Homework 4 PROBLEMS ON THREE POSITION GUIDANCE

Size: px
Start display at page:

Download "Homework 4 PROBLEMS ON THREE POSITION GUIDANCE"

Transcription

1 Homework 4 ROLEMS ON THREE OSITION GUIDNE. In the synthesis of three positions of a plane by a four-bar mechanism, in the graphical method and were selected arbitrarily and, were determined as the corresponding centerpoints. Determine the procedure of selecting, arbitrarily. Where will be,. (Hint: onsider the motion inverted, fixed plane moving and the moving plane fixed. What will happen to the poles? What is in this inverted motion? What is?).. rigid body in plane motion is shown in three positions. a) Locate the poles and draw the pole triangle. b) Locate the point on the moving system which has its three positions on a circular arc about D (,-7) as the center (Locate D ) c) Locate the locus of points on the moving system having their three corresponding positions on a straight line. (.Hall) (,5) (,) (,) (7,) (,). positions of a link given below: Determine the proportions of the following mechanisms which are to synthesize this motion and draw the mechanisms in position #. a) Link is guided by two pins fitting into straight guides. b) Link isguided on the planet gear of an epicyclic gear train, in which the sun and planet gears have the same number of teeth. (External mesh) c) Link is attached to the coupler link of a 4-bar mechanism. (,) (,) (,) Es/es.5.

2 4. Line g (shown as g at position # ) belongs to a body moved through three positions, the pole triangle being as shown. Find g and g by the most direct construction you can devise. (you can select any two points on g and determine their corresponding positions hence determine g, g but try to find another method.) g 5. Three positions of a body in plane motion is specified. ositions and coincide. For two points and, velocity directions are given in position (or ). an the pole triangle be drawn? an you construct a four-bar mechanism to realize this motion. How would you formulate this problem by utilizing the dyad formulation? 6. four-link, planar RR mechanism is shown below. (This mechanism is known as conchoidal motion mechanism). Synthesize the proportions of this mechanism for the following displacements: φ =, φ = (W), φ = 6 (W), = (,), = (, mm) and the direction of the motion of the slider is to be parallel to the direction of. Verify your solution by drawing the mechanism in all positions. R 4 R Es/es.5.

3 7. mechanically reproduced scooping motion incorporated in a truck designed principally for handling lead are is shoun. It is required to determine the follower ( ) positon. referably, we would like to have withing the region enclosed in dotted lines and on the line = 55 mm = 55 mm. 6 R We would like to replace the slider guidance of the slider crank mechanism by a follower ( ) attached to the coupler for the positions shown. is to be the crank for this 4-bar mechanism, and we would like to have crank-rocker proportions. Determine a follower ( =5, =). Es/es.5.

4 9. Figure shows the thread feed of a central spool sewing machine. The eye of the thread lever has to be on the lines l, l, l when the crank rotates by angles θ and θ. Originally, the motion was achieved by a disk cam. four-bar mechanism was found to be more advantageous. Since the first and the third positions must be at the dead center positions of the crank (the eye must not be above l and below ) a crank was selected and a certain length for the coupler was assumed. Due to space limitations we have to select, the center of the other crank, on the machine head. n appropriate position is shown on the figure. Determine the corresponding circle point at position # ( ) so that the coupler point on the four-bar satisfies the given motion requirements. heck whether the four-bar thus obtained is of crank-rocker proportions. If you want, you can select at another position on the machine head. (R.eyer). Es/es 4.5.

5 . Figure shows an existing slider-crank mechanism in a part of a machine ( =5, =). We would like to drive a dwell mechanism from this slider-crank mechanism. Link 6 is required to be in an approximate dwell while the crank (link ) rotates by angle φ = θ = θ +θ as shown. possible solution would be to find a point on the coupler link (,, ) whose corresponding positions lie on a straight line. The shape of the mechanism thus obtained is shown below. If the path of point corresponds with the prismatic joint deviates from this line link 6 will translate. Synthesize such a mechanism. (R.eyer) ath of c c i c k Es/es 5.5.

