CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18

Size: px
Start display at page:

Download "CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18"

Transcription

1 CSE 417T: Introduction to Machine Learning Lecture 6: Bias-Variance Trade-off Henry Chai 09/13/18

2 Let! ", $ = the maximum number of dichotomies on " points s.t. no subset of $ points is shattered Recall If $ is a breakpoint for H, then ' H "! ", $ If! ", $ is bounded by a polynomial in " and ' H " is bounded by! ", $, then ' H " is bounded by a polynomial in " 2

3 Recall! ", $ & *+, " '() - *+, = & '() "! " -! -! "*+, + 1 3

4 If $ is a breakpoint for H, then! H # & #, $ Bounding! H # & #, $ # ()* + 1 If $ is a breakpoint for H, then! H # # ()* + 1 4

5 For 1D positive rays,! = 2 is a break point and $ H & = & + 1 & *+, + 1 = & + 1 Growth Function: Examples For 1D positive intervals,! = 3 is a break point and $ H & =./ * +. * + 1 &0+, + 1 = & * + 1 For 2D linear separators,! = 4 is a break point and $ H 3 = , + 1 = 28 5

6 For 1D positive rays,! = 2 is a break point and $ H & = & + 1 & *+, + 1 = & + 1 Growth Function: Examples For 1D positive intervals,! = 3 is a break point and $ H & =./ * +. * + 1 &0+, + 1 = & * + 1 For 2D linear separators,! = 4 is a break point and $ H 3 = , + 1 = 28 6

7 For 1D positive rays,! = 2 is a break point and $ H & = & + 1 & *+, + 1 = & + 1 Growth Function: Examples For 1D positive intervals,! = 3 is a break point and $ H & =./ * +. * + 1 &0+, + 1 = & * + 1 For 2D linear separators,! = 4 is a break point and $ H 3 = , + 1 = 28 7

8 For 1D positive rays,! = 2 is a break point and $ H & = & + 1 & *+, + 1 = & + 1 Growth Function: Examples For 1D positive intervals,! = 3 is a break point and $ H & =./ * +. * + 1 &0+, + 1 = & * + 1 For 2D linear separators,! = 4 is a break point and $ H 3 = , + 1 = 28 8

9 For 1D positive rays,! = 2 is a break point and $ H & = & + 1 & *+, + 1 = & + 1 Growth Function: Examples For 1D positive intervals,! = 3 is a break point and $ H & =./ * +. * + 1 &0+, + 1 = & * + 1 For 2D linear separators,! = 4 is a break point and $ H 4 = , + 1 = 65 9

10 ! "# H = the largest value of & s.t. ' H & = 2 ) The VC-dimension is the greatest number of points that can be shattered by H VC-Dimension If * is the smallest breakpoint for H, then! "# H = * 1 ' H & & / ) 7 + 9! "# :;< ) ) 10

11 ! "# H = the largest value of & s.t. ' H & = 2 ) The VC-dimension is the greatest number of points that can be shattered by H VC-Dimension If * is the smallest breakpoint for H, then! "# H = * 1 ' H & & / ) 7 + 9! "# :;< ) ) 11

12 How many samples do we need in our training data to say that the generalization error is less than! with probability at least 1 $? Sample Complexity Set % & log * +, -&./0 1! Conclude that we need 3 % 5 6 log * +, -&. /0 1 Practical rule of thumb: : 12

13 Penalty for Model Complexity Given! samples, how good can we say our learned hypothesis will do with confidence at least 1 $? Conclude that % &'( ) % +, ) +., log 2 3,

14 How well does % generalize? Approximation Generalization Tradeoff! "#$ %! '( % + * +,- log 1 1 How well does % approximate 2? 14

15 How well does % generalize? Approximation Generalization Tradeoff! "#$ %! '( % + * +,- log 1 1 Decreases as +,- increases 15

16 Increases as +,- increases Approximation Generalization Tradeoff! "#$ %! '( % + * +,- log 1 1 Decreases as +,- increases 16

17 Bias-Variance Tradeoff Regression with squared error:! = R and $ h, ', ) = ' ) h ) +, - H = the hypothesis returned by 0 when the input training data is - 17

