MECH 314 Dynamics of Mechanisms February 7, 2011 Mid-Term Test-I, , 16H05-17H25

Size: px
Start display at page:

Download "MECH 314 Dynamics of Mechanisms February 7, 2011 Mid-Term Test-I, , 16H05-17H25"

Transcription

1 MECH 314 Dynamics of Mechanisms February 7, 2011 Mid-Term Test-I, , 16H05-17H25 1 General Description of a Design Problem Examine Fig. 1 carefully. It shows the design of a crank rocker 4-bar mechanism and an offset slider crank. The equilateral triangle BCC is inscribed in the unit circle. Note that in this case φ = δ was chosen. Furthermore the crank centre A(x A, y A ) was placed so that y A is half of the radius, i.e., the distance from origin O to the rocker joint at B. In addition to the limiting singular positions of the rocker arm tip and slider wrist pin C and C, two other crank angle positions are shown. In one of these the rocker arm tip is halfway along its arc, in the other, the slider wrist pin is halfway along its straight line trajectory. a. What is the time ratio Q? (It is identical for both mechanisms.) b. If the actual mechanisms to be constructed have a crank throw radius AD = s = 10dm what is the length of the coupler (or connecting rod) CD = q? In the case of the crank rocker, what is the length of the rocker arm BC = p? c. If the crank AD = s turns at a constant angular velocity of 10rdn/s CCW what is the angular velocity ω p of the rocker arm BC 1 when the arm is at its halfway position? What is the linear velocity vector v C2 of the slider wrist pin C 2 when it is at its halfway position? C 4 C 1 C C 2 C 3 C O D 13 D 24 s=10 D A MT1TR12e D B Figure 1: A Crank Rocker and Offset Slider Crank Design

2 2 Bonus Question Show clearly on the diagram where one should place a spring so that the slider will begin its quick-return stroke without the mechanism locking up in a singularity. This can be indicated by neatly drawing a small arrow where and in the direction that the spring force is to be applied. 2 Statics Find the torque Γ A that must be supplied at the crank pin A if it must overcome a force of 50N, to the right, applied to the slider wrist pin C 3 in the position shown between the limit, labeled C and the mid-stroke position halfway along the slider path. Point C 3 is on the slider path somewhat to the left of C. 3 Instant Centre Using a Cartesian frame with origin on O and axes x- to the right and y- upward, find the instant centre of the coupler D 24 C 4 = q of the crank rocker when the tip C 4 is on the arc somewhat to the right of the leftmost limit C.

3 Solutions to Midterm-I, MECH 314, The following Maple worksheet should be consulted together with the graphical solution on the last page. > restart: Parameters by inspection:- s=r/2=10, q=3r/2=3s=30, p=rsqrt(3)=2sqrt(3)s, A(-sqrt(3)s,-s), C1(0,p-R)=(0,2(sqrt(3)-1)s), C2(0,s) > s:=10:ka:=evalf((xd+sqrt(3)*s)^2+(yd+s)^2-s^2); ka := (xd ) 2 + (yd + 10.) ka is circle centred on A of radius s. > kc1:=evalf(xd^2+(yd-2*(sqrt(3)-1)*s)^2-(3*s)^2); kc1 := xd 2 + (yd ) kc1 is circle centred on C1 of radius q. > kc2:=xd^2+(yd-s)^2-(3*s)^2; kc2 := xd 2 + (yd 10) kc2 is circle centred on C2 of radius q. > g1:=collect(simplify(ka-kc1),yd); g1 := xd yd > r1:=collect(resultant(g1,kc1,xd),yd): > yd1:=solve(r1,yd):yd13:=yd1[1]; yd13 := > xd13:=solve(subs(yd=yd13,g1)); xd13 := > g2:=collect(simplify(ka-kc2),yd); g2 := xd yd > r2:=collect(resultant(g2,kc2,xd),yd): > yd2:=solve(r2,yd):yd24:=yd2[1]; yd24 := > xd24:=solve(subs(yd=yd24,g2)); xd24 := Circles ka and kc1 are intersected to yield D13. Circles ka and kc2 are intersected to yield D24. > kd1:=(xc-xd13)^2+(yc-yd13)^2-(3*s)^2; kd1 := (xc ) 2 + (yc ) kd1 is circle centred on D13 of radius q. It is intersected by line y-s=0 to yield C3. 1

