Multivariate distribution theory by holonomic gradient method. Akimichi Takemura, Shiga University June 28, 2016, IMS-APRM 2016

Size: px
Start display at page:

Download "Multivariate distribution theory by holonomic gradient method. Akimichi Takemura, Shiga University June 28, 2016, IMS-APRM 2016"

Transcription

1 Multivariate distribution theory by holonomic gradient method Akimichi Takemura, Shiga University June 28, 2016, IMS-APRM 2016

2 Outline 1. An advertisement and overview of my research on holonomic gradient method (HGM) 2. Definition and properties of holonomic functions 3. Example: ball probability for multivariate normal distribution 1

3 Advertisement of HGM HGM is a common ground, where statistics, algebra and numerical analysis meet. It is a general method and can be applied when functions are holonomic. It evaluates a function by numerically solving differential equations. It already has some success stories. It is numerically very accurate and with proper mix of symbolic and numerical computations, it is often faster than existing methods. 2

4 References of HGM Please google hgm takemura or hgm takayama to find other success stories. Then you find This page lists 25 papers. You also find CRAN package for HGM by Takayama, containing many R commands based on the results of published papers. 3

5 Origin of my research on HGM Origin: a problem session by Takayama in September, HGM proposed in Holonomic gradient descent and its application to the Fisher-Bingham integral, Advances in Applied Mathematics, 47, N 3 OST My coauthors on HGM: H.Hashiguchi, J.Hayakawa, T.Koyama, S.Kuriki, N.Marumo, H.Nakayama, K.Nishiyama, M.Noro, Y.Numata, K.Ohara, T.Sei, C.Siriteanu, N.Takayama. 4

6 Definition and properties of holonomic functions Univariate homogeneous case: A smooth function f is holonomic if f satisfies the following ODE 0 = h k (x)f (k) (x) + + h 1 (x)f (x) + h 0 (x)f(x), where h k (x),..., h 1 (x), h 0 (x) are rational functions of x. Example: for f(x) = exp( x 2 /2), we have 0 = f (x) + xf(x). 5

7 Multivariate case (for simplicity let dim = 2) A smooth f(x, y) is holonomic if for each of x and y, fixing the other variable arbitrarily, we have a holonomic function in x and y. Namely, if there exist rational functions h 1 0(x, y),..., h 1 k 1 (x, y), h 2 0(x, y),..., h 2 k 2 (x, y) in x, y such that k 1 i=0 k 2 i=0 h 1 i (x, y) i xf(x, y) = 0, h 2 i (x, y) i yf(x, y) = 0. 6

8 Consider r 1 x r 2 y f(x, y). If r 1 k 1 or r 2 k 2, we can always compute this, by recursively applying the differential equations. If we keep numerical values of i x j yf(x, y) in the range i = 0,..., k 1 1, j = 0,..., k 2 1, then we can always compute other higher-order derivatives. We can approximate i x j yf(x + x, y + y) by the values { i x j yf(x, y)} i=0,...,k1 1,j=0,...,k

9 k 2 standard monomials (0, 0) k 1 We usually only need to keep a subset of { x i yf(x, j y)} i=0,...,k1 1,j=0,...,k 2 1 in memory. The subset is given by the set of standard monomials obtained by the division algorithm based on a Gröbner basis. 8

10 Which functions are holonomic (Zeilberger(1990))? Polynomials and rational functions are holonomic. exp(rational), log(rational) are holonomic. f, g : holonomic f + g, f g : holonomic f(x 1,..., x m ) : holonomic f(x 1,..., x m )dx m : holonomic Restriction of a holonomic f to an affine subspace is holonomic. 9

11 Holonomocity is also defined for generalized functions. In multivariate case, integration over a region defined by polynomial inequalities is OK. From the above properties, it is often easy to tell that a given function is holonomic, i.e., it must satisfy a differential equation with rational function coefficients. The problem is to find the explicit form of the differential equation (either by computer or by hand). 10