18 ! "#$ % & = ( *~, % & - / - 0 Bias-Variance Tradeoff ( &! "#$ % & = ( & ( * % & - / - 0 ( &! "#$ % & = ( * ( & % & - / - 0 ( &! "#$ % & = ( * ( & % & - 0 2% & - / - / - 0 ( &! "#$ % & = ( * ( & % & - 0 2% - / - / - 0 where % - = ( & % & - : % &; - 18

19 ! "#$ % & = ( * % & Bias-Variance Tradeoff ( &! "#$ % & = ( & ( * % & ( &! "#$ % & = ( * ( & % & ( &! "#$ % & = ( * ( & % & +. 2% & ( &! "#$ % & = ( * ( & % & +. 2% where % + = ( & % & % &: + 19

20 Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, 2' , =! *! " ' " +, ' +, + ' +, 2' , =! *! " ' " +, ' +, + ' + 0 +, =! * Variance of ' " + + Bias of ' + 20

21 How variable is '? Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, ' +, + ' + 0 +, How well, on average, does ' approximate 0? 21

22 How well could ' approximate anything? Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, ' +, + ' + 0 +, How well, on average, does ' approximate 0? 22

23 How well could ' approximate noise? Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, ' +, + ' + 0 +, How well, on average, does ' approximate 0? 23

24 How well could ' approximate noise? Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, ' +, + ' + 0 +, Decreases as H becomes more complex 24

25 Increases as H becomes more complex Bias-Variance Tradeoff! " # $%& ' " =! *! " ' " +, ' +, + ' + 0 +, Decreases as H becomes more complex 25

26 ! = R and $ = Uniform 0, 2/ Bias-Variance Tradeoff (Example) 0 = sin 2 3 = 2 4, sin 2 4, 2 5, sin 2 5 H 7 = h h 2 = : and H 4 = h h 2 = ;2 + : 26

27 Bias-Variance Tradeoff (Example) H " H # 27

28 Bias-Variance Tradeoff (Example) H " H # 28

29 Bias-Variance Tradeoff (Example) % ' % ' H " H # 29

30 Bias-Variance Tradeoff (Example) * - * - Bias of * Bias of * Variance of * Variance of * : ;<= * : ;<= *

31 Bias-Variance Tradeoff (Example) * - * - Bias of * Bias of * Variance of * Variance of * :; * :; *

32 ! "#$! "#$ Expected error! %& Expected error! %& Number of training points, ' Number of training points, ' Simple model Complex model 32

33 Expected error! "#$ Generalization error In-sample error! %& Expected error Variance Bias! "#$! %& Number of training points, ' Number of training points, ' VC analysis Bias-Variance analysis 33

34 ! " #$ % " '() % > + 4. H $ Vapornik- Chervonenkis (VC)-Bound Or " '() % " #$ % + 5 $ log <= H >$? with probability at least 1 A 34

35 # $ %& ' $ )*+ ' > - 40 H 2" & Why 2"? Or $ )*+ ' $ %& ' + 5 & log <= H >&? with probability at least 1 A 35

36 Intuition: # $%& ' is difficult to reason about Why 2"? * Replace # $%& ' with # () ', the error on a second dataset of size " not used in the training process * + # () ' # $%& ' >. 2+ # () ' # () ' >. 36

37 Instead of bounding! "#$ % using! &' %, estimate! "#$ % using the error on some test dataset ( )! $*+$ % = error on the test dataset Test Sets If the ( ) is not involved in the training process, then we are validating % using ( ) Therefore, Hoeffding s bound applies! Even better, Hoeffding s bound applies with - = H = 1 0! $*+$ %! "#$ % > : ' ; where < ) = ( ) 37

38 But at what cost? We are given a finite pool of data Test Sets Carving out a test dataset to bound! "#$ % leaves fewer data points to train with A smaller training dataset generally means the learned % is worse i.e.! $&'$ % is large Practical rule of thumb: 70-80% training, 20-30% testing 38

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff Overfitting Machine Learning CSE546 Carlos Guestrin University of Washington October 2, 2013 1 Bias-Variance Tradeoff Choice of hypothesis class introduces learning bias More complex class less bias More

