine P Stage 2 In Depth Analysis of Key Variables

36 6. Case Study Setup Ensemble Create ensemble variables and assign low-mid-high to each Variables will be used in tornado analysis to identify the big hitters

37 6. Case Study Setup Ensemble Directives enclosed in curly braces {formula 1-$residual_g gas} contain one statement or statements separated by semi-colons a statement is a command word optionally followed by arguments variables in the argument must be preceded by a $ value directive MULTIPLY formula directive MAXVALUE PERMX {value $highperm_leman} / / SWL {formula $residual_gas} / /

38 6. Case Study Setup Ensemble Edit the ensemble control file {value $residual_gas} insert directives instructions for Rezen about how to use the variables

39 6. Case Study Generate Decks Decks Created Each deck corresponds to one.data simulator input file.

40 6. Case Study Setup Ensemble Vectors imported simulation output files

41 6. Case Study Setup Ensemble Vectors View deck vectors

42 6. Case Study Setup Ensemble Vectors View ensemble vectors Ensemble vector is a collection of related deck vectors Time Plot

43 6. Case Study Setup Ensemble Vectors View ensemble vectors Tornado Plot

44 6. Case Study Visual History Match Identify cases that don t history match FGPR Left mouse button for drag graph Right mouse button for drag legend Press z in plot for zoom Decks Case D0001 aquifer size = 0 D0002 aquifer strength = 0 D0003 reservoir cont, polygons = A+B only D0004 carboniferous leman transmissibility = 0 D0006 Facies proportion = 30:70

45 6. Case Study repeat for infill well Repeat same process as before Data check ensemble control file Generate decks Submit decks Create ensemble vectors

46 6. Case Study Identify most significant variables R2 FGPT R2P1 FGPT These are only results from R2. In reality need to consider all 11 realisations together. R2P1 FGPT_F R2 FGPT_F

47 6. Case Study Infill Well Project Workflow Stage 2 repeat for prediction case create base case define tornado values run hmatch cases visually inspect hmatch calculate incrementals identify most significant variables copy base case define combined values run hmatch cases visually inspect hmatch generate S-curve repeat for prediction case Stage 1 Identify Key Variables and Valid Cases determine P Stage 2 In Depth Analysis of Key Variables

48 6. Case Study Stage 2 In depth analysis of key variables Key variables were found to be: Reservoir continuity Aquifer Size res_cont aqu_size Carboniferous facies proportion carb_facies High perm streak in Leman highperm_leman (client suggestion) Aquifer strength was also significant but it is directly related to aquifer size so it was discarded from further analysis. Full factorial analysis of the 4 variables = 3^4 = 81 cases/realisation But, from history match in stage 1 aqu_size downside, res_cont downside and carb_facies downside can be discarded. So, full factorial analysis of the 4 variables = 2x2x2x3=24 cases/realisation

49 6. Case Study Stage 2 Load output files and import vectors

50 6. Case Study Generating S-Curve Ensemble Variable low prob mid prob high prob Reservoir Continuity Aquifer Size Facies proportion L 0.30 M 0.35 H 0.35 High Perm Streak

51 6. Case Study Generating S-Curve Cumula ative Probab bility MonteCarlo (250 Runs) ED+ Tornado (23 Runs) Plackett-Burman ED (10 Runs) Cumulative Oil per Well (MMstb)

52 7. What comes next? run manager support for additional simulators integration with load balancers data analysis s-curve generation & display response surface plots user defined objective/goodness-of-fit functions history matching user defined history match variables, ranges, objective functions optimisation algorithms

53 7. What comes next?...data analysis response surface

54 7. What comes next?...data analysis objective function nwells ntimes Σ w j Σ w t abs( s t -h t ) n j=1 t=1 nwells ntimes Σ w Σ j abs(w t.h t ) n j=1 t=1

55 7. What comes next?...history matching no history match is unique aim is to get a model with good predictive capability define and implement workflow goodness of fit/ objective functions selecting history match variables & defining value ranges defining algorithms for adjusting the history match variables in the model to improve the match

Tutorial 1: Standard usage

Tutorial 1: Standard usage Introduction This tutorial details the following steps: importing an existing data set, editing the data, saving the project, running and monitoring simulation, viewing results vectors, and creating reports.

