Model Verification Using Gaussian Mixture Models

Size: px
Start display at page:

Download "Model Verification Using Gaussian Mixture Models"

Transcription

1 Model Verification Using Gaussian Mixture Models A Parametric, Feature-Based Method Valliappa Lakshmanan 1,2 John Kain 2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar Research and Development Division National Severe Storms Laboratory Apr Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 1 / 26

2 Model Verification Are these good forecasts? 3 hr Forecast 15-hr Forecast Observed = Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 2 / 26

3 Model Verification Traditional verification methods Can simply compare the forecast and observed images pixel by pixel, but: 1 Small-scale structure differences lead to large errors 2 Position errors lead to double-penalty 3 Difficult to diagnose errors from MSE, POD/FAR/CSI, Brier score, etc. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 3 / 26

4 Model Verification 1. Neighborhood methods Instead of comparing pixel-by-pixel, evaluate forecasts within a local neighborhood: compute fractional coverage and Brier score for different box sizes (Roberts and Lean, 2008) Addresses only problem of small-scale structure differences. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 4 / 26

5 Model Verification 2. Scale decomposition Instead of computing errors for different box sizes, decompose the images into images using wavelets and parcel out the error at different scales and intensity thresholds (Casati et al. 2004) Addresses problems of small-scale structure differences and double penalty. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 5 / 26

6 3. Find deformations Model Verification Find deformations needed to make forecast field resemble observed field and compute error measures from deformation matrix (Gilleland 2009, Marzban 2009) Addresses only double penalty issue. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 6 / 26

7 Model Verification 4. Verify based on objects Identify objects based on thresholding the spatial fields and then associate objects to find object attributes (Davis et. al, 2009) Addresses all three issues, but object identification and assocation can be problematic. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 7 / 26

8 What is a GMM? Parametric Intuitively: find an optimal way to place Gaussian functions at various points in the image such that the sum of these Gaussians mimics the input gridded field. Original 5 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 8 / 26

9 Number of Gaussians Parametric The accuracy of fit gets better as you increase number of Gaussians. Original 10 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 9 / 26

10 Parametric Number of Gaussians Gaussians 50 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 10 / 26

11 Diminishing Returns Parametric Keeps getting more and more accurate: but at some point, the benefits of a parametric model are lost and you might as well just use the pixel values. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 11 / 26

12 The GMM GMM The GMM is defined as a weighted sum of K two-dimensional Gaussians: K G(x, y) = π k f k (x, y) (1) Σ xy is: 1 f (x, y) = 2π Σ xy k=1 1 )(y µy ))Σ e ((x µx xy ((x µ x )(y µ y )) T /2 ( ) σ 2 x σ xy σ xy Solved using an iterative approach [Lakshmanan and Kain, 2010]. σ 2 y (2) (3) Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 12 / 26

13 GMM Intensity? The GMM is defined so as to sum to 1, and the iterative method optimizes the likelihood of the parameters given the positions of the pixels (and not the intensity). Two minor changes: 1 The total intensity associated with all the pixels in the image is used to scale the GMM 2 More intensive locations are repeated several (m) times: m = 1 + γround( CDF(I xy) freq(i mode ) ) I xy < I mode (4) Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 13 / 26

14 Synthetic case Example Verification: Geometric Geometric dataset from [Ahijevych et al., 2009]. Chose 3 Gaussians without much intensity correction geom000 geom003 Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 14 / 26

15 Synthetic case Geometric: why is the fit so bad? 1 Abrupt changes in intensity: need more Gaussians 2 Fewer high-intensity pixels: need intensity correction Orig γ = 0 γ = 0.5 γ = 1 γ = 3 γ = 5 GMM fit better on real-world images Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 15 / 26

16 Synthetic case Example Verification: Geometric µ x µ y σx 2 σ xy σy 2 π k 0 Original pts right pts right pts right too big Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 16 / 26

17 Synthetic case Example Verification: Geometric µ x µ y σx 2 σ xy σy 2 π k pts right turned pts right huge Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 17 / 26

18 Perturbed dataset Perturbed cases 2km WRF from CAPS perturbed (See [Ahijevych et al., 2009]). fake000 fake003 fake007 Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 18 / 26

19 Perturbed cases GMM parameters for perturbed cases µ x µ y σx 2 σ xy σy 2 π k Original pts. right pts. down pts. right pts. down pts. right pts. down Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 19 / 26

20 Perturbed cases GMM parameters for perturbed cases Description µ x µ y σx 2 σ xy σy 2 π k 24 pts. right pts. down pts. right pts. down pts. right pts. down times pts. right pts. down minus 2 mm Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 20 / 26