More information

Nonparametric Methods Recap

Nonparametric Methods Recap Nonparametric Methods Recap Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods Kernel Density estimate (also Histogram) Weighted frequency Classification - K-NN Classifier Majority

More information

Model Complexity and Generalization

Model Complexity and Generalization HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Generalization Learning Curves Underfit Generalization

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

CSE 446 Bias-Variance & Naïve Bayes

CSE 446 Bias-Variance & Naïve Bayes CSE 446 Bias-Variance & Naïve Bayes Administrative Homework 1 due next week on Friday Good to finish early Homework 2 is out on Monday Check the course calendar Start early (midterm is right before Homework

More information

Algorithm Independent Machine Learning

Algorithm Independent Machine Learning Algorithm Independent Machine Learning 15s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales April 22, 2015 COMP9417 ML & DM (CSE, UNSW)

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang K-Nearest Neighbour (Continued) Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ A few things: No lectures on Week 7 (i.e., the week starting from Monday 5 th November), and Week 11 (i.e., the week

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

Boosting Simple Model Selection Cross Validation Regularization

Boosting Simple Model Selection Cross Validation Regularization Boosting: (Linked from class website) Schapire 01 Boosting Simple Model Selection Cross Validation Regularization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 8 th,

More information

10601 Machine Learning. Model and feature selection

10601 Machine Learning. Model and feature selection 10601 Machine Learning Model and feature selection Model selection issues We have seen some of this before Selecting features (or basis functions) Logistic regression SVMs Selecting parameter value Prior

More information

Cross-validation. Cross-validation is a resampling method.

Cross-validation. Cross-validation is a resampling method. Cross-validation Cross-validation is a resampling method. It refits a model of interest to samples formed from the training set, in order to obtain additional information about the fitted model. For example,

More information

EE 511 Linear Regression

EE 511 Linear Regression EE 511 Linear Regression Instructor: Hanna Hajishirzi hannaneh@washington.edu Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Announcements Hw1 due

More information

Supervised Learning. CS 586 Machine Learning. Prepared by Jugal Kalita. With help from Alpaydin s Introduction to Machine Learning, Chapter 2.

Supervised Learning. CS 586 Machine Learning. Prepared by Jugal Kalita. With help from Alpaydin s Introduction to Machine Learning, Chapter 2. Supervised Learning CS 586 Machine Learning Prepared by Jugal Kalita With help from Alpaydin s Introduction to Machine Learning, Chapter 2. Topics What is classification? Hypothesis classes and learning

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Economics Nonparametric Econometrics

Economics Nonparametric Econometrics Economics 217 - Nonparametric Econometrics Topics covered in this lecture Introduction to the nonparametric model The role of bandwidth Choice of smoothing function R commands for nonparametric models

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

CSC 411: Lecture 02: Linear Regression

CSC 411: Lecture 02: Linear Regression CSC 411: Lecture 02: Linear Regression Raquel Urtasun & Rich Zemel University of Toronto Sep 16, 2015 Urtasun & Zemel (UofT) CSC 411: 02-Regression Sep 16, 2015 1 / 16 Today Linear regression problem continuous

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

An introduction to multi-armed bandits

An introduction to multi-armed bandits An introduction to multi-armed bandits Henry WJ Reeve (Manchester) (henry.reeve@manchester.ac.uk) A joint work with Joe Mellor (Edinburgh) & Professor Gavin Brown (Manchester) Plan 1. An introduction to

More information

Programming Exercise 5: Regularized Linear Regression and Bias v.s. Variance

Programming Exercise 5: Regularized Linear Regression and Bias v.s. Variance Programming Exercise 5: Regularized Linear Regression and Bias v.s. Variance Machine Learning May 13, 212 Introduction In this exercise, you will implement regularized linear regression and use it to study

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

Design of Experiments

Design of Experiments Seite 1 von 1 Design of Experiments Module Overview In this module, you learn how to create design matrices, screen factors, and perform regression analysis and Monte Carlo simulation using Mathcad. Objectives

More information

Hyperparameters and Validation Sets. Sargur N. Srihari

Hyperparameters and Validation Sets. Sargur N. Srihari Hyperparameters and Validation Sets Sargur N. srihari@cedar.buffalo.edu 1 Topics in Machine Learning Basics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation

