;~~~~~~~~~~~~ ;P4-6-1.ASM ~ ;~~~~~~~~~~~~ SYMBOLS RS REG P2.0 EN REG P2.1 PICK REG P3.0 RELAY0 REG P3.1 RELAY1 REG P3.6 RELAY2 REG P3.

Size: px
Start display at page:

Download ";~~~~~~~~~~~~ ;P4-6-1.ASM ~ ;~~~~~~~~~~~~ SYMBOLS RS REG P2.0 EN REG P2.1 PICK REG P3.0 RELAY0 REG P3.1 RELAY1 REG P3.6 RELAY2 REG P3."

Transcription

1 ;~~~~~~~~~~~~ ;P4-6-1.ASM ~ ;~~~~~~~~~~~~ SYMBOLS RS REG P2.0 EN REG P2.1 PICK REG P3.0 RELAY0 REG P3.1 RELAY1 REG P3.6 RELAY2 REG P3.7 PASS1 REG 70H PASS2 REG 71H TURN REG 72H IN_CODE REG 73H TIME REG 74H OVER_T REG 75H R_DATA REG 76H ON EQU 0 OFF EQU 1 HANDUP EQU 10 ; HAND UP TIME ENDCODE EQU 0FFH ORG 0 JMP START ; INT0 INTERRUPTING ORG 03 JMP DTMF_INPUT ; INT1 INTERRUPTING ORG 13H JMP PHONE_RING ; T1 INTERRUPTING ORG 1BH JMP HANDUP_TIME ; INT0 INTERRUPTING

2 DTMF_INPUT: PUSH A MOV A, P2 SWAP A ANL A, # B ; MASK P2.4-P2.7 CALL PHONE_TABLE ; NUMBER TO ASCII MOV IN_CODE, A MOV OVER_T, #HANDUP ; SET NEXT KEY TIME POP A I ; INT1 INTERRUPTING PHONE_RING: DJNZ R_DATA, END_RING MOV R_DATA, #5 SETB PICK ; SET PHONE_RELAY TO PICK UP MOV OVER_T, #HANDUP ; SET NEXT KEY TIME END_RING: I ; T1 INTERRUPTING HANDUP_TIME: PUSH A MOV TH1, #>( ) MOV TL1, #<( ) DJNZ TIME, END_T1 MOV TIME, #100 MOV A, OVER_T JZ ENDUP DEC OVER_T END_T1: POP A I ENDUP: CLR PICK JMP END_T1 PHONE_TABLE: INC A

3 MOVC DB -1,'1','2','3','4','5','6','7','8','9','0','*','#',-1,-1,-1 ; MAIN PROGRAM STARTING START: MOV TMOD, # B ; T0,T1:MODE1 MOV IE, # B ; ENABLE T1,INT0,INT1 INTERRUPT MOV R_DATA, #5 ; RING 5 TIMES MOV P2, # B ; RELAY0,1,2,PICK=0 MOV IN_CODE, #-1 ; NO PHONE CODE IN CALL INIT_LCD ; INITIAL LCD MOV PASS1, #'1' MOV PASS2, #'2' AGAIN: CALL CLEAR_LCD MOV DPTR, #PASSWORD ; SHOW PASSWORD CALL DISPMESS ; GET 2 CHAR CHECK1_KEYIN: CALL KEYIN JC KEY1_SET ; IF KEY PRESSED, GO TO KEY1_SET WAIT1_PHONE: JNB PICK, CHECK1_KEYIN $1 CALL GET_CODE JNC KEY1_SET ; IF PHONE CODE IN, GO TO KEY1_SET JNB PICK, AGAIN ; IF HAND UP, RESTART AGAIN JMP $1 KEY1_SET: CALL KEYIN ; DEBOUNCE JNC KEY1_SET CALL DELAY25MS MOV R2, A CALL OUT_CHAR CHECK2_KEYIN: CALL KEYIN

4 JC KEY2_SET ; IF KEY PRESSED, GO TO KEY2_SET WAIT2_PHONE: JNB PICK, CHECK2_KEYIN $2 CALL GET_CODE JNC KEY2_SET ; IF PHONE CODE IN, GO TO KEY2_SET JNB PICK, AGAIN ; IF HAND UP, RESTART AGAIN JMP $2 KEY2_SET: CALL KEYIN ; DEBOUNCE JNC KEY2_SET CALL DELAY25MS MOV R3, A CALL OUT_CHAR MOV A, R2 CJNE A, PASS1, ERROR ; FIRST KEY <> '1' MOV A, R3 CJNE A, PASS2, ERROR ; SECOND KEY <> '2' CALL CLEAR_LCD MOV DPTR, #OK ; DISPLAY 'O.K.!!' CALL DISPMESS CHECK3_KEYIN: CALL KEYIN JC KEY3_SET ; IF KEY PRESSED, GO TO KEY3_SET WAIT3_PHONE: JNB PICK, CHECK3_KEYIN $3 CALL GET_CODE JNC KEY3_SET ; IF PHONE CODE IN, GO TO KEY3_SET JNB PICK, RESTART0 ; IF HAND UP, RESTART AGAIN JMP $3 KEY3_SET: CALL KEYIN ; DEBOUNCE JNC KEY3_SET CALL DELAY25MS CJNE A, #'*', CHECK_OFF