4 > yc3:=s;xc3:=solve(subs(yc=yc3,kd1))[1]; yc3 := 10 xc3 := > kd2:=(xc-xd24)^2+(yc-yd24)^2-(3*s)^2;kb:=xc^2+(yc+2*s)^2-(2*sqrt(3)*s )^2; kd2 := (xc ) 2 + (yc ) kb := xc 2 + (yc + 20) kd2 is circle centred on D24 of radius q. It is intersected by circle kb, centred at B of radius p, to yield C4. > g3:=collect(simplify(kb-kd2),yd); g3 := yc xc > r3:=collect(resultant(g3,kb,xc),yc):yc4:=solve(r3,yc)[1]; yc4 := > xc4:=solve(subs(yc=yc4,g3)); xc4 := > e1:=-rad1y*os-rd1c1y*oq+rbc1y*omp;e2:=rad1x*os+rd1c1x*oq-rbc1x*omp; E1:=subs(os=10,rAD1y=yD13+s,rD1C1y=2*sqrt(3)*s-2*s-yD13,rBC1y=2*sqrt(3 )*s,e1); E2:=subs(os=10,rAD1x=xD13+sqrt(3)*s,rD1C1x=-xD13,rBC1x=0,e2); e1 := rad1y os rd1c1y oq + rbc1y omp e2 := rad1x os + rd1c1x oq rbc1x omp E1 := ( ) oq omp E2 := oq > omp:=solve(resultant(e1,e2,oq)); omega p is omp. omp := As regards the bonus, note that the slider-crank is singular when wrist-pin is at C. A spring, pushing it to the right, may help matters by preventing a lock-up at the beginning of the short froward return stroke with CCW crank rotation. This problem does not affect the crabk-rocker. > e3:=-rad2y*os-rd2c2y*oq-vc2x;e4:=rad2x*os+rd2c2x*oq; E3:=subs(os=10,rAD2y=yD24+s,rD2C2y=s-yD24,e3);E4:=evalf(subs(os=10,rAD 2x=xD24+sqrt(3)*s,rD2C2x=-xD24,e4)); e3 := rad2y os rd2c2y oq vc2x e4 := rad2x os + rd2c2x oq E3 := oq vc2x E4 := oq > vc2x:=solve(resultant(e3,e4,oq)); vc2x :=

5 Mid way at C2 slider velocity is 100dm/s to the left. > Gamma:=rAD13y*fC3x-rAD13x*fC3y:fC3x:=kD*rD3C3x:fC3y:=kD*rD3C3y:kD:=50 /rd3c3x: rad13x:=xd13+sqrt(3)*s:rad13y:=yd13+s:rd3c3x:=xc3-xd13:rd3c3y:=yc3-yd1 3: > evalf(gamma); A CCW torque of Nm must be applied at A. > with(linalg):mgad:=matrix(3,3,[w,x,y,1,-sqrt(3)*s,-s,1,xd24,yd24]);mg BC:=matrix(3,3,[w,x,y,1,0,-2*s,1,xC4,yC4]); Warning, the protected names norm and trace have been redefined and unprotected w x y MgAD := MgBC := w 1 x 0 y Forming lines on AD24 and BC4... > MIC:=matrix(3,3,[W,X,Y,det(minor(MgAD,1,1)),-det(minor(MgAD,1,2)),det (minor(mgad,1,3)),det(minor(mgbc,1,1)),-det(minor(mgbc,1,2)),det(minor (MgBC,1,3))]); MIC := W X Y and then intersecting these locates the instant centre of the coupler C4D24 at (xic,yic) on B. > IC0:=det(minor(MIC,1,1));IC1:=-det(minor(MIC,1,2));IC2:=det(minor(MIC,1,3)); IC0 := IC1 := IC2 := > xic:=evalf(ic1/ic0);yic:=evalf(ic2/ic0); xic := yic :=