More information

Section 16. The Subspace Topology

Section 16. The Subspace Topology 16. The Subspace Product Topology 1 Section 16. The Subspace Topology Note. Recall from Analysis 1 that a set of real numbers U is open relative to set X if there is an open set of real numbers O such

More information

Simple Model Selection Cross Validation Regularization Neural Networks

Simple Model Selection Cross Validation Regularization Neural Networks Neural Nets: Many possible refs e.g., Mitchell Chapter 4 Simple Model Selection Cross Validation Regularization Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February

More information

memoization or iteration over subproblems the direct iterative algorithm a basic outline of dynamic programming

memoization or iteration over subproblems the direct iterative algorithm a basic outline of dynamic programming Dynamic Programming 1 Introduction to Dynamic Programming weighted interval scheduling the design of a recursive solution memoizing the recursion 2 Principles of Dynamic Programming memoization or iteration

More information

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2016

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2016 CPSC 340: Machine Learning and Data Mining Regularization Fall 2016 Assignment 2: Admin 2 late days to hand it in Friday, 3 for Monday. Assignment 3 is out. Due next Wednesday (so we can release solutions

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

Neural Networks: What can a network represent. Deep Learning, Fall 2018

Neural Networks: What can a network represent. Deep Learning, Fall 2018 Neural Networks: What can a network represent Deep Learning, Fall 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Neural Networks: What can a network represent. Deep Learning, Spring 2018

Neural Networks: What can a network represent. Deep Learning, Spring 2018 Neural Networks: What can a network represent Deep Learning, Spring 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Boosting Simple Model Selection Cross Validation Regularization. October 3 rd, 2007 Carlos Guestrin [Schapire, 1989]

Boosting Simple Model Selection Cross Validation Regularization. October 3 rd, 2007 Carlos Guestrin [Schapire, 1989] Boosting Simple Model Selection Cross Validation Regularization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 3 rd, 2007 1 Boosting [Schapire, 1989] Idea: given a weak

More information

Comparing sizes of sets

Comparing sizes of sets Comparing sizes of sets Sets A and B are the same size if there is a bijection from A to B. (That was a definition!) For finite sets A, B, it is not difficult to verify that there is a bijection from A

More information

Excel 2010 with XLSTAT

Excel 2010 with XLSTAT Excel 2010 with XLSTAT J E N N I F E R LE W I S PR I E S T L E Y, PH.D. Introduction to Excel 2010 with XLSTAT The layout for Excel 2010 is slightly different from the layout for Excel 2007. However, with

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Recap. Growth rates: Arrange the following functions in ascending order of growth rate: n 2 log n n log n 2 log n n/ log n n n Introduction Algorithm: A step-by-step way of solving a problem. Design of

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Lecture and notes by: Sarah Fletcher and Michael Xu November 3rd, Multicommodity Flow

Lecture and notes by: Sarah Fletcher and Michael Xu November 3rd, Multicommodity Flow Multicommodity Flow 1 Introduction Suppose we have a company with a factory s and a warehouse t. The quantity of goods that they can ship from the factory to the warehouse in a given time period is limited

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 12 Combining

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

Leveling Up as a Data Scientist. ds/2014/10/level-up-ds.jpg

Leveling Up as a Data Scientist.   ds/2014/10/level-up-ds.jpg Model Optimization Leveling Up as a Data Scientist http://shorelinechurch.org/wp-content/uploa ds/2014/10/level-up-ds.jpg Bias and Variance Error = (expected loss of accuracy) 2 + flexibility of model

More information

Cross-validation and the Bootstrap

Cross-validation and the Bootstrap Cross-validation and the Bootstrap In the section we discuss two resampling methods: cross-validation and the bootstrap. These methods refit a model of interest to samples formed from the training set,

More information

Machine Learning. Topic 4: Linear Regression Models

Machine Learning. Topic 4: Linear Regression Models Machine Learning Topic 4: Linear Regression Models (contains ideas and a few images from wikipedia and books by Alpaydin, Duda/Hart/ Stork, and Bishop. Updated Fall 205) Regression Learning Task There

More information

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100.