6 . Figure shows an existing 8-link mechanism. Link is the driven crank and link 8 is the oscillating output. However, due to bad transmission angle of the slider at position # the machine will not function properly. Instead of a slider (link 6) we would like to attach a swinging block mechanism, while keeping the characteristics of the original motion. Hence when link rotates, link 4 has its limit positions at and We determine at the midpoint of the swing. Our aim is to determine a line on link 5 whose corresponding positions are concurrent at a point while the plane of link 5 is at positions,,. Determine the mechanism thus obtained. ompare the motion of point 8 for both mechanisms. D =5 =7 =6 =5 D =8 DD = D E 6 D =7 =5 =5 =6 D =8 DD = D Es/es 6.5.

7 . The figure shows the principle of a lift truck in which the fork is guided by a linkage. The fork must move up and down in nearly rectilinear translation. Determine the dimensions of the required linkage. Note that is a four-bar linkage, and that point should have an approximate straight-line path. Link DE maintains the fork in a motion of translation: to determine this link, use three positions of accuracy for which the fork isto be exactly horizontal at ground level, halfway up and all the way up. oints and may be chosen in any convenient location within 5x5 mm rectangle. Keep in mind that the truck must have maneuverability in close quarters where the headroom is low. There are several methods to solve this problem one possible procedure is: D E,8 a) First omit link DE and the fork D. hoosen a certain link length for and (keeping in mind the pace limitations, etc.) b) oint on link must move on a vertical line. Select corresponding points of at equal distance and determine the three positions of link. c) Draw the pole triangle for the positions of. Select a certain point, and determine its center-point, or, you can select a certain center-point and use the theorem The coupler and the fixed link subtend the same angle at the pole (look at your notes). We would like to have on the, but you can omit this requirement if necessary. d) Now that you have selected, at the three positions of draw a vertical (or horizontal) line from point. This line represents the required positions of the fork. To determine the link DE we are interested in the relative motion between the fork plane and the crank. To investigate this relative motion rotate, (and the vertical line you have drawn). bout such that and will coincide with. The new positions of (,,, say) and the fork plane is the motion relative to the crank. Draw the pole triangle for this relative motion, select a point D and determine its corresponding center point (E ). (Hartenberg). Es/es 7.5.

8 . The figure shows the principle of the linkage guidance of a mixer motor. The motor must move up and down in nearly rectilinear translation. Determine the dimensions of the required linkage for positions of the motor, lowest midway and highest. Keep space limitations in mind when coosing your links. (Look at the method discussed for the fork-lift. Later we shall see another method for the synthesis of this motion)). (Hartenberg and Volmer) E D 5 4. Design an in-line slider crankmechanism so that 9 clockwise rotation of link results in a rectilinear translation of point from left to right along a line as shown. Displacement of along the line must be approximately proportional to the corresponding rotations of within the 9 interval. Use three accuracy points. heck your result (Hartenberg). Es/es 8.5.

9 5. We would like to correlate a crank displacement with a slider displacement as shown in Fig. (a). In order to achieve this, double slide mechanism shown in Fig. (b) is considered. Derive a procedure for the synthesis of such a mechanism and using this procedure, synthesize a mechanism for which: θ = s = mm θ =4 s =4 mm θ =5 s =6 mm Hint: onsider kinematic inversion (Volmer) (a) (b) D θ θ θ D s s D D s 6. Figure (a) shows a mechanism for folding sheet metals. Slider input has been found disadvantageous and a mechanism using revolute joints has been considered as shown. The input link o is to rotate for the total motion. Synthesize this mechanism. Hint: First determine corresponding positions of the plane FD. Then select (or ) and thecorresponding (or ). Determine the total swing of the link when going from position to. Design a four bar mechanism with this swing angle and the corresponding crank rotation of (Remember lt harts?). G G,F F G G F, G G,F F D D D Es/es 9.5.