12 Virtually all standard multivariate normal distribution theory is holonomic. For many standard results, the differential equations are not known. Some differential equations are known, such as the differential equations for hypergeometric functions of a matrix argument by Muirhead. Even when they are known, people have not been using them numerically. 11

13 An example by Toshinori Oaku Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities, J. Symbolic Comput. (2013) by T.Oaku gives the following example: Consider the probability of P (X 3 Y 2 ) under bivariate normal distribution: v(t) = e t(x2 +y2) dxdy. x 3 y 2 12

14 v(t) satisfies the following ODE. 0 = (216t 4 4 t + (32t t 3 ) 3 t + (224t t 2 ) 2 t + (326t t) t + 70t + 15)v(t). HGM allows this kind of new distribution theory! 13

15 Example: ball probability for multivariate normal distribution Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables. Computational Statistics. T.Koyama and A.Takemura Let X be a d-dimensional normal random vector with the mean µ and the covariance matrix Σ: X N d (µ, Σ) 14

16 P (X X 2 d r2 ) of the ball with radius r is written as 1 exp x 2 (2π) d/2 Σ 1/ x2 d r2 ( 1 ) 2 (x µ) Σ 1 (x µ) dx. By rotation, we can assume that Σ is a diagonal matrix without loss of generality. Hence X 2 = X X 2 d is the weighted sum of independent noncentral chi-square random variables. 15

17 The integral for the infinitesimal interval r < (x x 2 d) 1/2 < r + dr is the Fisher-Bingham integral. In statistical interpretation, the conditional distribution of X given X = r is the Fisher-Bingham distribution. The Fisher Bingham integral is an integral on the sphere S d 1 (r) = { t R d t t 2 d = r2} of radius r, with parameters λ 1,..., λ d, τ 1,..., τ d. 16

18 It is defined by f(λ, τ, r) = S d 1 (r) exp ( d i=1 λ i t 2 i + d i=1 τ i t i ) dt. Here, dt is the volume element on S d 1 (r) with dt = r d 1 S d 1, S d 1 = Vol(S d 1 (1)) = 2πd/2 Γ(d/2). S d 1 (r) 17

19 Let Σ = diag(σ 2 1,..., σ 2 d), µ = (µ 1,..., µ d ). Put new parameters as λ i := 1 2σ 2 i, τ i := µ i σ 2 i. Then the ball probability is written as: P (X Xd 2 r 2 ) d i=1 λi = exp π d/2 ( 1 4 d i=1 τ 2 i λ i ) r 0 f(λ, τ, s)ds. 18

20 Let F = ( f,..., f, f,..., f ). τ 1 τ d λ 1 λ d Then, the vector F satisfies the ODE: r F = P r F. Note that f(λ, τ, s) = r 2 ( f + + f ). λ 1 λ d Hence we do not need f as an element of F. 19

21 The matrix P r can be written as P r = 1 r 2r 2 x O y 1 y O 2r 2 x d + 1 y d y d r 2 y 1 O 2r 2 x O r 2 y d 1 2r 2 x d + 2, where O denotes off-diagonal block of 0 s and 1 denotes off-diagonal block of 1 s. We can solve the differential equation starting from an appropriate initial value. 20

22 Laplace approximation Suppose σ 1 > σ 2 σ d, i.e., λ 1 > λ 2 λ d Then as r f(λ, τ, r) f(λ, τ, r), where f(λ, τ, r) = (e rτ 1 + e rτ 1 ) exp ( r 2 λ 1 π (d 1)/2 1 d i=2 (λ 1 λ i ) 1/2. d i=2 τ 2 i 4(λ i λ 1 ) ) Similar expressions for derivatives of f(λ, τ, r). 21

23 Numerical Experiments Let d = 3 and σ 1 = 3.0, σ 2 = 2.0, σ 3 = 1.0, µ 1 = 0.01, µ 2 = 0.02, µ 3 = 0.03, i.e., λ 1 = , λ 2 = 0.125, λ 3 = 0.5, τ 1 = , τ 2 = 0.005, τ 3 = By the HGM, we can compute the probability ( d P i=1 X2 i < r ), 2 starting from the small initial value r