6 p =3.514rdn/s(CCW) v =12.173m/s C1 C v C/D 0 * v D1 =10m/s s=10 v D1 A v D2 v C/D v C2 =10m/s 0 D v D2 =10m/s D C 4 C 1 f C3 =50N Time ratio Q= N C 2 C 3 C q=30 O p= dm Nm(CCW) supplied at A MT1TR12e B Instant centre of coupler at C is on B! 4 Bonus: apply spring force * Figure 1: Graphical Solutions 4

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

PROBLEMS AND EXERCISES PROBLEMS

PROBLEMS AND EXERCISES PROBLEMS 64 Fundamentals of Kinematics and Dynamics of Machines and Mechanisms PROBLEMS AND EXERCISES PROBLEMS 1. In Figure 1.14c an inverted slider-crank mechanism is shown. b. If the input is the displacement

More information

NOT COMPLETE. θ 4 B 2 = O 2 O 4 = A 2 = A 1 B 1 O 2 KINEMATIC SYNTHESIS

NOT COMPLETE. θ 4 B 2 = O 2 O 4 = A 2 = A 1 B 1 O 2 KINEMATIC SYNTHESIS ME 35 NOT COMPLETE Design Design a crank-rocker four-bar (Grashof) where the input link rotates completely and the output link (the follower) rocks back and forth with a prescribed angle The design requires

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 3 Lecture - 1 In an earlier lecture, we have already mentioned that there

More information

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism Mechanism Synthesis Introduction: Mechanism synthesis is the procedure by which upon identification of the desired motion a specific mechanism (synthesis type), and appropriate dimensions of the linkages

More information

MENG 372 Chapter 3 Graphical Linkage Synthesis. All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003

MENG 372 Chapter 3 Graphical Linkage Synthesis. All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003 MENG 372 Chapter 3 Graphical Linkage Synthesis All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003 1 Introduction Synthesis: to design or create a mechanism to give a certain motion

More information

Compass and Straight Edge. Compass/Straight Edge. Constructions with some proofs.

Compass and Straight Edge. Compass/Straight Edge. Constructions with some proofs. Compass and Straight Edge Compass/Straight Edge Constructions with some proofs. To Construct the Perpendicular isector of a line. 1. Place compass at, set over halfway and draw 2 arcs. 2. Place compass

More information

Constructions Quiz Review November 29, 2017

Constructions Quiz Review November 29, 2017 Using constructions to copy a segment 1. Mark an endpoint of the new segment 2. Set the point of the compass onto one of the endpoints of the initial line segment 3. djust the compass's width to the other

More information

MAKE GEOMETRIC CONSTRUCTIONS

MAKE GEOMETRIC CONSTRUCTIONS MAKE GEOMETRIC CONSTRUCTIONS KEY IDEAS 1. To copy a segment, follow the steps given: Given: AB Construct: PQ congruent to AB 1. Use a straightedge to draw a line, l. 2. Choose a point on line l and label

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2 Solutions to Chapter 6 Exercise Problems Problem 6.1: Design a double rocker, four-bar linkage so that the base link is 2-in and the output rocker is 1-in long. The input link turns counterclockwise 60

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Geometric Constructions

Geometric Constructions HISTORY OF MATHEMATICS Spring 2005 Geometric Constructions Notes, activities, assignment; #3 in a series. Note: I m not giving a specific due date for this somewhat vague assignment. The idea is that it

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

MECH 576 Geometry in Mechanics December 4, 2009 Kinematic Mapping and the Burmester Problem