21 Error measures Error measures Translation error: e tr = (µ xf µ xo ) 2 + (µ yf µ yo ) 2 (5) Rotation error: e rot = 180 π cos 1 (v f.v o ) (6) v f and v o are the maximum-variance eigen vectors of the covariance matrices (Σ) Scaling error: e sc = π k f π ko (7) Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 21 / 26

22 Associating Gaussians Error measures For each Gaussian in the forecast field, compute the overall error with each Gaussian of observed field and pick the one with the lowest error. e = 0.3 min( e tr 100, 1)+ 0.2 min(e rot, 180 e rot )/ (max(e sc, 1/e sc ) 1) This can also be used to rank model forecasts. The weights are subjective. (8) Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 22 / 26

23 Error measures Synthetic images: Rank Description e tr e rot e sc e 1 50 pts. right pts. right pts. right, too big pts. right, wrong orient pts. right, huge Rotation error on circular objects is undefined. Ranking: geom001, geom002, geom004, geom003 and finally geom005. Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 23 / 26

24 Error measures June 1, 2005 Model runs Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 24 / 26

25 Acknowledgements Error measures Funding for this research was provided under NOAA-OU Cooperative Agreement NA17RJ1227. The GMM fitting technique described in this paper has been implemented within the Warning Decision Support System Integrated Information (WDSSII; [Lakshmanan et al., 2007]) as part of the w2smooth process. It is available for download at Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 25 / 26

26 Error measures References Ahijevych, D., Gilleland, E., Brown, B., and Ebert, E. (2009). Application of spatial verification methods to idealized and NWP gridded precipitation forecasts. Wea. Forecasting, 24: Lakshmanan, V. and Kain, J. (2010). A Gaussian mixture model approach to forecast verification. Wea. Forecasting, 25(3): Lakshmanan, V., Smith, T., Stumpf, G. J., and Hondl, K. (2007). The warning decision support system integrated information. Wea. Forecasting, 22(3): Lakshmanan et. al (OU/NSSL) Verification using GMM TAMU-CC 26 / 26

Tuning an Algorithm for Identifying and Tracking Cells

Tuning an Algorithm for Identifying and Tracking Cells Tuning an Algorithm for Identifying and Tracking Cells VA L L I A P PA L A K S H M A N A N N AT I O N A L S E V E R E S T O R M S L A B O R AT O R Y / U N I V E R S I T Y O F O K L A H O M A J U LY, 2

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

Data Mining Storm Attributes

Data Mining Storm Attributes Data Mining Storm Attributes VA L L I A P PA L A K S H M A N A N N AT I O N A L S E V E R E S T O R M S L A B O R AT O R Y / U N I V E R S I T Y O F O K L A H O M A L A K S H M A N @ O U. E D U AT C I

More information

Scott Smith Advanced Image Processing March 15, Speeded-Up Robust Features SURF

Scott Smith Advanced Image Processing March 15, Speeded-Up Robust Features SURF Scott Smith Advanced Image Processing March 15, 2011 Speeded-Up Robust Features SURF Overview Why SURF? How SURF works Feature detection Scale Space Rotational invariance Feature vectors SURF vs Sift Assumptions

More information

3. Data Structures for Image Analysis L AK S H M O U. E D U

3. Data Structures for Image Analysis L AK S H M O U. E D U 3. Data Structures for Image Analysis L AK S H M AN @ O U. E D U Different formulations Can be advantageous to treat a spatial grid as a: Levelset Matrix Markov chain Topographic map Relational structure

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Normalized Texture Motifs and Their Application to Statistical Object Modeling

Normalized Texture Motifs and Their Application to Statistical Object Modeling Normalized Texture Motifs and Their Application to Statistical Obect Modeling S. D. Newsam B. S. Manunath Center for Applied Scientific Computing Electrical and Computer Engineering Lawrence Livermore

More information

Mixtures of Gaussians and Advanced Feature Encoding

Mixtures of Gaussians and Advanced Feature Encoding Mixtures of Gaussians and Advanced Feature Encoding Computer Vision Ali Borji UWM Many slides from James Hayes, Derek Hoiem, Florent Perronnin, and Hervé Why do good recognition systems go bad? E.g. Why

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

Occluded Facial Expression Tracking

Occluded Facial Expression Tracking Occluded Facial Expression Tracking Hugo Mercier 1, Julien Peyras 2, and Patrice Dalle 1 1 Institut de Recherche en Informatique de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9 2 Dipartimento

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018 CSCI 567, Fall 18 Haipeng Luo Homework #4 Programming Assignment Due: 11:59 pm, ovember 4, 2018 General instructions Your repository will have now a directory P4/. Please do not change the name of this

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Two-dimensional Kernel Smoothing: Using the R package smoothie

Two-dimensional Kernel Smoothing: Using the R package smoothie National Science Foundation Two-dimensional Kernel Smoothing: Using the R package smoothie Eric Gilleland NCAR/TN-502+STR NCAR Technical Notes National Center for Atmospheric Research P. O. Box 3000 Boulder,

More information

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation.