10 6. We would like to design a barber s chair in which a single control arm is to actuate both the foot rest and the head rest. Use two four-bar mechanisms in series as shown in figure (b) (not to scale) think about space limitations and aesthetics. (Erdman and Sandor). θ =.5 φ = 5 ψ = 4 θ = 45 φ = 75 ψ = 7 Head Rest hair Foot Rest 7. To protect car tape (or radio) from thieves a four-bar mechanism is to be constructed to move the tape behind the glove compartment when not in use. Figure shows a cross section of the area of interest including the glove compartment and heating duct as well as the prescribed positions for the tape unit. Since there is a small accptable are for center point, center point must be selected (Erdman and Sandor). R = 55 74i φ = R = 4 6i φ = 5 R = 5 + i φ = 9 Glove ompartment R Tape layer R R Heater Duct Es/es.5.

11 8. s part of automation process, a four-bar mechanism must be designed to remove boxes from one conveyor belt and deposit to an upper conveyor belts as shown. oth the moving and fixed pivots must be located between the upper and lower conveyor belts. a) Design a four-bar mechanism usıng graphical method. b) Design a four-bar mechanism by using the basic form of the dyad equation (specify the crank rotations arbitrarily) c) Design a four-bar mechanism by specifying the fixed pivot points (or moving pivot points)(erdman & Sandor) 7 4 U U 576 U crank-rocker path generating four-bar is required to advance film in a camera as shown (Erdman &Sandor). Given,, and φ, φ and selecting = i ; =-7.-.5i find the four-bar mechanism. = = i =-.+.5 i φ = φ = y x Es/es.5.

12 . Small autoclave is to be used to sterilize medical instruments. The door must be stored on the inside of the autoclave when it is open. The door must be closed by a mechanism from the inside to form a seal with a gasket that allows the steam pressure to reach 5 psi on the inside of the vessel, forcing the door to stay closed (as in the case of a steam cooker). Synthesize a four-bar mechanism for the autoclave door using the given three positions (If you cannot find a satisfactory solution using the given three positions, you can change the location of the mid position and its angle) (Erdman &Sandor). 4 (,) (86,85) (4,8) Es/es.5.

MENG 372 Chapter 3 Graphical Linkage Synthesis. All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003

MENG 372 Chapter 3 Graphical Linkage Synthesis. All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003 MENG 372 Chapter 3 Graphical Linkage Synthesis All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003 1 Introduction Synthesis: to design or create a mechanism to give a certain motion

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2 Solutions to Chapter 6 Exercise Problems Problem 6.1: Design a double rocker, four-bar linkage so that the base link is 2-in and the output rocker is 1-in long. The input link turns counterclockwise 60

More information

ME 321 Kinematics and Dynamics of Machines

ME 321 Kinematics and Dynamics of Machines .0 INTRODUCTION ME Kinematics and Dynamics of Machines All Text References in these notes are for: Mechanism Design: Analysis and Synthesis, Volume, Fourth Edition, Erdman, Sandor and Kota, Prentice-Hall,

More information

PROBLEMS AND EXERCISES PROBLEMS

PROBLEMS AND EXERCISES PROBLEMS 64 Fundamentals of Kinematics and Dynamics of Machines and Mechanisms PROBLEMS AND EXERCISES PROBLEMS 1. In Figure 1.14c an inverted slider-crank mechanism is shown. b. If the input is the displacement

More information

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

Analytical and Applied Kinematics

Analytical and Applied Kinematics Analytical and Applied Kinematics Vito Moreno moreno@engr.uconn.edu 860-614-2365 (cell) http://www.engr.uconn.edu/~moreno Office EB1, hours Thursdays 10:00 to 5:00 1 This course introduces a unified and

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 3 Lecture - 1 In an earlier lecture, we have already mentioned that there

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis Overview ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis By Suril Shah Some fundamentals Synthesis Function, path and motion generation Limiting condition Dimensional synthesis 1 2 What

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

Mechanism Design. Four-bar coupler-point curves

Mechanism Design. Four-bar coupler-point curves Mechanism Design Four-bar coupler-point curves Four-bar coupler-point curves A coupler is the most interesting link in any linkage. It is in complex motion, and thus points on the coupler can have path

More information

Kinematics of Machines. Brown Hills College of Engineering & Technology

Kinematics of Machines. Brown Hills College of Engineering & Technology Introduction: mechanism and machines, kinematic links, kinematic pairs, kinematic chains, plane and space mechanism, kinematic inversion, equivalent linkages, four link planar mechanisms, mobility and