MECH 576 Geometry in Mechanics December 4, 2009 Kinematic Mapping and the Burmester Problem MECH 576 Geometry in Mechanics December 4, 009 Kinematic Mapping and the Burmester Problem Introduction How many precision positions can a planar 4-bar mechanism be designed to fulfill? Given this number

More information

Chapter 2 Graphical Synthesis of Mechanisms

Chapter 2 Graphical Synthesis of Mechanisms esign and Production Engineering epartment hapter 2 Graphical Synthesis of Mechanisms MT 251 s s t. P r o f. Mohammed M. Hedaya 2.1. Types of Synthesis of Mechanisms Function generation The correlation

More information

Geometric Constructions

Geometric Constructions Materials: Compass, Straight Edge, Protractor Construction 1 Construct the perpendicular bisector of a line segment; Or construct the midpoint of a line segment. Construction 2 Given a point on a line,

More information

Balancing of Primary Forces of Multi-cylinder Inline

Balancing of Primary Forces of Multi-cylinder Inline Balancing of Primary Forces of Multi-cylinder Inline Engines The multi-cylinder engines with the cylinder centre lines in the same plane and on the same side of the centre line of the crankshaft, are known

More information

CONSTRUCTIONS Introduction Division of a Line Segment

CONSTRUCTIONS Introduction Division of a Line Segment 216 MATHEMATICS CONSTRUCTIONS 11 111 Introduction In Class IX, you have done certain constructions using a straight edge (ruler) and a compass, eg, bisecting an angle, drawing the perpendicular bisector

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

Construction Instructions. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment.

Construction Instructions. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. Construction Instructions Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1.) Begin with line segment XY. 2.) Place the compass at point X. Adjust

More information

ME 3222 Design & Manufacturing II. Creating and Animating a Slider-Crank in Creo Elements (Version 2.0)

ME 3222 Design & Manufacturing II. Creating and Animating a Slider-Crank in Creo Elements (Version 2.0) ME 3222 Design & Manufacturing II Creating and Animating a Slider-Crank in Creo Elements (Version 2.0) Tom Chase February 18, 2016 Overview This document explains how to create a mechanism and animate

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India Pi at School rindama Singh epartment of Mathematics Indian Institute of Technology Madras Chennai-600036, India Email: asingh@iitm.ac.in bstract: In this paper, an attempt has been made to define π by

More information

not to be republished NCERT CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results (B) Multiple Choice Questions

not to be republished NCERT CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results (B) Multiple Choice Questions CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results Division of a line segment internally in a given ratio. Construction of a triangle similar to a given triangle as per given scale factor which may

More information

February Regional Geometry Team: Question #1

February Regional Geometry Team: Question #1 February Regional Geometry Team: Question #1 A = area of an equilateral triangle with a side length of 4. B = area of a square with a side length of 3. C = area of a regular hexagon with a side length

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

3.2 A Three-Bar Linkage 51

3.2 A Three-Bar Linkage 51 3.2 A Three-Bar Linkage 51 It may happen that the drawing in Euclidean view is too big or too small. You can use the zooming tools to change this. There is a Zoom-In and a Zoom-Out tool below the Euclidean

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

Geometry Period Unit 2 Constructions Review

Geometry Period Unit 2 Constructions Review Name 2-7 Review Geometry Period Unit 2 Constructions Review Date 2-1 Construct an Inscribed Regular Hexagon and Inscribed equilateral triangle. -Measuring radius distance to make arcs. -Properties of equilateral

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

Angles. An angle is: the union of two rays having a common vertex.