24 Ball Probability r Figure 1: CDF 23

25 Ratio of FB and its Laplace approximation (Fisher Bingham Integral)/(Laprace Approximation) r Figure 2: Ratio of FB and Laplace approx. 24

26 Derivatives: (Differantial of FB)/(Laprace Approximation) df/d\tau_1 df/d\tau_2 df/d\tau_3 df/d\lambda_1 df/d\lambda_2 df/d\lambda_ r Figure 3: Ratios of derivatives of FB and its LA 25

27 This suggests that HGM for this case is numerically very accurate. Also we can easily compute CDF for up to dimension d =

28 Summary I gave definition of HGM I discussed the example of ball probability in detail. For other problems google hgm takemura. Thank you for your attention! 27

Software Packages for Holonomic Gradient Method

Software Packages for Holonomic Gradient Method Software Packages for Holonomic Gradient Method Tamio Koyama 1, Hiromasa Nakayama 2, Katsuyoshi Ohara 3, Tomonari Sei 4, and Nobuki Takayama 5 1 Department of Mathematical Informatics, Graduate School

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel koepf@mathematik.uni-kassel.de http://www.mathematik.uni-kassel.de/~koepf

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

Power Series and Summation

Power Series and Summation Power Series and Summation Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel koepf@mathematik.uni-kassel.de http://www.mathematik.uni-kassel.de/~koepf Tutorial ISSAC 2004 Santander,

More information

Lecture 8: Jointly distributed random variables

Lecture 8: Jointly distributed random variables Lecture : Jointly distributed random variables Random Vectors and Joint Probability Distributions Definition: Random Vector. An n-dimensional random vector, denoted as Z = (Z, Z,, Z n ), is a function

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

Middle School Math Course 3

Middle School Math Course 3 Middle School Math Course 3 Correlation of the ALEKS course Middle School Math Course 3 to the Texas Essential Knowledge and Skills (TEKS) for Mathematics Grade 8 (2012) (1) Mathematical process standards.

More information

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University Bernstein-Bezier Splines on the Unit Sphere Victoria Baramidze Department of Mathematics Western Illinois University ABSTRACT I will introduce scattered data fitting problems on the sphere and discuss

More information

Multivariate Normal Random Numbers

Multivariate Normal Random Numbers Multivariate Normal Random Numbers Revised: 10/11/2017 Summary... 1 Data Input... 3 Analysis Options... 4 Analysis Summary... 5 Matrix Plot... 6 Save Results... 8 Calculations... 9 Summary This procedure

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Nine Weeks: Mathematical Process Standards

Nine Weeks: Mathematical Process Standards HPISD Grade 7 TAG 7/8 Math Nine Weeks: 1 2 3 4 Mathematical Process Standards Apply mathematics to problems arising in everyday life, society, and the workplace. 8.1A Use a problem solving model that incorporates

More information

Archbold Area Schools Math Curriculum Map

Archbold Area Schools Math Curriculum Map Math 8 August - May Mathematical Processes Formulate a problem or mathematical model in response to a specific need or situation, determine information required to solve the problem, choose method for

More information

Convexity I: Sets and Functions

Convexity I: Sets and Functions Convexity I: Sets and Functions Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis basic multivariate calculus basic

More information

Competency goals 3 and 5; non-routine problem solving Represent problem situations with geometric models.

Competency goals 3 and 5; non-routine problem solving Represent problem situations with geometric models. Grade: 8 th Date: 7/14/08 Teacher: Mr. Tom Robertson Unit: Mathematics SCOS: Competency goals 3 and 5; non-routine problem solving 3.01 Represent problem situations with geometric models. 5.01 Develop

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

HPISD Eighth Grade Math

HPISD Eighth Grade Math HPISD Eighth Grade Math The student uses mathematical processes to: acquire and demonstrate mathematical understanding Apply mathematics to problems arising in everyday life, society, and the workplace.