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

Position Analysis

Position Analysis Position Analysis 2015-03-02 Position REVISION The position of a point in the plane can be defined by the use of a position vector Cartesian coordinates Polar coordinates Each form is directly convertible

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA DETC2013-12021

More information

Analytical synthesis of aeroplane landing gear by using compactness algorithm

Analytical synthesis of aeroplane landing gear by using compactness algorithm National Journal of Multidisciplinary Research and Development ISSN: 2455-9040 Impact Factor: RJIF 5.22 www.nationaljournals.com Volume 3; Issue 1; January 2018; Page No. 486-490 Analytical synthesis of

More information

Mechanism. Mechanism consists of linkages and joints.

Mechanism. Mechanism consists of linkages and joints. Mechanism Machines are mechanical devices used to accomplish work. A mechanism is a heart of a machine. It is the mechanical portion of the machine that has the function of transferring motion and forces

More information

NOT COMPLETE. θ 4 B 2 = O 2 O 4 = A 2 = A 1 B 1 O 2 KINEMATIC SYNTHESIS

NOT COMPLETE. θ 4 B 2 = O 2 O 4 = A 2 = A 1 B 1 O 2 KINEMATIC SYNTHESIS ME 35 NOT COMPLETE Design Design a crank-rocker four-bar (Grashof) where the input link rotates completely and the output link (the follower) rocks back and forth with a prescribed angle The design requires

More information

Simulation Model for Coupler Curve Generation using Five Bar Planar Mechanism With Rotation Constraint

Simulation Model for Coupler Curve Generation using Five Bar Planar Mechanism With Rotation Constraint Simulation Model for Coupler Curve Generation using Five Bar Planar Mechanism With Rotation Constraint A. K. Abhyankar, S.Y.Gajjal Department of Mechanical Engineering, NBN Sinhgad School of Engineering,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Generally all considerations in the force analysis of mechanisms, whether static or dynamic, the links are assumed to be rigid. The complexity of the mathematical analysis of mechanisms

More information

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism Mechanism Synthesis Introduction: Mechanism synthesis is the procedure by which upon identification of the desired motion a specific mechanism (synthesis type), and appropriate dimensions of the linkages

More information

Mechanism Kinematics and Dynamics

Mechanism Kinematics and Dynamics Mechanism Kinematics and Dynamics Final Project Presentation 10:10-13:00, 12/21 and 12/28 1. The window shield wiper (2) For the window wiper in Fig.1.33 on p.26 of the PPT, (1). Select the length of all

More information

DETC SLIDER CRANKS AS COMPATIBILITY LINKAGES FOR PARAMETERIZING CENTER POINT CURVES

DETC SLIDER CRANKS AS COMPATIBILITY LINKAGES FOR PARAMETERIZING CENTER POINT CURVES Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information Proceedings in Engineering of IDETC/CIE Conference 2009 ASME 2009 International Design Engineering

More information

Chapter 2 Graphical Synthesis of Mechanisms

Chapter 2 Graphical Synthesis of Mechanisms esign and Production Engineering epartment hapter 2 Graphical Synthesis of Mechanisms MT 251 s s t. P r o f. Mohammed M. Hedaya 2.1. Types of Synthesis of Mechanisms Function generation The correlation

More information

Optimal Synthesis of a Single-Dwell 6-Bar Planar Linkage

Optimal Synthesis of a Single-Dwell 6-Bar Planar Linkage International Journal of Computational Engineering Research Vol, 04 Issue, 2 Optimal Synthesis of a Single-Dwell 6-Bar Planar Linkage Galal A. Hassaan Mechanical Design & Production Department, Faculty

More information

Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point Curves

Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point Curves David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

Synthesis of Simple Planar Linkages

Synthesis of Simple Planar Linkages MEAM 211 Synthesis of Simple Planar Linkages Professor Vijay Kumar Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania January 15, 2006 1 Introduction Planar linkages