Angles. An angle is: the union of two rays having a common vertex. Angles An angle is: the union of two rays having a common vertex. Angles can be measured in both degrees and radians. A circle of 360 in radian measure is equal to 2π radians. If you draw a circle with

More information

Class IX Chapter 11 Constructions Maths

Class IX Chapter 11 Constructions Maths 1 Class IX Chapter 11 Constructions Maths 1: Exercise 11.1 Question Construct an angle of 90 at the initial point of a given ray and justify the construction. Answer: The below given steps will be followed

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

Position Analysis

Position Analysis Position Analysis 2015-03-02 Position REVISION The position of a point in the plane can be defined by the use of a position vector Cartesian coordinates Polar coordinates Each form is directly convertible

More information

Geometry Period Unit 2 Constructions Review

Geometry Period Unit 2 Constructions Review Name 2-7 Review Geometry Period Unit 2 Constructions Review Date 2-1 Construct an Inscribed Regular Hexagon and Inscribed equilateral triangle. -Measuring radius distance to make arcs. -Properties of equilateral

More information

Construction: Draw a ray with its endpoint on the left. Label this point B.

Construction: Draw a ray with its endpoint on the left. Label this point B. Name: Ms. Ayinde Date: Geometry CC 1.13: Constructing Angles Objective: To copy angles and construct angle bisectors using a compass and straightedge. To construct an equilateral triangle. Copy an Angle:

More information

CHAPTER 1 : KINEMATICS

CHAPTER 1 : KINEMATICS KINEMATICS : It relates to the study of the relative motion between the parts of a machine. Let us consider a reciprocating engine, in this the piston is made to reciprocate in the cylinderdue to the applied

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

Mobile Robot Kinematics

Mobile Robot Kinematics Mobile Robot Kinematics Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr INTRODUCTION Kinematics is the most basic study of how mechanical systems behave required to design to control Manipulator

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

2.007 Design and Manufacturing I Spring 2009

2.007 Design and Manufacturing I Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.007 Design and Manufacturing

More information

GEOMETRY AND GRAPHICS EXAMPLES AND EXERCISES. Preface

GEOMETRY AND GRAPHICS EXAMPLES AND EXERCISES. Preface GEOMETRY AND GRAPHICS EXAMPLES AND EXERCISES Preface This textbook is intended for students of subjects Constructive Geometry and Computer Graphics at the Faculty of Mechanical Engineering at Czech Technical

More information

Trajectory planning in Cartesian space

Trajectory planning in Cartesian space Robotics 1 Trajectory planning in Cartesian space Prof. Alessandro De Luca Robotics 1 1 Trajectories in Cartesian space! in general, the trajectory planning methods proposed in the joint space can be applied

More information

CONSTRUCTING CONGRUENT LINE SEGMENTS

CONSTRUCTING CONGRUENT LINE SEGMENTS NME: 1. Given: Task: Construct a segment congruent to. CONSTRUCTING CONGRUENT LINE SEGMENTS B a) Draw a new, longer segment with your straightedge. b) Place an endpoint on the left side of the new segment

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

PAST QUESTIONS ON INTEGRATION PAPER 1

PAST QUESTIONS ON INTEGRATION PAPER 1 PAST QUESTIONS ON INTEGRATION PAPER 1 1. Q9 Nov 2001 2. Q11 Nov 2001 3. The diagram shows the curve y = and the line y = x intersecting at O and P. Find the coordinates of P, [1] the area of the shaded

More information

Alternate Angles. Clip 67. Mathswatch

Alternate Angles. Clip 67. Mathswatch Clip 67 Alternate Angles ) Line PQ is parallel to line RS If angle PQR is equal to 6 a) What is the size of angle QRS? b) Give a reason for ou answer. P 6 Q R S ) Line DCE is parallel to line AB a) Find

More information

Construction Blueprints A Practice Understanding Task

Construction Blueprints A Practice Understanding Task 90 Construction Blueprints A Practice Understanding Task For each of the following straightedge and compass constructions, illustrate or list the steps for completing the construction and give an eplanation

More information

Homework 4 PROBLEMS ON THREE POSITION GUIDANCE

Homework 4 PROBLEMS ON THREE POSITION GUIDANCE Homework 4 ROLEMS ON THREE OSITION GUIDNE. In the synthesis of three positions of a plane by a four-bar mechanism, in the graphical method and were selected arbitrarily and, were determined as the corresponding

More information

MECHANICAL ENGINEERING

MECHANICAL ENGINEERING MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-II FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION

More information

[9] D.E. Whitney, "Resolved Motion Rate Control of Manipulators and Human Prostheses," IEEE Transactions on Man-Machine Systems, 1969.