More information

SMART WELL MODELLING. Design, Scenarios and Optimisation

SMART WELL MODELLING. Design, Scenarios and Optimisation Page 1 Introduction Smart or complex wells are in increasing use by operators as reservoir environments become more challenging. The wells include a number of smart devices installed to achieve a variety

More information

Joint quantification of uncertainty on spatial and non-spatial reservoir parameters

Joint quantification of uncertainty on spatial and non-spatial reservoir parameters Joint quantification of uncertainty on spatial and non-spatial reservoir parameters Comparison between the Method and Distance Kernel Method Céline Scheidt and Jef Caers Stanford Center for Reservoir Forecasting,

More information

Ensemble-based decision making for reservoir management present and future outlook. TPD R&T ST MSU DYN and FMU team

Ensemble-based decision making for reservoir management present and future outlook. TPD R&T ST MSU DYN and FMU team Ensemble-based decision making for reservoir management present and future outlook TPD R&T ST MSU DYN and FMU team 11-05-2017 The core Ensemble based Closed Loop Reservoir Management (CLOREM) New paradigm

More information

PTE 519 Lecture Note Finite Difference Approximation (Model)

PTE 519 Lecture Note Finite Difference Approximation (Model) PTE 519 Lecture Note 3 3.0 Finite Difference Approximation (Model) In this section of the lecture material, the focus is to define the terminology and to summarize the basic facts. The basic idea of any

More information

A Geostatistical and Flow Simulation Study on a Real Training Image

A Geostatistical and Flow Simulation Study on a Real Training Image A Geostatistical and Flow Simulation Study on a Real Training Image Weishan Ren (wren@ualberta.ca) Department of Civil & Environmental Engineering, University of Alberta Abstract A 12 cm by 18 cm slab

More information

tnavigator 17.2 Rock Flow Dynamics June 2017г.

tnavigator 17.2 Rock Flow Dynamics June 2017г. tnavigator 17.2 Rock Flow Dynamics June 2017г. Modules of tnavigator Designers Geology Designer Model Designer Network Designer Simulation Black Oil Compositional model Analyze results Graphical User Interface

More information

Tutorial 3: Constructing a PEBI simulation grid

Tutorial 3: Constructing a PEBI simulation grid Objective The aim of this section is to demonstrate how a PEBI simulation grid can be constructed using the Unstructured Gridder option in ECLIPSE Office. The primary purpose of this tutorial is to familiarize

More information

tnavigator 17.3 Rock Flow Dynamics September 2017г.

tnavigator 17.3 Rock Flow Dynamics September 2017г. tnavigator 17.3 Rock Flow Dynamics September 2017г. Modules of tnavigator Designers Geology Designer Model Designer Network Designer PVT Designer (included in Geology, Model and Network Designer) VFP Designer

More information

ROBUST TUNING TO IMPROVE SPEED AND MAINTAIN ACCURACY OF FLOW SIMULATION. OPM summit October, Bergen Rohith Nair

ROBUST TUNING TO IMPROVE SPEED AND MAINTAIN ACCURACY OF FLOW SIMULATION. OPM summit October, Bergen Rohith Nair ROBUST TUNING TO IMPROVE SPEED AND MAINTAIN ACCURACY OF FLOW SIMULATION OPM summit 18-19 October, Bergen Rohith Nair OVERVIEW Introduction Model tuning as an optimization problem Methodology Experiments

More information

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR 1 A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR B. Todd HOFFMAN and Jef CAERS Stanford University, Petroleum Engineering, Stanford CA 94305-2220 USA