More information

LITERATURE REVIEW ON SYNTHESIS OF MECHANISM FOR STUDY CUM COMPUTER TABLE

LITERATURE REVIEW ON SYNTHESIS OF MECHANISM FOR STUDY CUM COMPUTER TABLE LITERATURE REVIEW ON SYNTHESIS OF MECHANISM FOR STUDY CUM COMPUTER TABLE Vinay Kumar Singh 1, Priyanka Jhavar 2, Dr. G.R. Selokar 3 1 Research Scholar, Mechanical Engineering, School of Engineering, SSSUTMS,

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

Effect of change of the orientation of dyad links on kinematics of Stephenson-III six-bar linkage

Effect of change of the orientation of dyad links on kinematics of Stephenson-III six-bar linkage Effect of change of the orientation of dyad links on kinematics of Stephenson-III six-bar linkage Tanmay Agrawal, Kushagra Upadhyay, Nitin Sharma and Rakesh Sehgal* Department of Mechanical Engineering

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body Chapter 2 Kinematics 2.1 Introduction 2.2 Degree of Freedom 2.2.1 DOF of a rigid body In order to control and guide the mechanisms to move as we desired, we need to set proper constraints. In order to

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

Name: Date: Per: WARM UP

Name: Date: Per: WARM UP Name: Date: Per: 6.1.1-6.1.3 WARM UP 6-23. In the last three lessons, you have investigated rigid transformations: reflections, rotations, and translations. 1. What happens to a shape when you perform

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

Mechanism Kinematics and Dynamics

Mechanism Kinematics and Dynamics Mechanism Kinematics and Dynamics Final Project 1. The window shield wiper For the window wiper, (1). Select the length of all links such that the wiper tip X p (t) can cover a 120 cm window width. (2).

More information

Kinematics, Dynamics, and Design of Machinery, 3 nd Ed.

Kinematics, Dynamics, and Design of Machinery, 3 nd Ed. MATLAB KINEMATIC PROGRAMS To Supplement the Textbook Kinematics, Dynamics, and Design of Machinery, 3 nd Ed. By K. J. Waldron, G. L. Kinzel, and S. Agrawal 2016 by G. Kinzel Department of Mechanical and

More information

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Courtesy of Design Simulation Technologies, Inc. Used with permission. Dan Frey Today s Agenda Collect assignment #2 Begin mechanisms

More information

2.007 Design and Manufacturing I Spring 2009

2.007 Design and Manufacturing I Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.007 Design and Manufacturing

More information

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion Notes_0_0 of efinitions Kinematics the stud of constrained motion without regard to forces that cause that motion namics the stud of how forces cause motion ausalit the relationship between cause and effect

More information

Synthesis of a Seven-Bar Slider Mechanism with Variable Topology for Motion between Two Dead-center Positions

Synthesis of a Seven-Bar Slider Mechanism with Variable Topology for Motion between Two Dead-center Positions Synthesis of a Seven-Bar Slider Mechanism with Variable Topology for Motion between Two Dead-center Positions Umesh M.Daivagna, Member, IAENG, Shrinivas S.Balli Abstract The paper presents an analytical

More information

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes Assemblies Mobility SolidWorks Assembly Files An assembly file is a collection of parts The first part brought into an assembly file is fixed Other parts are constrained relative to that part (or other

More information

CHAPTER 1 : KINEMATICS

CHAPTER 1 : KINEMATICS KINEMATICS : It relates to the study of the relative motion between the parts of a machine. Let us consider a reciprocating engine, in this the piston is made to reciprocate in the cylinderdue to the applied

More information

We will use point A as the reference point to find VB because A is in the same link as Band we have already solved for VA- Any vector equation can be solved for two unknowns. Each term has two parameters,

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 2 Lecture - 1 The topic of today s lecture is mobility analysis. By mobility

More information

Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production

Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production Department. Faculty of Engineering, Cairo University,

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI KINEMATICS OF MACHINES Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI 600 025 MECHANICS Science dealing with motion DIVISIONS OF MECHANICS Statics

More information

Synthesis of Constrained nr Planar Robots to Reach Five Task Positions

Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Robotics: Science and Systems 007 Atlanta, GA, USA, June 7-30, 007 Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Gim Song Soh Robotics and Automation Laboratory University of California