5 MOV TURN, A JMP GET_NO ; GET NUMBER CHECK_OFF: CJNE A, #'#', RESTART0 MOV TURN, A GET_NO: CHECK4_KEYIN: CALL KEYIN JC KEY4_SET ; IF KEY PRESSED, GO TO KEY4_SET WAIT4_PHONE: JNB PICK, CHECK4_KEYIN $4 CALL GET_CODE JNC KEY4_SET ; IF PHONE CODE IN, GO TO KEY4_SET JNB PICK, RESTART0 ; IF HAND UP, RESTART AGAIN JMP $4 KEY4_SET: CALL KEYIN ; DEBOUNCE JNC KEY4_SET CALL DELAY25MS CJNE A, #'2', CHECK_1NO MOV A, TURN CJNE A, #'*', TURN_2OFF TURN_2ON: SETB RELAY2 JMP AGAIN TURN_2OFF: CLR RELAY2 JMP AGAIN ERROR: CALL CLEAR_LCD MOV DPTR, #ER ; DISPLAY 'ERROR!!' CALL DISPMESS JMP AGAIN

6 CHECK_1NO: CJNE MOV CJNE TURN_1ON: SETB JMP TURN_1OFF: CLR JMP CHECK_0NO: CJNE MOV CJNE TURN_0ON: SETB RESTART0: JMP TURN_0OFF: CLR JMP PASSWORD: DB OK: DB ER: DB A, #'1', CHECK_1NO A, TURN A, #'*', TURN_1OFF RELAY1 AGAIN RELAY1 AGAIN A, #'0', RESTART0 A, TURN A, #'*', TURN_0OFF RELAY0 AGAIN RELAY0 AGAIN 'PASSWORD:', ENDCODE 'O.K.!!', ENDCODE 'ERROR!!', ENDCODE ; READ THE INPUT PHONE NUMBER GET_CODE: MOV A, #-1 XCH A, IN_CODE ADD A, #1 DEC A

7 ; BELL 2K HZ 3 TIMES BELL: MOV R7, #150 BELLLOOP: SETB T0 CALL DELAY0.25MS CLR T0 CALL DELAY0.25MS DJNZ R7, BELLLOOP MOV R6, #20 DELAYLOOP: CALL DELAY25MS DJNZ R6, DELAYLOOP ; 8 BITS,2 LINES,5X10 DOTS INIT_LCD: MOV P0, #3FH ; FUNCTION SET CLR RS ; RS=0 CALL WRITE ; SET DISPLAY ON,CURSOR ON,CURSOR BLINKING MOV P0, #0FH ; DISPLAY ON CLR RS ; RS=0 CALL WRITE ; CLEAR DISPLAY, HOME CURSOR, ADDR=00H CLEAR_LCD: MOV P0, #01H CLR RS ; RS=0 CALL WRITE CALL DELAY1MS CALL DELAY1MS ; TRIGGER EN LINE, AND WAIT FOR A WHILE WRITE: CLR EN ; EN=0

8 SETB EN ; EN=1 CLR EN ; EN=0 CALL DELAY1MS ; DISPLAY A STRING ENDED BY ENDCODE DISPMESS: PUSH A PUSH 0 MOV R0, #0 DISP_AGAIN: MOV A, R0 MOVC CJNE A, #ENDCODE, CH_OUT POP 0 POP A CH_OUT: CALL OUT_CHAR INC R0 LJMP DISP_AGAIN ; PUT A CHAR TO LCD OUT_CHAR: MOV P0, A SETB RS ; RS=1 CALL WRITE KEYIN: PUSH 0 PUSH 1 PUSH 2 MOV R0, #0 ; R0 = THE KEY NO. MOV R2, #0FEH ; R2 = THE SCANNING CODE KROW: MOV R1, #4 ; R1 = THE COLUMNS(LINES) MOV P1, R2 ; P0 : OUTPUT PORT

9 CALL DELAY1MS MOV A, P1 ; P1 : INPUT PORT SWAP A ; CHANGE P1.4-7 TO A.0-3 KCOL: RRC A ; Carry = A.0 JNC KEYPRESSED ; IF Carry=0 THEN GOTO KEYPRESSED INC R0 ; OTHERWISE R0<-R0+1 DJNZ R1, KCOL ; TO CHECK THE LINE NO. MOV A, R2 ; IF 4 LINES HAS BEEN SCANNED RL A ; SHIFT SCAN DATA TO NEXT LINE MOV R2, A JNB A.4, NO_KEY ; TO CHECK IF THE 4 ROWS SCANNED LJMP KROW ; IF NOT GOTO KROW NO_KEY: CLR C ; IF NO KEY PRESSED THEN Carry = 0 KEY_END: POP 2 POP 1 POP 0 KEYPRESSED: MOV A, R0 MOV DPTR, #KEY_TABLE MOVC SETB C ; TO SET Carry = 1 LJMP KEY_END ; GO BACK KEY_TABLE: DB ' *0# ' DELAY0.25MS: ; DELAY 0.25 mini SEC. MOV TH0, #>( ) MOV TL0, #<( ) SETB TR0 JNB TF0, $ CLR TF0 CLR TR0 DELAY1MS: ; DELAY 1 mini SEC.