More information

Applied Reservoir Simulation. Course. Workshop Problems

Applied Reservoir Simulation. Course. Workshop Problems Applied Reservoir Simulation Course Workshop Problems Reservoir Simulation Application Training Course and (Eclipse) Workshop GeoQuest Training and Development, And NExT Denver and Houston March 06 Applied

More information

A bold advance in reservoir simulation performance Parallel Interactive Reservoir Simulator

A bold advance in reservoir simulation performance Parallel Interactive Reservoir Simulator A bold advance in reservoir simulation performance Parallel Interactive Reservoir Simulator The industry first integrated modeling and data analysis framework centered on dynamic reservoir simulations

More information

Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction

Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction Stefan Zanon, Fuenglarb Zabel, and Clayton V. Deutsch Centre for Computational Geostatistics (CCG) Department of Civil

More information

Rubis (NUM) Tutorial #1

Rubis (NUM) Tutorial #1 Rubis (NUM) Tutorial #1 1. Introduction This example is an introduction to the basic features of Rubis. The exercise is by no means intended to reproduce a realistic scenario. It is assumed that the user

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

Thermal Reservoir Simulator for Microsoft Windows TM

Thermal Reservoir Simulator for Microsoft Windows TM Thermal Reservoir Simulator for Microsoft Windows TM Designed for use with the Microsoft Windows XP TM, and later, operating systems: Simulator Features Simulator Applications Radial and Cartesian Coordinates

More information

CHAPTER 2 DESIGN DEFINITION

CHAPTER 2 DESIGN DEFINITION CHAPTER 2 DESIGN DEFINITION Wizard Option The Wizard is a powerful tool available in DOE Wisdom to help with the set-up and analysis of your Screening or Modeling experiment. The Wizard walks you through

More information

Automatic History Matching On The Norne Simulation Model

Automatic History Matching On The Norne Simulation Model Automatic History Matching On The Norne Simulation Model Eirik Morell - TPG4530 - Norwegian University of Science and Technology - 2008 Abstract This paper presents the result of an automatic history match

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Modeling response uncertainty Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Modeling Uncertainty in the Earth Sciences High dimensional Low dimensional uncertain uncertain certain

More information

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 3(6) pp. 224-234, July, 2013 Available online http://www.interesjournals.org/irjgm Copyright 2013 International Research Journals

More information

How to load rescue and create model Trainings Rock Flow Dynamics

How to load rescue and create model Trainings Rock Flow Dynamics How to load rescue and create model Trainings 2015 Rock Flow Dynamics tnavigator Model Designer 2 Static and dynamic model in one GUI Change static model and run hydrodynamic model in one window. Edit

More information

A Geomodeling workflow used to model a complex carbonate reservoir with limited well control : modeling facies zones like fluid zones.

A Geomodeling workflow used to model a complex carbonate reservoir with limited well control : modeling facies zones like fluid zones. A Geomodeling workflow used to model a complex carbonate reservoir with limited well control : modeling facies zones like fluid zones. Thomas Jerome (RPS), Ke Lovan (WesternZagros) and Suzanne Gentile

More information

Robust Production Optimization with Capacitance-Resistance Model as Proxy

Robust Production Optimization with Capacitance-Resistance Model as Proxy Robust Production Optimization with Capacitance-Resistance Model as Proxy What is Robust Production Optimization? Production Optimization: To optimize the objective by tuning the control variables (e.g.

More information

Decision Support Risk handout. Simulating Spreadsheet models

Decision Support Risk handout. Simulating Spreadsheet models Decision Support Models @ Risk handout Simulating Spreadsheet models using @RISK 1. Step 1 1.1. Open Excel and @RISK enabling any macros if prompted 1.2. There are four on line help options available.

More information

Integration Requirements for Cross- Disciplinary Uncertainty Quantification turn Workflows into a Big-loop and Big-data Exercise?