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Constructing Cubic Splines on the Sphere

Constructing Cubic Splines on the Sphere Constructing Cubic Splines on the Sphere Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This

More information

Chapter 4 Convex Optimization Problems

Chapter 4 Convex Optimization Problems Chapter 4 Convex Optimization Problems Shupeng Gui Computer Science, UR October 16, 2015 hupeng Gui (Computer Science, UR) Convex Optimization Problems October 16, 2015 1 / 58 Outline 1 Optimization problems

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Convergence of C 2 Deficient Quartic Spline Interpolation

Convergence of C 2 Deficient Quartic Spline Interpolation Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 4 (2017) pp. 519-527 Research India Publications http://www.ripublication.com Convergence of C 2 Deficient Quartic Spline

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if Section 6.1 --- Rational Functions and Inequalities A rational function is a quotient of two polynomials. That is, is a rational function if =, where and are polynomials and is not the zero polynomial.

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Newton Polygons of L-Functions

Newton Polygons of L-Functions Newton Polygons of L-Functions Phong Le Department of Mathematics University of California, Irvine June 2009/Ph.D. Defense Phong Le Newton Polygons of L-Functions 1/33 Laurent Polynomials Let q = p a where

More information

Mathematics Scope & Sequence Grade 8 Revised: June 2015

Mathematics Scope & Sequence Grade 8 Revised: June 2015 Mathematics Scope & Sequence 2015-16 Grade 8 Revised: June 2015 Readiness Standard(s) First Six Weeks (29 ) 8.2D Order a set of real numbers arising from mathematical and real-world contexts Convert between

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

Grade 6 Math Curriculum Sequence School Year

Grade 6 Math Curriculum Sequence School Year Grade 6 Math Curriculum Sequence School Year 2010-2011 QUARTER 1 (Aug 30 Nov 5) 45 days BENCHMARK A (same skills as June Benchmark in previous grade) UNIT 1: Fractions 1 Review Add and Subtract Fractions

More information

Math Content

Math Content 2013-2014 Math Content PATHWAY TO ALGEBRA I Hundreds and Tens Tens and Ones Comparing Whole Numbers Adding and Subtracting 10 and 100 Ten More, Ten Less Adding with Tens and Ones Subtracting with Tens

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves BEZIER CURVES 1 OUTLINE Introduce types of curves and surfaces Introduce the types of curves Interpolating Hermite Bezier B-spline Quadratic Bezier Curves Cubic Bezier Curves 2 ESCAPING FLATLAND Until

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Mathematics to Moving with Math-by-Topic Level D Grade 8

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Mathematics to Moving with Math-by-Topic Level D Grade 8 Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Mathematics to Moving with Math-by-Topic Level D Grade 8 8.1 Mathematical process standards. The student uses mathematical processes

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

r the COR d e s 3 A lg e b r a New York Common Core Pathways

r the COR d e s 3 A lg e b r a New York Common Core Pathways BUI LT fo COM r the MON COR E Gra 2013 2014 d e s 3 A lg e b r a New York Common Core Pathways I Grade 3 Number and Operations - Fractions Measurement and Data Geometry Place Value with Whole Numbers Place

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX www.tinspireapps.com Physics Apps Center of Mass (2D) 1. Moment of Mass about x and y-axis Mass of Lamina - f(x) Mass of Lamina

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

6th Grade Advanced Math Algebra

6th Grade Advanced Math Algebra 6th Grade Advanced Math Algebra If your student is considering a jump from 6th Advanced Math to Algebra, please be advised of the following gaps in instruction. 19 of the 7th grade mathematics TEKS and

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Hyperbola for Curvilinear Interpolation