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation. Equation to LaTeX Abhinav Rastogi, Sevy Harris {arastogi,sharris5}@stanford.edu I. Introduction Copying equations from a pdf file to a LaTeX document can be time consuming because there is no easy way

More information

STATS306B STATS306B. Clustering. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

STATS306B STATS306B. Clustering. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010 STATS306B Jonathan Taylor Department of Statistics Stanford University June 3, 2010 Spring 2010 Outline K-means, K-medoids, EM algorithm choosing number of clusters: Gap test hierarchical clustering spectral

More information

Pit Pattern Classification of Zoom-Endoscopic Colon Images using D

Pit Pattern Classification of Zoom-Endoscopic Colon Images using D Pit Pattern Classification of Zoom-Endoscopic Colon Images using DCT and FFT Leonhard Brunauer Hannes Payer Robert Resch Department of Computer Science University of Salzburg February 1, 2007 Outline 1

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

MIL at ImageCLEF 2013: Scalable System for Image Annotation

MIL at ImageCLEF 2013: Scalable System for Image Annotation MIL at ImageCLEF 2013: Scalable System for Image Annotation Masatoshi Hidaka, Naoyuki Gunji, and Tatsuya Harada Machine Intelligence Lab., The University of Tokyo {hidaka,gunji,harada}@mi.t.u-tokyo.ac.jp

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Clustering Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Introduction to Data Science Boulder Clustering 1 of 9 Clustering Lab Review of k-means Work through

More information

Spatial Distributions of Precipitation Events from Regional Climate Models

Spatial Distributions of Precipitation Events from Regional Climate Models Spatial Distributions of Precipitation Events from Regional Climate Models N. Lenssen September 2, 2010 1 Scientific Reason The Institute of Mathematics Applied to Geosciences (IMAGe) and the National

More information

6. Object Identification L AK S H M O U. E D U

6. Object Identification L AK S H M O U. E D U 6. Object Identification L AK S H M AN @ O U. E D U Objects Information extracted from spatial grids often need to be associated with objects not just an individual pixel Group of pixels that form a real-world

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 06 Image Structures 13/02/06 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B Clustering in R d Clustering CSE 250B Two common uses of clustering: Vector quantization Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional

More information

IDENTIFYING AND TRACKING STORMS IN SATELLITE IMAGES

IDENTIFYING AND TRACKING STORMS IN SATELLITE IMAGES IDENTIFYING AND TRACKING STORMS IN SATELLITE IMAGES V. Lakshmanan 1,2, R. Rabin 1,3, V. DeBrunner 2 1 National Severe Storms Laboratory, Norman OK 2 University of Oklahoma, Norman OK 3 University of Wisconsin,

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions Others -- Noise Removal Techniques -- Edge Detection Techniques -- Geometric Operations -- Color Image Processing -- Color Spaces Xiaojun Qi Noise Model The principal sources of noise in digital images

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

An Efficient, General-Purpose Technique to Identify. Storm Cells in Geospatial Images

An Efficient, General-Purpose Technique to Identify. Storm Cells in Geospatial Images An Efficient, General-Purpose Technique to Identify Storm Cells in Geospatial Images Valliappa Lakshmanan 1,2,Kurt Hondl 2, Robert Rabin 2 Corresponding author: V Lakshmanan, 120 David L. Boren Blvd, Norman

More information

MODELED MESOSCALE GRAVITY WAVES: CONTINUOUS SPECTRUM AND ENERGY CASCADE Chungu Lu 1, Steven Koch, Fuqing Zhang, and Ning Wang

MODELED MESOSCALE GRAVITY WAVES: CONTINUOUS SPECTRUM AND ENERGY CASCADE Chungu Lu 1, Steven Koch, Fuqing Zhang, and Ning Wang P6.5 MODELED MESOSCALE GRAVITY WAVES: CONTINUOUS SPECTRUM AND ENERGY CASCADE Chungu Lu 1, Steven Koch, Fuqing Zhang, and Ning Wang NOAA Research-Forecast Systems Laboratory, Boulder, Colorado [In collaboration