[9] D.E. Whitney, Resolved Motion Rate Control of Manipulators and Human Prostheses, IEEE Transactions on Man-Machine Systems, 1969. 160 Chapter 5 Jacobians: velocities and static forces [3] I. Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1967. [4] D. Orin and W. Schrader, "Efficient Jacobian Determination

More information

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2 CHAPTER 10 Straight lines Learning Objectives (i) Slope (m) of a non-vertical line passing through the points (x 1 ) is given by (ii) If a line makes an angle α with the positive direction of x-axis, then

More information

Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method. Goals:

Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method. Goals: Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method Goals: Construct an inscribed hexagon and dodecagon. Construct a circumscribed hexagon

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Mechanism Design. Four-bar coupler-point curves

Mechanism Design. Four-bar coupler-point curves Mechanism Design Four-bar coupler-point curves Four-bar coupler-point curves A coupler is the most interesting link in any linkage. It is in complex motion, and thus points on the coupler can have path

More information

2nd Semester Exam Review

2nd Semester Exam Review Geometry 2nd Semester Exam Review Name: Date: Per: Trig & Special Right Triangles 1. At a certain time of the day, a 30 meter high building cast a shadow that is 31 meters long. What is the angle of elevation

More information

Grade 6 Math Circles. Shapeshifting

Grade 6 Math Circles. Shapeshifting Faculty of Mathematics Waterloo, Ontario N2L 3G1 Plotting Grade 6 Math Circles October 24/25, 2017 Shapeshifting Before we begin today, we are going to quickly go over how to plot points. Centre for Education

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

PRINCIPLES FROM PATTERNS Geometry - Algebra II - Trigonometry

PRINCIPLES FROM PATTERNS Geometry - Algebra II - Trigonometry Integrating Geometry - Algebra II - Trigonometry 1 PRINCIPLES FROM PATTERNS Geometry - Algebra II - Trigonometry by David Quine Final Draft October 2010 Chapter 1 2 Principles from Patterns CHAPTER Section

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

GEOMETRY BASIC GEOMETRICAL IDEAS. 3) A point has no dimensions (length, breadth or thickness).

GEOMETRY BASIC GEOMETRICAL IDEAS. 3) A point has no dimensions (length, breadth or thickness). CLASS 6 - GEOMETRY BASIC GEOMETRICAL IDEAS Geo means Earth and metron means Measurement. POINT 1) The most basic shape in geometry is the Point. 2) A point determines a location. 3) A point has no dimensions

More information

Circumference of a Circle

Circumference of a Circle Circumference of a Circle The line segment AB, AB = 2r, and its interior point X are given. The sum of the lengths of semicircles over the diameters AX and XB is 3πr; πr; 3 2 πr; 5 4 πr; 1 2 πr; Šárka

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2005-06 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Simple Mechanisms 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Assignment #1 All questions at the end of chapter 1 st Exam: Saturday 29/9/2018 3 Kinematic Link or Element kinematic link (link) or

More information

LAMC Intermediate I & II February 8, Oleg Gleizer

LAMC Intermediate I & II February 8, Oleg Gleizer LAMC Intermediate I & II February 8, 2015 Oleg Gleizer prof1140g@math.ucla.edu Problem 1 The square P QRS is inscribed in the triangle ABC as shown on the picture below. The length of the side BC is 12

More information

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION FOR THE DEGREE OF B.ENG. (Semester I: 1999/000) EE4304/ME445 - ROBOTICS October/November 1999 - Time Allowed: Hours INSTRUCTIONS TO CANDIDATES: 1. This paper

More information

S56 (5.3) Higher Straight Line.notebook June 22, 2015

S56 (5.3) Higher Straight Line.notebook June 22, 2015 Daily Practice 5.6.2015 Q1. Simplify Q2. Evaluate L.I: Today we will be revising over our knowledge of the straight line. Q3. Write in completed square form x 2 + 4x + 7 Q4. State the equation of the line

More information

1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane.