More information

DESIGN OF GRAPHICAL USER INTERFACES FOR THE SYNTHESIS OF PLANAR RR DYADS

DESIGN OF GRAPHICAL USER INTERFACES FOR THE SYNTHESIS OF PLANAR RR DYADS Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition IMECE2014 November 14-20, 2014, Montreal, Quebec, Canada IMECE2014-38564 DESIGN OF GRAPHICAL USER INTERFACES FOR

More information

Study on Gear Chamfering Method based on Vision Measurement

Study on Gear Chamfering Method based on Vision Measurement International Conference on Informatization in Education, Management and Business (IEMB 2015) Study on Gear Chamfering Method based on Vision Measurement Jun Sun College of Civil Engineering and Architecture,

More information

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018)

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) Instructions 1. Limit your total time to 5 hours. You can take a break in the middle of the exam if you need to ask a question, or go to dinner, etc. That

More information

User s Guide WATT 1.5. Heron Technologies bv P.O.Box AA Hengelo The Netherlands

User s Guide WATT 1.5. Heron Technologies bv P.O.Box AA Hengelo The Netherlands WATT 1.5 Heron Technologies bv P.O.Box 2 7550 AA Hengelo The Netherlands 1 Proprietary notice Heron Technologies bv, owns both this software program and its documentation. Both the program and the documentation

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2005-06 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Week 12 - Lecture Mechanical Event Simulation. ME Introduction to CAD/CAE Tools

Week 12 - Lecture Mechanical Event Simulation. ME Introduction to CAD/CAE Tools Week 12 - Lecture Mechanical Event Simulation Lecture Topics Mechanical Event Simulation Overview Additional Element Types Joint Component Description General Constraint Refresh Mesh Control Force Estimation

More information

Module 2 Test Study Guide. Type of Transformation (translation, reflection, rotation, or none-of-theabove). Be as specific as possible.

Module 2 Test Study Guide. Type of Transformation (translation, reflection, rotation, or none-of-theabove). Be as specific as possible. Module 2 Test Study Guide CONCEPTS TO KNOW: Transformation (types) Rigid v. Non-Rigid Motion Coordinate Notation Vector Terminology Pre-Image v. Image Vertex Prime Notation Equation of a Line Lines of

More information

GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS

GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS Bulletin of the Transilvania University of Braşov Vol. 3 (5) - 010 Series I: Engineering Sciences GEARED LINKAGE WITH LARGE ANGULAR STROKE USED IN TRACKED PV SYSTEMS N.C. CREANGĂ 1 I. VIŞA 1 D.V. DIACONESCU

More information

The Design of Spherical 4R Linkages for Four Specified Orientations

The Design of Spherical 4R Linkages for Four Specified Orientations The Design of Spherical 4R Linkages for Four Specified Orientations D. Alan Ruth and J. Michael McCarthy Robotics and Automation Laboratory Department of Mechanical Engineering University of California,

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information

First Nations people use a drying rack to dry fish and animal hides. The drying rack in this picture is used in a Grade 2 classroom to dry artwork.

First Nations people use a drying rack to dry fish and animal hides. The drying rack in this picture is used in a Grade 2 classroom to dry artwork. 7.1 ngle roperties of Intersecting Lines Focus Identify and calculate complementary, supplementary, and opposite angles. First Nations people use a drying rack to dry fish and animal hides. The drying

More information

REDUCING STRUCTURAL ERROR IN FUNCTION GENERATING MECHANISMS VIA THE ADDITION OF LARGE NUMBERS OF DOUBLE-CRANK LINKAGES

REDUCING STRUCTURAL ERROR IN FUNCTION GENERATING MECHANISMS VIA THE ADDITION OF LARGE NUMBERS OF DOUBLE-CRANK LINKAGES REDUCING STRUCTURAL ERROR IN FUNCTION GENERATING MECHANISMS VIA THE ADDITION OF LARGE NUMBERS OF DOUBLE-CRANK LINKAGES Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial

More information

Using Geometry to Design Simple Machines By Daniel D. Frey

Using Geometry to Design Simple Machines By Daniel D. Frey Using Geometry to Design Simple Machines By Daniel D. Frey Hi. I m Dan Fry. I m a teacher at MIT in Cambridge, Massachusetts, and today we re going to do a session about design of mechanisms. This should

More information

Quick Start Training Guide

Quick Start Training Guide Quick Start Training Guide Table of Contents 1 INTRODUCTION TO MAPLESIM... 5 1.1 USER INTERFACE... 5 2 WORKING WITH A SAMPLE MODEL... 7 2.1 RUNNING A SIMULATION... 7 2.2 GRAPHICAL OUTPUT... 7 2.3 3D VISUALIZATION...

More information

DESIGN AND ANALYSIS OF WEIGHT SHIFT STEERING MECHANISM BASED ON FOUR BAR MECHANISM

DESIGN AND ANALYSIS OF WEIGHT SHIFT STEERING MECHANISM BASED ON FOUR BAR MECHANISM International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 12, December 2017, pp. 417 424, Article ID: IJMET_08_12_041 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=12

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

Fundamentals of Inverse Kinematics Using Scara Robot

Fundamentals of Inverse Kinematics Using Scara Robot Fundamentals of Inverse Kinematics Using Scara Robot Overview of SCARA Bot: The 2 Degree of freedom (DOF) Selective Compliance Articulate Robotic Arm (SCARA) (Selective Compliance Articulated Robot Arm)

More information

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT 2-1 Transformations and Rigid Motions Essential question: How do you identify transformations that are rigid motions? ENGAGE 1 ~ Introducing Transformations A transformation is a function that changes

More information

Path Curvature of the Single Flier Eight-Bar Linkage

Path Curvature of the Single Flier Eight-Bar Linkage Gordon R. Pennock ASME Fellow Associate Professor Edward C. Kinzel Research Assistant School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907-2088 Path Curvature of the Single

More information

MECHANICAL ENGINEERING

MECHANICAL ENGINEERING MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-II FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

Taibah University Mechanical Engineering

Taibah University Mechanical Engineering Instructor: Chapter 2 Kinematics Fundamentals 1. Introduction 2. Degrees of Freedom 3. Types of Motion 4. Links, Joints, and Kinematic Chains 5. Determining Degree of Freedom Degree of Freedom in Planar

More information

Powered Arm Orthosis III

Powered Arm Orthosis III Worcester Polytechnic Institute Digital WPI Assistive Technology Resource Center Projects Assistive Technology Resource Center 1-1999 Powered Arm Orthosis III Christopher Felice Worcester Polytechnic Institute

More information

GEOMETRY LAB UNIT 3: PARALLEL AND PERPENDICULAR LINES

GEOMETRY LAB UNIT 3: PARALLEL AND PERPENDICULAR LINES GEOMETRY LAB UNIT 3: PARALLEL AND PERPENDICULAR LINES **SHOW ALL WORK** A COMPASS AND GRAPH PAPER IS NECESSARY FOR THIS UNIT LESSON TOPIC BOOK/ VIDEO DAY 1 LINES AND ANGLES (3-1) SYSTEMS OF EQUATIONS (P152-3)

More information

Mechanism Simulation With Working Model

Mechanism Simulation With Working Model Mechanism Simulation With Working Model Shih-Liang Wang Department of Mechanical Engineering North Carolina A&T State University Greensboro, NC 27411 Introduction Kinematics is a study of motion and force

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Analysis of a 4 Bar Crank-Rocker Mechanism Using COSMOSMotion

Analysis of a 4 Bar Crank-Rocker Mechanism Using COSMOSMotion Analysis of a 4 Bar Crank-Rocker Mechanism Using COSMOSMotion ME345: Modeling and Simulation Professor Frank Fisher Stevens Institute of Technology Last updated: June 29th, 2009 Table of Contents 1. Introduction

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics MCE/EEC 647/747: Robot Dynamics and Control Lecture 3: Forward and Inverse Kinematics Denavit-Hartenberg Convention Reading: SHV Chapter 3 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/12 Aims of