Integration Requirements for Cross- Disciplinary Uncertainty Quantification turn Workflows into a Big-loop and Big-data Exercise? Integration Requirements for Cross- Disciplinary Uncertainty Quantification turn Workflows into a Big-loop and Big-data Exercise? Ralf Schulze-Riegert Schlumberger Information Solutions; SPT Technology

More information

Groundwater in Hydrologic Cycle

Groundwater in Hydrologic Cycle Groundwater in Hydrologic Cycle Types of Terrestrial Water Surface Water Soil Moisture Ground water Pores Full of Combination of Air and Water Unsaturated Zone / Zone of Aeration / Vadose (Soil Water)

More information

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS John R Appleyard Jeremy D Appleyard Polyhedron Software with acknowledgements to Mark A Wakefield Garf Bowen Schlumberger Outline of Talk Reservoir

More information

High Resolution Geomodeling, Ranking and Flow Simulation at SAGD Pad Scale

High Resolution Geomodeling, Ranking and Flow Simulation at SAGD Pad Scale High Resolution Geomodeling, Ranking and Flow Simulation at SAGD Pad Scale Chad T. Neufeld, Clayton V. Deutsch, C. Palmgren and T. B. Boyle Increasing computer power and improved reservoir simulation software

More information

Adaptive multi-scale ensemblebased history matching using wavelets

Adaptive multi-scale ensemblebased history matching using wavelets Adaptive multi-scale ensemblebased history matching using wavelets EnKF workshop Bergen May 2013 Théophile Gentilhomme, Dean Oliver, Trond Mannesth, Remi Moyen, Guillaume Caumon I - 2/21 Motivations Match

More information

Tutorial 7. Water Table and Bedrock Surface

Tutorial 7. Water Table and Bedrock Surface Tutorial 7 Water Table and Bedrock Surface Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Data Input. 2 Step 1: Open Adaptive Groundwater Input (.agw) File. 2 Step 2: Assign Material

More information

Generic framework for taking geological models as input for reservoir simulation

Generic framework for taking geological models as input for reservoir simulation Generic framework for taking geological models as input for reservoir simulation Collaborators: SINTEF: Texas A&M: NTNU: Stanford Stein Krogstad, Knut-Andreas Lie, Vera L. Hauge Yalchin Efendiev and Akhil

More information

Topaze Guided Session #2

Topaze Guided Session #2 Ecrin v4.20 - Doc v4.20.01 - KAPPA 1988-2011 Topaze Guided Session #2 TopGS02-1/12 Topaze Guided Session #2 A01 Requirements The following guided session uses the file TopGS02_FieldMap.bmp installed during

More information

v Prerequisite Tutorials Required Components Time

v Prerequisite Tutorials Required Components Time v. 10.0 GMS 10.0 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

Antoine Bertoncello, Hongmei Li and Jef Caers

Antoine Bertoncello, Hongmei Li and Jef Caers Antoine Bertoncello, Hongmei Li and Jef Caers model created by surface based model (Bertoncello and Caers, 2010) A conditioning methodology have been developed and tested on a model with few parameters

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Modeling spatial continuity Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Motivation uncertain uncertain certain or uncertain uncertain Spatial Input parameters Spatial Stochastic

More information

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Oliveira, Gonçalo Soares Soares, Amílcar Oliveira (CERENA/IST) Schiozer, Denis José (UNISIM/UNICAMP) Introduction

More information

GSSEA-Light. Lecture 1: Introduction to the Statistical Energy Analysis Software

GSSEA-Light. Lecture 1: Introduction to the Statistical Energy Analysis Software GSSEA-Light Lecture 1: Introduction to the Statistical Energy Analysis Software Sweden, 2010 1 Statistical Energy Analysis Calculation of acoustic and vibratory response in complex systems at higher frequencies

More information

SPE MS Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization

SPE MS Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization SPE-185077-MS Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization Bertrand Groulx, Verdazo Analytics; Jim Gouveia, Rose & Associates, LLP; Don Chenery, Verdazo Analytics