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100. Linear Model Selection and Regularization especially usefull in high dimensions p>>100. 1 Why Linear Model Regularization? Linear models are simple, BUT consider p>>n, we have more features than data records

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

StatsMate. User Guide

StatsMate. User Guide StatsMate User Guide Overview StatsMate is an easy-to-use powerful statistical calculator. It has been featured by Apple on Apps For Learning Math in the App Stores around the world. StatsMate comes with

More information

RESAMPLING METHODS. Chapter 05

RESAMPLING METHODS. Chapter 05 1 RESAMPLING METHODS Chapter 05 2 Outline Cross Validation The Validation Set Approach Leave-One-Out Cross Validation K-fold Cross Validation Bias-Variance Trade-off for k-fold Cross Validation Cross Validation

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee A first model of learning Let s restrict our attention to binary classification our labels belong to (or ) Empirical risk minimization (ERM) Recall the definitions of risk/empirical risk We observe the

More information

Linear Regression and K-Nearest Neighbors 3/28/18

Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression Hypothesis Space Supervised learning For every input in the data set, we know the output Regression Outputs are continuous A number,

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) Department of Information, Operations and Management Sciences Stern School of Business, NYU padamopo@stern.nyu.edu

More information

Subset sum problem and dynamic programming

Subset sum problem and dynamic programming Lecture Notes: Dynamic programming We will discuss the subset sum problem (introduced last time), and introduce the main idea of dynamic programming. We illustrate it further using a variant of the so-called

More information

Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys

Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys Steven Pedlow 1, Kanru Xia 1, Michael Davern 1 1 NORC/University of Chicago, 55 E. Monroe Suite 2000, Chicago, IL 60603

More information

Linear Feature Engineering 22

Linear Feature Engineering 22 Linear Feature Engineering 22 3 Overfitting Remember our dataset from last time. We have a bunch of inputs x i and corresponding outputs y i. In the previous lecture notes, we considered how to fit polynomials

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

Machine Learning (CSE 446): Unsupervised Learning

Machine Learning (CSE 446): Unsupervised Learning Machine Learning (CSE 446): Unsupervised Learning Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 19 Announcements HW2 posted. Due Feb 1. It is long. Start this week! Today:

More information

DS504/CS586: Big Data Analytics Big Data Clustering II

DS504/CS586: Big Data Analytics Big Data Clustering II Welcome to DS504/CS586: Big Data Analytics Big Data Clustering II Prof. Yanhua Li Time: 6pm 8:50pm Thu Location: KH 116 Fall 2017 Updates: v Progress Presentation: Week 15: 11/30 v Next Week Office hours

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19 Dynamic Programming CSE 101: Design and Analysis of Algorithms Lecture 19 CSE 101: Design and analysis of algorithms Dynamic programming Reading: Chapter 6 Homework 7 is due Dec 6, 11:59 PM This Friday

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D.

Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D. Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D. Introduction to Minitab The interface for Minitab is very user-friendly, with a spreadsheet orientation. When you first launch Minitab, you will see

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Simulation studies. Patrick Breheny. September 8. Monte Carlo simulation Example: Ridge vs. Lasso vs. Subset

Simulation studies. Patrick Breheny. September 8. Monte Carlo simulation Example: Ridge vs. Lasso vs. Subset Simulation studies Patrick Breheny September 8 Patrick Breheny BST 764: Applied Statistical Modeling 1/17 Introduction In statistics, we are often interested in properties of various estimation and model

More information

Bias-Variance Decomposition Error Estimators

Bias-Variance Decomposition Error Estimators Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Topics in Machine Learning-EE 5359 Model Assessment and Selection

Topics in Machine Learning-EE 5359 Model Assessment and Selection Topics in Machine Learning-EE 5359 Model Assessment and Selection Ioannis D. Schizas Electrical Engineering Department University of Texas at Arlington 1 Training and Generalization Training stage: Utilizing

More information

Bias-Variance Decomposition Error Estimators Cross-Validation

Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

LECTURE 12: LINEAR MODEL SELECTION PT. 3. October 23, 2017 SDS 293: Machine Learning