Hyperbola for Curvilinear Interpolation Applied Mathematical Sciences, Vol. 7, 2013, no. 30, 1477-1481 HIKARI Ltd, www.m-hikari.com Hyperbola for Curvilinear Interpolation G. L. Silver 868 Kristi Lane Los Alamos, NM 87544, USA gsilver@aol.com

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

arxiv: v1 [math.co] 27 Feb 2015

arxiv: v1 [math.co] 27 Feb 2015 Mode Poset Probability Polytopes Guido Montúfar 1 and Johannes Rauh 2 arxiv:1503.00572v1 [math.co] 27 Feb 2015 1 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany,

More information

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS www.tinspireapps.com Functions READ: Linear Functions Find Slope Find y=mx+b All-in-one-Function Explorer Evaluate Function Find Domain of f(x) Find

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson

Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson Quadratic Equations over Matrices over the Quaternions By Diana Oliff Mentor: Professor Robert Wilson Fields A field consists of a set of objects S and two operations on this set. We will call these operations

More information

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8)

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) NUMBER SENSE AND OPERATIONS 8.N.1 8.N.2 8.N.3 8.N.4 8.N.5 8.N.6 8.N.7 8.N.8 Compare, order, estimate, and translate among integers,

More information

Easy way to Find Multivariate Interpolation

Easy way to Find Multivariate Interpolation International Journal of Emerging Trends in Science Technology IC Value: 7689 (Index Copernicus) Impact Factor: 4219 DOI: https://dxdoiorg/1018535/ijetst/v4i511 Easy way to Find Multivariate Interpolation

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Huei-Huang Lee. Programming with MATLAB2016 SDC ACCESS CODE. Better Textbooks. Lower Prices. UNIQUE CODE INSIDE

Huei-Huang Lee. Programming with MATLAB2016 SDC ACCESS CODE. Better Textbooks. Lower Prices.   UNIQUE CODE INSIDE Programming with Huei-Huang Lee MATLAB2016 SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com ACCESS CODE UNIQUE CODE INSIDE Powered by TCPDF (www.tcpdf.org) Visit the following

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

UNSW School Mathematics Competition

UNSW School Mathematics Competition Parabola Volume 44, Issue (008) UNSW School Mathematics Competition Problems and Solutions Junior Division Problem. What is the angle between the long hand and the short hand of a clock at twenty minutes

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

KS4 3 Year scheme of Work Year 10 Higher

KS4 3 Year scheme of Work Year 10 Higher KS4 3 Year scheme of Work Year 10 Higher Review: Equations A2 Substitute numerical values into formulae and expressions, including scientific formulae unfamiliar formulae will be given in the question

More information

TILING SPACES ARE CANTOR SET FIBER BUNDLES

TILING SPACES ARE CANTOR SET FIBER BUNDLES TILING SPACES ARE CANTOR SET FIBER BUNDLES LORENZO SADUN AND R. F. WILLIAMS Abstract. We prove that fairly general spaces of tilings of R d are fiber bundles over the torus T d, with totally disconnected

More information

PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB Huei-Huang Lee SDC. Better Textbooks. Lower Prices.

PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB Huei-Huang Lee SDC. Better Textbooks. Lower Prices. PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB 2018 Huei-Huang Lee SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

A Brief Introduction to Mathematica

A Brief Introduction to Mathematica A Brief Introduction to Mathematica Objectives: (1) To learn to use Mathematica as a calculator. (2) To learn to write expressions in Mathematica, and to evaluate them at given point. (3) To learn to plot

More information

6th Grade P-AP Math Algebra

6th Grade P-AP Math Algebra 6th Grade P-AP Math Algebra If your student is considering a jump from 6th grade P-AP to 7th Grade Advanced math, please be advised of the following gaps in instruction. None of the 7th or 8th grade mathematics

More information

ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS

ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS NURNABI MEHERUL ALAM M.Sc. (Agricultural Statistics), Roll No. I.A.S.R.I, Library Avenue, New Delhi- Chairperson: Dr. P.K. Batra Abstract: Block designs

More information