More information

RM03 Integrating Petro-elastic Seismic Inversion and Static Model Building

RM03 Integrating Petro-elastic Seismic Inversion and Static Model Building RM03 Integrating Petro-elastic Seismic Inversion and Static Model Building P. Gelderblom* (Shell Global Solutions International BV) SUMMARY This presentation focuses on various aspects of how the results

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial v. 10.3 GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

Consistently integrate static and dynamic data into reservoir models while accounting for uncertainty the ResX approach

Consistently integrate static and dynamic data into reservoir models while accounting for uncertainty the ResX approach Consistently integrate static and dynamic data into reservoir models while accounting for uncertainty the ResX approach FORCE Workshop Uncertainty handling in static-dynamic modelling workflows Jon Sætrom

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

2D Geostatistical Modeling and Volume Estimation of an Important Part of Western Onland Oil Field, India.

2D Geostatistical Modeling and Volume Estimation of an Important Part of Western Onland Oil Field, India. and Volume Estimation of an Important Part of Western Onland Oil Field, India Summary Satyajit Mondal*, Liendon Ziete, and B.S.Bisht ( GEOPIC, ONGC) M.A.Z.Mallik (E&D, Directorate, ONGC) Email: mondal_satyajit@ongc.co.in

More information

SPE Distinguished Lecturer Program

SPE Distinguished Lecturer Program SPE Distinguished Lecturer Program Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow

More information

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Andrea Zunino, Katrine Lange, Yulia Melnikova, Thomas Mejer Hansen and Klaus Mosegaard 1 Introduction Reservoir modeling

More information

A methodology for the rigorous verification of plasma simulation codes

A methodology for the rigorous verification of plasma simulation codes A methodology for the rigorous verification of plasma simulation codes Fabio Riva P. Ricci, C. Beadle, F.D. Halpern, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, P. Paruta, C. Wersal École Polytechnique

More information

ENV Laboratory 2: Graphing

ENV Laboratory 2: Graphing Name: Date: Introduction It is often said that a picture is worth 1,000 words, or for scientists we might rephrase it to say that a graph is worth 1,000 words. Graphs are most often used to express data

More information

Design of Experiments

Design of Experiments Seite 1 von 1 Design of Experiments Module Overview In this module, you learn how to create design matrices, screen factors, and perform regression analysis and Monte Carlo simulation using Mathcad. Objectives

More information

UNIT I READING: GRAPHICAL METHODS

UNIT I READING: GRAPHICAL METHODS UNIT I READING: GRAPHICAL METHODS One of the most effective tools for the visual evaluation of data is a graph. The investigator is usually interested in a quantitative graph that shows the relationship

More information

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Summary In this paper we present a new approach to the interpretation

More information

A 10-minute introduction to. SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation

A 10-minute introduction to. SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation A 10-minute introduction to SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation 1 The basics First, let s learn the SynRad+ terminology and the interface in a few slides. Or, if you

More information

SPE Copyright 2012, Society of Petroleum Engineers

SPE Copyright 2012, Society of Petroleum Engineers SPE 151994 Application of Surrogate Reservoir Model (SRM) to an Onshore Green Field in Saudi Arabia; Case Study Shahab D. Mohaghegh, Intelligent Solutions, Inc. & West Virginia University, Jim Liu, Saudi

More information

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Part 1: Planar Analysis A Deterministic Analysis This exercise will demonstrate the basics of a deterministic limit equilibrium planar analysis

More information

12. Defining Fluid Contacts

12. Defining Fluid Contacts 12. Defining Fluid Contacts 12.1 Creating a New Contact Set After having built a Petrel 3D grid and prior to running the volume calculation, the various contacts should be defined in the Make Contacts

More information

Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data

Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data Exa Corporation 2017 CONTACT Exa Corporation 55 Network Drive Burlington, MA USA 01803 1.781.564.0200 www.exa.com Copyright 2017 Exa