LECTURE 12: LINEAR MODEL SELECTION PT. 3. October 23, 2017 SDS 293: Machine Learning LECTURE 12: LINEAR MODEL SELECTION PT. 3 October 23, 2017 SDS 293: Machine Learning Announcements 1/2 Presentation of the CS Major & Minors TODAY @ lunch Ford 240 FREE FOOD! Announcements 2/2 CS Internship

More information

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error INTRODUCTION TO MACHINE LEARNING Measuring model performance or error Is our model any good? Context of task Accuracy Computation time Interpretability 3 types of tasks Classification Regression Clustering

More information

Lab #9: ANOVA and TUKEY tests

Lab #9: ANOVA and TUKEY tests Lab #9: ANOVA and TUKEY tests Objectives: 1. Column manipulation in SAS 2. Analysis of variance 3. Tukey test 4. Least Significant Difference test 5. Analysis of variance with PROC GLM 6. Levene test for

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16)

CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16) CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16) Michael Hahsler Southern Methodist University These slides are largely based on the slides by Hinrich Schütze Institute for

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

Multicollinearity and Validation CIVL 7012/8012

Multicollinearity and Validation CIVL 7012/8012 Multicollinearity and Validation CIVL 7012/8012 2 In Today s Class Recap Multicollinearity Model Validation MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3.

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

DS504/CS586: Big Data Analytics Big Data Clustering II

DS504/CS586: Big Data Analytics Big Data Clustering II Welcome to DS504/CS586: Big Data Analytics Big Data Clustering II Prof. Yanhua Li Time: 6pm 8:50pm Thu Location: AK 232 Fall 2016 More Discussions, Limitations v Center based clustering K-means BFR algorithm

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

CPSC 340: Machine Learning and Data Mining. Feature Selection Fall 2017

CPSC 340: Machine Learning and Data Mining. Feature Selection Fall 2017 CPSC 340: Machine Learning and Data Mining Feature Selection Fall 2017 Assignment 2: Admin 1 late day to hand in tonight, 2 for Wednesday, answers posted Thursday. Extra office hours Thursday at 4pm (ICICS

More information

Computing Classic Closeness Centrality, at Scale

Computing Classic Closeness Centrality, at Scale Computing Classic Closeness Centrality, at Scale Edith Cohen Joint with: Thomas Pajor, Daniel Delling, Renato Werneck Very Large Graphs Model relations and interactions (edges) between entities (nodes)

More information

CSC 411 Lecture 4: Ensembles I

CSC 411 Lecture 4: Ensembles I CSC 411 Lecture 4: Ensembles I Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 04-Ensembles I 1 / 22 Overview We ve seen two particular classification algorithms:

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

High Dimensional Indexing by Clustering

High Dimensional Indexing by Clustering Yufei Tao ITEE University of Queensland Recall that, our discussion so far has assumed that the dimensionality d is moderately high, such that it can be regarded as a constant. This means that d should

More information

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13 CSE 634 - Data Mining Concepts and Techniques STATISTICAL METHODS Professor- Anita Wasilewska (REGRESSION) Team 13 Contents Linear Regression Logistic Regression Bias and Variance in Regression Model Fit

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Nonparametric Regression and Cross-Validation Yen-Chi Chen 5/27/2017

Nonparametric Regression and Cross-Validation Yen-Chi Chen 5/27/2017 Nonparametric Regression and Cross-Validation Yen-Chi Chen 5/27/2017 Nonparametric Regression In the regression analysis, we often observe a data consists of a response variable Y and a covariate (this

More information

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE Practice EXAM: SPRING 0 CS 6375 INSTRUCTOR: VIBHAV GOGATE The exam is closed book. You are allowed four pages of double sided cheat sheets. Answer the questions in the spaces provided on the question sheets.

More information

CSC 373: Algorithm Design and Analysis Lecture 3

CSC 373: Algorithm Design and Analysis Lecture 3 CSC 373: Algorithm Design and Analysis Lecture 3 Allan Borodin January 11, 2013 1 / 13 Lecture 3: Outline Write bigger and get better markers A little more on charging arguments Continue examples of greedy

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Thursday, October 1, 2015 Outline 1 Recap 2 Shortest paths in graphs with non-negative edge weights (Dijkstra

More information