More information

Computer Aided Kinematic Analysis of Toggle Clamping Mechanism

Computer Aided Kinematic Analysis of Toggle Clamping Mechanism IOSR Journal of Mechanical & Civil Engineering (IOSRJMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP 49-56 www.iosrjournals.org Computer Aided Kinematic Analysis of Toggle Clamping Mechanism S.A. Bhojne 1,

More information

Computer based comparison analysis of single and double connecting rod slider crank linkages

Computer based comparison analysis of single and double connecting rod slider crank linkages Agronomy Research Biosystem Engineering Special Issue 1, 3-10, 2012 Computer based comparison analysis of single and double connecting rod slider crank linkages A. Aan and M. Heinloo Institute of Technology,

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Stackable 4-BAR Mechanisms and Their Robotic Applications

Stackable 4-BAR Mechanisms and Their Robotic Applications The 010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-, 010, Taipei, Taiwan Stackable 4-BAR Mechanisms and Their Robotic Applications Hoyul Lee and Youngjin Choi Abstract

More information

DETC2000/MECH KINEMATIC SYNTHESIS OF BINARY ACTUATED MECHANISMS FOR RIGID BODY GUIDANCE

DETC2000/MECH KINEMATIC SYNTHESIS OF BINARY ACTUATED MECHANISMS FOR RIGID BODY GUIDANCE Proceedings of DETC ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Baltimore, Maryland, September -3, DETC/MECH-7 KINEMATIC SYNTHESIS

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

Engineering Mechanics. Equilibrium of Rigid Bodies

Engineering Mechanics. Equilibrium of Rigid Bodies Engineering Mechanics Equilibrium of Rigid Bodies System is in equilibrium if and only if the sum of all the forces and moment (about any point) equals zero. Equilibrium Supports and Equilibrium Any structure

More information

Lecture Note 6: Forward Kinematics

Lecture Note 6: Forward Kinematics ECE5463: Introduction to Robotics Lecture Note 6: Forward Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 6 (ECE5463

More information

Workspaces of planar parallel manipulators

Workspaces of planar parallel manipulators Workspaces of planar parallel manipulators Jean-Pierre Merlet Clément M. Gosselin Nicolas Mouly INRIA Sophia-Antipolis Dép. de Génie Mécanique INRIA Rhône-Alpes BP 93 Université Laval 46 Av. Felix Viallet

More information

QUICK-RETURN MECHANISM REVISITED

QUICK-RETURN MECHANISM REVISITED Paper ID #6099 QUICK-RETURN MECHANISM REVISITED Prof. Raghu Echempati, Kettering University Raghu Echempati is a professor and graduate programs director of Mechanical Engineering at Kettering with academic

More information

Computational Design + Fabrication: 4D Analysis

Computational Design + Fabrication: 4D Analysis Computational Design + Fabrication: 4D Analysis Jonathan Bachrach EECS UC Berkeley October 6, 2015 Today 1 News Torque and Work Simple Machines Closed Chains Analysis Paper Review Lab 3 Critique News 2

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

5.1 DYNAMIC INVESTIGATION.

5.1 DYNAMIC INVESTIGATION. Chapter 5 INVERSIN The notion of inversion has occurred several times already, especially in connection with Hyperbolic Geometry. Inversion is a transformation different from those of Euclidean Geometry

More information

The Design and Simulation of Mechanisms. Inna Sharifgalieva

The Design and Simulation of Mechanisms. Inna Sharifgalieva The Design and Simulation of Mechanisms Inna Sharifgalieva Degree Thesis Degree Programme: Materials Processing Technology 2014 2018 1 DEGREE THESIS Arcada University of Applied Sciences Degree Programme:

More information

Optimization of Watt s Six-bar Linkage to Generate Straight and Parallel Leg Motion

Optimization of Watt s Six-bar Linkage to Generate Straight and Parallel Leg Motion intehweb.com Optimization of Watt s Six-bar Linkage to Generate Straight and Parallel Leg Motion Hamid Mehdigholi and Saeed Akbarnejad Sharif University of Technology mehdi@sharif.ir Abstract: This paper

More information