More information

A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING

A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING 1 A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING Jonathan N Carter and Pedro J Ballester Dept Earth Science and Engineering, Imperial College, London Abstract Non-linear

More information

Coevolution of Simulator Proxies and Sampling Strategies for Petroleum Reservoir Modeling

Coevolution of Simulator Proxies and Sampling Strategies for Petroleum Reservoir Modeling Coevolution of Simulator Proxies and Sampling Strategies for Petroleum Reservoir Modeling Tina Yu Memorial University of Newfoundland, Canada Dave Wilkinson Chevron Energy Technology Company, USA Outline

More information

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs In this technology assignment, you will find a quadratic function that passes through three of the points on each of the scatter plots you created in an earlier technology assignment. You will need the

More information

Depth Conversion Methods & Petrel Workflows

Depth Conversion Methods & Petrel Workflows Depth Conversion Methods & Petrel Workflows Course Information Alan Atkinson March 2016 Depth Conversion Methods & Petrel Workflows 2016 Alan Atkinson, AA Geophysical Ltd Course Description Depth Conversion

More information

From inversion results to reservoir properties

From inversion results to reservoir properties From inversion results to reservoir properties Drs. Michel Kemper, Andrey Kozhenkov. От результатов инверсий к прогнозу коллекторских св-в. Д-р. Мишель Кемпер, Андрей Коженков. Contents 1. Not the 3D Highway

More information

Calibration of NFR models with interpreted well-test k.h data. Michel Garcia

Calibration of NFR models with interpreted well-test k.h data. Michel Garcia Calibration of NFR models with interpreted well-test k.h data Michel Garcia Calibration with interpreted well-test k.h data Intermediate step between Reservoir characterization Static model conditioned

More information

BETTER from TECHNOLOGIES.

BETTER from TECHNOLOGIES. Integrated static and BRIDGING dynamic THE modeling GAP TO BETTER from TECHNOLOGIES. reservoir to surface network Simple facts on Rock Flow Dynamics and tnavigator Rock Flow Dynamics is offering high performance

More information

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis Tutorial 7 Finite Element Groundwater Seepage Steady state seepage analysis Groundwater analysis mode Slope stability analysis Introduction Within the Slide program, Slide has the capability to carry out

More information

Tutorial 6. Pumping Well and River

Tutorial 6. Pumping Well and River Tutorial 6 Pumping Well and River Table of Contents Objective. 1 Step-by-Step Procedure... 2 Section 1 Data Input. 2 Step 1: Open Adaptive Groundwater Input (.agw) File. 2 Step 2: Pumping Well Design Database

More information

Pseudo Relative Permeabilities A means of more accurate reservoir simulations

Pseudo Relative Permeabilities A means of more accurate reservoir simulations Shell Exploration & Production Europe Pseudo Relative Permeabilities A means of more accurate reservoir simulations 1. History of pseudo relative permeability methods 2. Example of pseudos technology developed

More information

Verification Procedures for Simulation of Fully Coupled Behavior of Porous Media

Verification Procedures for Simulation of Fully Coupled Behavior of Porous Media Verification Procedures for Simulation of Fully Coupled Behavior of Porous Media Boris, Panagiota Tasiopoulou, Mahdi Taiebat, Nima Tafazzoli, Mario Martinelli UCD, LBNL, NTUA, UBC, UCD, URoma USNCCM, Minneapolis,

More information

TOUGH2 Example: Initial State and Production Analyses in a Layered Model

TOUGH2 Example: Initial State and Production Analyses in a Layered Model 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com TOUGH2 Example: Initial State and Production Analyses in a Layered Model PetraSim 5 Table of Contents Acknowledgements...

More information

Machine Learning Reliability Techniques for Composite Materials in Structural Applications.