1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane. YPERBOLIC TRINGLES Thomas Wieting Reed College, 2010 1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane. 2 Let us begin by explaining

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Homework Assignment /645 Fall Instructions and Score Sheet (hand in with answers)

Homework Assignment /645 Fall Instructions and Score Sheet (hand in with answers) Homework Assignment 4 600.445/645 Fall 2018 Instructions and Score Sheet (hand in with answers Name Email Other contact information (optional Signature (required I have followed the rules in completing

More information

Mechanism Kinematics and Dynamics

Mechanism Kinematics and Dynamics Mechanism Kinematics and Dynamics Final Project 1. The window shield wiper For the window wiper, (1). Select the length of all links such that the wiper tip X p (t) can cover a 120 cm window width. (2).

More information

Unit 6, Lesson 3.1 Constructing Tangent Lines

Unit 6, Lesson 3.1 Constructing Tangent Lines Unit 6, Lesson 3.1 Constructing Tangent Lines Tangent lines are useful in calculating distances as well as diagramming in the professions of construction, architecture, and landscaping. Geometry construction

More information

Year 10 Term 3 Homework

Year 10 Term 3 Homework Yimin Math Centre Year 10 Term 3 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 3 Week 3 Homework 1 3.1 Further trigonometry................................... 1 3.1.1 Trigonometric

More information

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion Notes_0_0 of efinitions Kinematics the stud of constrained motion without regard to forces that cause that motion namics the stud of how forces cause motion ausalit the relationship between cause and effect

More information

Common Core State Standards High School Geometry Constructions

Common Core State Standards High School Geometry Constructions ommon ore State Standards High School Geometry onstructions HSG.O..12 onstruction: opying a line segment HSG.O..12 onstruction: opying an angle HSG.O..12 onstruction: isecting a line segment HSG.O..12

More information

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible.

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. CAM MECHANISMS Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. Cams can provide unusual and irregular motions

More information

This overview summarizes topics described in detail later in this chapter.

This overview summarizes topics described in detail later in this chapter. 20 Application Environment: Robot Space and Motion Overview This overview summarizes topics described in detail later in this chapter. Describing Space A coordinate system is a way to describe the space

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai (Chhattisgarh) India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this

More information

SECTION A / 1. Any point where graph of linear equation in two variables cuts x-axis is of the form. (a) (x, y) (b) (0, y) (c) (x, 0) (d) (y, x)

SECTION A / 1. Any point where graph of linear equation in two variables cuts x-axis is of the form. (a) (x, y) (b) (0, y) (c) (x, 0) (d) (y, x) SECTION A / Question numbers 1 to 8 carry 1 mark each. For each question, four alternative choices have been provided, of which only one is correct. You have to select the correct choice. 1 8 1 1. Any

More information

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is.

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is. We will review the Cartesian plane and some familiar formulas. College algebra Graphs 1: The Rectangular Coordinate System, Graphs of Equations, Distance and Midpoint Formulas, Equations of Circles Section

More information

Study Guide - Geometry

Study Guide - Geometry Study Guide - Geometry (NOTE: This does not include every topic on the outline. Take other steps to review those.) Page 1: Rigid Motions Page 3: Constructions Page 12: Angle relationships Page 14: Angle

More information

Activity 21 OBJECTIVE. MATERIAL REQUIRED Cardboard, white paper, adhesive, pens, geometry box, eraser, wires, paper arrow heads.