More information

A hybrid object-based/pixel-based classification approach to detect geophysical phenomena

A hybrid object-based/pixel-based classification approach to detect geophysical phenomena A hybrid object-based/pixel-based classification approach to detect geophysical phenomena Xiang Li, Rahul Ramachandran*, Sara Graves, Sunil Movva Information Technology and Systems Center University of

More information

Processing of binary images

Processing of binary images Binary Image Processing Tuesday, 14/02/2017 ntonis rgyros e-mail: argyros@csd.uoc.gr 1 Today From gray level to binary images Processing of binary images Mathematical morphology 2 Computer Vision, Spring

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE A HIERARCHICAL, MULTISCALE TEXTURE SEGMENTATION ALGORITHM FOR REAL-WORLD SCENES.

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE A HIERARCHICAL, MULTISCALE TEXTURE SEGMENTATION ALGORITHM FOR REAL-WORLD SCENES. UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE A HIERARCHICAL, MULTISCALE TEXTURE SEGMENTATION ALGORITHM FOR REAL-WORLD SCENES A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements

More information

Facial Expression Detection Using Implemented (PCA) Algorithm

Facial Expression Detection Using Implemented (PCA) Algorithm Facial Expression Detection Using Implemented (PCA) Algorithm Dileep Gautam (M.Tech Cse) Iftm University Moradabad Up India Abstract: Facial expression plays very important role in the communication with

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Adaptive Background Mixture Models for Real-Time Tracking

Adaptive Background Mixture Models for Real-Time Tracking Adaptive Background Mixture Models for Real-Time Tracking Chris Stauffer and W.E.L Grimson CVPR 1998 Brendan Morris http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Motivation Video monitoring and surveillance

More information

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Image Segmentation: Thresholding Fall 205 Dr. Michael J. Reale FUNDAMENTALS Introduction Before we talked about edge-based segmentation Now, we will discuss a form of regionbased

More information

Mobile Face Recognization

Mobile Face Recognization Mobile Face Recognization CS4670 Final Project Cooper Bills and Jason Yosinski {csb88,jy495}@cornell.edu December 12, 2010 Abstract We created a mobile based system for detecting faces within a picture

More information

CRA method application for MesoVICT cases. A. Bundel and A. Muraviev, Hydrometcentre of Russia, Roshydromet

CRA method application for MesoVICT cases. A. Bundel and A. Muraviev, Hydrometcentre of Russia, Roshydromet CRA method application for MesoVICT cases A. Bundel and A. Muraviev, Hydrometcentre of Russia, Roshydromet Setup of experiments Mesovict core case: 20-22 June 2007 1-h precipitation accumulations Obs:

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs Felix Wang fywang2 John Wieting wieting2 Introduction We implement a texture classification algorithm using 2-D Noncausal Hidden

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

K-means clustering Based in part on slides from textbook, slides of Susan Holmes. December 2, Statistics 202: Data Mining.

K-means clustering Based in part on slides from textbook, slides of Susan Holmes. December 2, Statistics 202: Data Mining. K-means clustering Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 K-means Outline K-means, K-medoids Choosing the number of clusters: Gap test, silhouette plot. Mixture

More information

Chapter 5: Outlier Detection

Chapter 5: Outlier Detection Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 5: Outlier Detection Lecture: Prof. Dr.

More information

2.5 A STORM-TYPE CLASSIFIER USING SUPPORT VECTOR MACHINES AND FUZZY LOGIC

2.5 A STORM-TYPE CLASSIFIER USING SUPPORT VECTOR MACHINES AND FUZZY LOGIC 2.5 A STORM-TYPE CLASSIFIER USING SUPPORT VECTOR MACHINES AND FUZZY LOGIC Jennifer Abernethy* 1,2 and John K. Williams 2 1 University of Colorado, Boulder, Colorado 2 National Center for Atmospheric Research,

More information

Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics

Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics Masayo Haneda Peter M.W. Knijnenburg Harry A.G. Wijshoff LIACS, Leiden University Motivation An optimal compiler optimization

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Lecture 4 Image Enhancement in Spatial Domain

Lecture 4 Image Enhancement in Spatial Domain Digital Image Processing Lecture 4 Image Enhancement in Spatial Domain Fall 2010 2 domains Spatial Domain : (image plane) Techniques are based on direct manipulation of pixels in an image Frequency Domain

More information

14B.6 Exploring the Optimal Configuration of the High Resolution Ensemble Forecast System