Machine Learning Reliability Techniques for Composite Materials in Structural Applications. Machine Learning Reliability Techniques for Composite Materials in Structural Applications. Roberto d Ippolito, Keiichi Ito, Silvia Poles, Arnaud Froidmont Noesis Solutions Optimus by Noesis Solutions

More information

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization 1 Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department

More information

Excel Primer CH141 Fall, 2017

Excel Primer CH141 Fall, 2017 Excel Primer CH141 Fall, 2017 To Start Excel : Click on the Excel icon found in the lower menu dock. Once Excel Workbook Gallery opens double click on Excel Workbook. A blank workbook page should appear

More information

Downscaling saturations for modeling 4D seismic data

Downscaling saturations for modeling 4D seismic data Downscaling saturations for modeling 4D seismic data Scarlet A. Castro and Jef Caers Stanford Center for Reservoir Forecasting May 2005 Abstract 4D seismic data is used to monitor the movement of fluids

More information

Unit I Reading Graphical Methods

Unit I Reading Graphical Methods Unit I Reading Graphical Methods One of the most effective tools for the visual evaluation of data is a graph. The investigator is usually interested in a quantitative graph that shows the relationship

More information

EPANET Tutorial. Project Setup Our first task is to create a new project in EPANET and make sure that certain default options are selected.

EPANET Tutorial. Project Setup Our first task is to create a new project in EPANET and make sure that certain default options are selected. EPANET Tutorial Example Network In this tutorial we will analyze the simple distribution network shown below. It consists of a source reservoir (e.g., a treatment plant clearwell) from which water is pumped

More information

UNIVERSAL DATA ACQUISITION SCANDAS SERVER/CLIENT SMART SIMULATOR MODBUS. FIELDAQ AS Vingvegen Sola, Norway

UNIVERSAL DATA ACQUISITION SCANDAS SERVER/CLIENT SMART SIMULATOR MODBUS.   FIELDAQ AS Vingvegen Sola, Norway 2017 UNIVERSAL DATA ACQUISITION SCANDAS SERVER/CLIENT SMART SIMULATOR MODBUS wwwfieldaqcom FIELDAQ AS Vingvegen 2 4050 Sola, Norway P: (+47) 99 698 698 E:support@fieldaqcom SERVER CLIENT SCANDAS SERVER

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving Excel Tutorial VIII

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving Excel Tutorial VIII Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving Excel Tutorial VIII EXCEL Basics (last updated 4/12/06 by GGB) Objectives: These tutorials are designed to

More information

Storage hierarchy. Textbook: chapters 11, 12, and 13

Storage hierarchy. Textbook: chapters 11, 12, and 13 Storage hierarchy Cache Main memory Disk Tape Very fast Fast Slower Slow Very small Small Bigger Very big (KB) (MB) (GB) (TB) Built-in Expensive Cheap Dirt cheap Disks: data is stored on concentric circular

More information

PorePy: A Python Simulation Tool for Fractured and Deformable Porous Media. Eirik Keilegavlen, Alessio Fumagalli, Runar Berge, Ivar Stefansson

PorePy: A Python Simulation Tool for Fractured and Deformable Porous Media. Eirik Keilegavlen, Alessio Fumagalli, Runar Berge, Ivar Stefansson PorePy: A Python Simulation Tool for Fractured and Deformable Porous Media Eirik Keilegavlen, Alessio Fumagalli, Runar Berge, Ivar Stefansson Summary Meshing and discretization of dynamics in fractured

More information

ADAPTIVE TILE CODING METHODS FOR THE GENERALIZATION OF VALUE FUNCTIONS IN THE RL STATE SPACE A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

ADAPTIVE TILE CODING METHODS FOR THE GENERALIZATION OF VALUE FUNCTIONS IN THE RL STATE SPACE A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL ADAPTIVE TILE CODING METHODS FOR THE GENERALIZATION OF VALUE FUNCTIONS IN THE RL STATE SPACE A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY BHARAT SIGINAM IN

More information

Closing the Loop via Scenario Modeling in a Time-Lapse Study of an EOR Target in Oman