Activity 21 OBJECTIVE. MATERIAL REQUIRED Cardboard, white paper, adhesive, pens, geometry box, eraser, wires, paper arrow heads. Activity 21 OBJECTIVE To verify that angle in a semi-circle is a right angle, using vector method. MATERIAL REQUIRED Cardboard, white paper, adhesive, pens, geometry box, eraser, wires, paper arrow heads.

More information

9.2 SECANT AND TANGENT

9.2 SECANT AND TANGENT TOPICS PAGES. Circles -5. Constructions 6-. Trigonometry -0 4. Heights and Distances -6 5. Mensuration 6-9 6. Statistics 40-54 7. Probability 55-58 CIRCLES 9. CIRCLE A circle is the locus of a points which

More information

Mth 97 Winter 2013 Sections 4.3 and 4.4

Mth 97 Winter 2013 Sections 4.3 and 4.4 Section 4.3 Problem Solving Using Triangle Congruence Isosceles Triangles Theorem 4.5 In an isosceles triangle, the angles opposite the congruent sides are congruent. A Given: ABC with AB AC Prove: B C

More information

14-9 Constructions Review. Geometry Period. Constructions Review

14-9 Constructions Review. Geometry Period. Constructions Review Name Geometry Period 14-9 Constructions Review Date Constructions Review Construct an Inscribed Regular Hexagon and Inscribed equilateral triangle. -Measuring radius distance to make arcs. -Properties

More information

GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS

GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS Bulletin of the Transilvania University of Braşov Vol. 3 (5) - 010 Series I: Engineering Sciences GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS N.C. CREANGĂ 1 I. VIŞA 1 D.V. DIACONESCU

More information

The Humble Tetrahedron

The Humble Tetrahedron The Humble Tetrahedron C. Godsalve email:seagods@hotmail.com November 4, 010 In this article, it is assumed that the reader understands Cartesian coordinates, basic vectors, trigonometry, and a bit of

More information

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with endpoints on the circle. Diameter - A chord which passes through

More information

Module 1 Topic C Lesson 14 Reflections

Module 1 Topic C Lesson 14 Reflections Geometry Module 1 Topic C Lesson 14 Reflections The purpose of lesson 14 is for students to identify the properties of reflection, to use constructions to find line of reflection, get familiar with notations

More information

An Introduction to GeoGebra

An Introduction to GeoGebra An Introduction to GeoGebra Downloading and Installing Acquiring GeoGebra GeoGebra is an application for exploring and demonstrating Geometry and Algebra. It is an open source application and is freely

More information

Game Engineering: 2D

Game Engineering: 2D Game Engineering: 2D CS420-2010F-07 Objects in 2D David Galles Department of Computer Science University of San Francisco 07-0: Representing Polygons We want to represent a simple polygon Triangle, rectangle,

More information

Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors

Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors Arch Appl Mech (2012) 82:283 295 DOI 10.1007/s00419-011-0556-6 ORIGINAL Krzysztof Augustynek Iwona Adamiec-Wójcik Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors

More information

SNAP Centre Workshop. Introduction to Trigonometry

SNAP Centre Workshop. Introduction to Trigonometry SNAP Centre Workshop Introduction to Trigonometry 62 Right Triangle Review A right triangle is any triangle that contains a 90 degree angle. There are six pieces of information we can know about a given

More information

which is shown in Fig We can also show that the plain old Puma cannot reach the point we specified

which is shown in Fig We can also show that the plain old Puma cannot reach the point we specified 152 Fig. 7.8. Redundant manipulator P8 >> T = transl(0.5, 1.0, 0.7) * rpy2tr(0, 3*pi/4, 0); The required joint coordinates are >> qi = p8.ikine(t) qi = -0.3032 1.0168 0.1669-0.4908-0.6995-0.1276-1.1758

More information

The triangle

The triangle The Unit Circle The unit circle is without a doubt the most critical topic a student must understand in trigonometry. The unit circle is the foundation on which trigonometry is based. If someone were to

More information