14B.6 Exploring the Optimal Configuration of the High Resolution Ensemble Forecast System 14B.6 Exploring the Optimal Configuration of the High Resolution Ensemble Forecast System Israel L. Jirak 1*, Adam J. Clark 2, Brett Roberts 1,2,3, Burkely Gallo 2,3, and Steven J. Weiss 1 1 NOAA/NWS/NCEP/Storm

More information

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone:

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone: Remote Sensing & Photogrammetry W4 Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl 1 General procedures in image classification Conventional multispectral classification

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

Texture Similarity Measure. Pavel Vácha. Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University

Texture Similarity Measure. Pavel Vácha. Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University Texture Similarity Measure Pavel Vácha Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University What is texture similarity? Outline 1. Introduction Julesz

More information

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1 Machine vision systems Problem definition Image acquisition Image segmentation Connected component analysis Machine vision systems - 1 Problem definition Design a vision system to see a flat world Page

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Algorithms for Edge Detection and Enhancement for Real Time Images: A Comparative Study

Algorithms for Edge Detection and Enhancement for Real Time Images: A Comparative Study Algorithms for Edge Detection and Enhancement for Real Time Images: A Comparative Study Ashita Vermani, Akshyata Ojha Assistant Professor, Dept. of Electronics & Telecommunication., College of Engineering

More information

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A. 205-206 Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI

More information

AK Computer Vision Feature Point Detectors and Descriptors

AK Computer Vision Feature Point Detectors and Descriptors AK Computer Vision Feature Point Detectors and Descriptors 1 Feature Point Detectors and Descriptors: Motivation 2 Step 1: Detect local features should be invariant to scale and rotation, or perspective

More information

General Instructions. Questions

General Instructions. Questions CS246: Mining Massive Data Sets Winter 2018 Problem Set 2 Due 11:59pm February 8, 2018 Only one late period is allowed for this homework (11:59pm 2/13). General Instructions Submission instructions: These

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

Image Enhancement in Spatial Domain (Chapter 3)

Image Enhancement in Spatial Domain (Chapter 3) Image Enhancement in Spatial Domain (Chapter 3) Yun Q. Shi shi@njit.edu Fall 11 Mask/Neighborhood Processing ECE643 2 1 Point Processing ECE643 3 Image Negatives S = (L 1) - r (3.2-1) Point processing

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

Selection of Scale-Invariant Parts for Object Class Recognition

Selection of Scale-Invariant Parts for Object Class Recognition Selection of Scale-Invariant Parts for Object Class Recognition Gy. Dorkó and C. Schmid INRIA Rhône-Alpes, GRAVIR-CNRS 655, av. de l Europe, 3833 Montbonnot, France fdorko,schmidg@inrialpes.fr Abstract

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis Data Mining 4. Cluster Analysis 4.5 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction DBSCAN Algorithm OPTICS Algorithm DENCLUE Algorithm References Outline Introduction Introduction Density-based

More information

SAR IMAGE CHANGE DETECTION USING GAUSSIAN MIXTURE MODEL WITH SPATIAL INFORMATION

SAR IMAGE CHANGE DETECTION USING GAUSSIAN MIXTURE MODEL WITH SPATIAL INFORMATION SAR IMAGE CHANGE DETECTION USING GAUSSIAN MIXTURE MODEL WITH SPATIAL INFORMATION C. Iswarya 1, R. Meena Prakash 1 and R. Shantha Selva Kumari 2 1 Department of Electronics and Communication Engineering,

More information

Facial expression recognition using shape and texture information

Facial expression recognition using shape and texture information 1 Facial expression recognition using shape and texture information I. Kotsia 1 and I. Pitas 1 Aristotle University of Thessaloniki pitas@aiia.csd.auth.gr Department of Informatics Box 451 54124 Thessaloniki,

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

Motivation. Gray Levels

Motivation. Gray Levels Motivation Image Intensity and Point Operations Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong ong A digital image is a matrix of numbers, each corresponding

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Data Mining. Clustering. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Clustering. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Clustering Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 31 Table of contents 1 Introduction 2 Data matrix and

More information

Methods in Computer Vision: Mixture Models and their Applications

Methods in Computer Vision: Mixture Models and their Applications Methods in Computer Vision: Mixture Models and their Applications Oren Freifeld Computer Science, Ben-Gurion University May 7, 2017 May 7, 2017 1 / 40 1 Background Modeling Digression: Mixture Models GMM

More information

An Introduction to Pattern Recognition

An Introduction to Pattern Recognition An Introduction to Pattern Recognition Speaker : Wei lun Chao Advisor : Prof. Jian-jiun Ding DISP Lab Graduate Institute of Communication Engineering 1 Abstract Not a new research field Wide range included

More information