Closing the Loop via Scenario Modeling in a Time-Lapse Study of an EOR Target in Oman Closing the Loop via Scenario Modeling in a Time-Lapse Study of an EOR Target in Oman Tania Mukherjee *(University of Houston), Kurang Mehta, Jorge Lopez (Shell International Exploration and Production

More information

Using the PetraSim Pre- and Post-Processor for TETRAD

Using the PetraSim Pre- and Post-Processor for TETRAD Thunderhead Engineering Consultants 1006 Poyntz Avenue Manhattan, KS 66502-5459 USA www.thunderheadeng.com (+1) 785-770-8511 I N C O R P O R A T E D Using the PetraSim Pre- and Post-Processor for TETRAD

More information

Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Petroleum Engineering/Reservoir Engineering Writer : Ibnu Hafidz Arief Faculty supervisor: Prof.Dr. Hans Spring semester,

More information

Geometry ~ Unit 2. Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D

Geometry ~ Unit 2. Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D Title Suggested Time Frame 1 st and 2 nd Six Weeks Suggested Duration: 30 Days Geometry Big Ideas/Enduring Understandings Module 4 Parallel

More information

Misc topics from Statoil. Joakim Hove

Misc topics from Statoil. Joakim Hove Misc topics from Statoil Joakim Hove Content 1. ctypes a very convenient way to call C from Python. 2. ert.ecl - a ctypes based collection of Python classes to work with ECLIPSE binary files. 3. OPM Eclipse

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

ANSYS AIM Tutorial Flow over an Ahmed Body

ANSYS AIM Tutorial Flow over an Ahmed Body Author(s): Sebastian Vecchi Created using ANSYS AIM 18.1 ANSYS AIM Tutorial Flow over an Ahmed Body Problem Specification Start Up Geometry Import Geometry Enclose Suppress Mesh Set Mesh Controls Generate

More information

EES Program Overview

EES Program Overview EES Program Overview EES (pronounced 'ease') is an acronym for Engineering Equation Solver. The basic function provided by EES is the numerical solution of a set of algebraic equations. EES can also be

More information

EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS. A Thesis PONGSATHORN LERLERTPAKDEE

EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS. A Thesis PONGSATHORN LERLERTPAKDEE EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS A Thesis by PONGSATHORN LERLERTPAKDEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

PLAXIS 2D. Tutorial Manual

PLAXIS 2D. Tutorial Manual PLAXIS 2D Tutorial Manual 2017 Build 8601 TABLE OF CONTENTS TABLE OF CONTENTS 1 Settlement of a circular footing on sand 7 1.1 Geometry 7 1.2 Case A: Rigid footing 8 1.3 Case B: Flexible footing 23 2 Submerged

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 04 CAD Import and Meshing from Conformal Faceting Input 14.5 Release Introduction to ANSYS FLUENT Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: CAD files will

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

11. Petrophysical Modeling

11. Petrophysical Modeling 11. Petrophysical Modeling 11.1 Deterministic Modeling When the well logs have been scaled up to the resolution of the cells in the 3D grid, the values for each cell along the well trajectory can be interpolated

More information

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation Faisal Alenezi Department of Petroleum and Natural Gas Engineering West Virginia University Email: falenezi@mix.wvu.edu Shahab Mohaghegh

More information

Mass Transport in a GDL with Variable Wettability

Mass Transport in a GDL with Variable Wettability Mass Transport in a GDL with Variable Wettability Jürgen Becker Christian Wagner Andreas Wiegmann 1 Who is Math2Market? Math2Market GmbH was founded September 2011 in Kaiserslautern. Spin-off of Fraunhofer

More information

Transient Groundwater Analysis

Transient Groundwater Analysis Transient Groundwater Analysis 18-1 Transient Groundwater Analysis A transient groundwater analysis may be important when there is a time-dependent change in pore pressure. This will occur when groundwater

More information

Chapter 4 Determining Cell Size

Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size The third tutorial is designed to give you a demonstration in using the Cell Size Calculator to obtain the optimal cell size for your circuit

More information