10 MOV TH0, #>( ) MOV TL0, #<( ) SETB TR0 JNB TF0, $ CLR TF0 CLR TR0 DELAY25MS: MOV TH0, #>( ) MOV TL0, #<( ) SETB TR0 JNB TF0, $ CLR TF0 CLR TR0 ; DELAY 25 mini SEC.

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman Microprocessors 1 The 8051 Instruction Set Microprocessors 1 1 Instruction Groups The 8051 has 255 instructions Every 8-bit opcode from 00 to FF is used except for A5. The instructions are grouped into

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller EE4380 Fall 2001 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas 8051 Architecture Programmer s View Register Set Instruction Set Memory

More information

8051 Single Board Monitor Programming. Minmon - Yeralan & Ahluwalia. PaulMon1 & PaulMon2 - Paul Stoffregen

8051 Single Board Monitor Programming. Minmon - Yeralan & Ahluwalia. PaulMon1 & PaulMon2 - Paul Stoffregen 8051 Single Board Monitor Programming Monitor Program Available Monitor Program Minmon - Yeralan & Ahluwalia Programming and Interfacing the 8051 Microcontroller PaulMon1 & PaulMon2 - Paul Stoffregen http://www.pjrc.com/tech/8051

More information

Programming of 8085 microprocessor and 8051 micro controller Study material

Programming of 8085 microprocessor and 8051 micro controller Study material 8085 Demo Programs Now, let us take a look at some program demonstrations using the above instructions Adding Two 8-bit Numbers Write a program to add data at 3005H & 3006H memory location and store the

More information

Embedded Controller Programming

Embedded Controller Programming Embedded Controller Programming Counters, Timers and I/O in Assembly Language Ken Arnold Copyright 2000-2004 Ken Arnold 1 Outline Timer/Counters Serial Port More 8051 Instructions Examples Copyright 2000-2004

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP 805 SFR Bus Digital Blocks Semiconductor IP 805 Microcontroller Configurable Peripherals General Description The Digital Blocks (Configurable Peripherals) Microcontroller Verilog IP Core is complaint with

More information

2. Write an 8051 program to generate a square wave of 25 khz at pin P2.3 using XTAL = 12 MHz. Solution:

2. Write an 8051 program to generate a square wave of 25 khz at pin P2.3 using XTAL = 12 MHz. Solution: Assignment 2 1. Assume that 5 binary data items are stored in RAM locations starting at 50h, as shown below. Write a program to find the sum of all the numbers. The calculation is in 16-bit format and

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP DB805C-FSM 805 Microcontroller FSM Finite State Machine General Description The Digital Blocks DB805C-FSM IP Core contains Digital Blocks compact DB805C CPU Core & GPIO

More information

Assembly Language programming (2)

Assembly Language programming (2) EEE3410 Microcontroller Applications LABORATORY Experiment 2 Assembly Language programming (2) Name Class Date Class No. Marks Arithmetic, Logic and Jump instructions Objectives To learn and practice the

More information

MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS

MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS EXAMINATION FOR 159.233 COMPUTER SYSTEMS Semester One June 2008 Time allowed: THREE (3) hours This exam contains THREE (3) questions ANSWER ALL THREE (3) QUESTIONS

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP 805 Microcontroller General Description The Digital Blocks Microcontroller Verilog IP Core is complaint with the MCS 5 Instruction Set and contains standard 805 MCU peripherals,

More information

LCD AND KEYBOARD INTERFACING

LCD AND KEYBOARD INTERFACING LCD AND KEYBOARD The 8051 Microcontroller and Embedded Systems: Using Assembly and C Mazidi, Mazidi and McKinlay Chung-Ping Young 楊中平 Home Automation, Networking, and Entertainment Lab Dept. of Computer

More information

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

MICROCONTROLLER BASED WATER LEVEL CONTROL SYSTEM

MICROCONTROLLER BASED WATER LEVEL CONTROL SYSTEM MICROCONTROLLER BASED WATER LEVEL CONTROL SYSTEM The present concept implements controlling of pump which pumps water from the sump (underground tank) to the overhead tank, using 8951 microcontroller.

More information

Microcontroller. Instruction set of 8051

Microcontroller. Instruction set of 8051 UNIT 2: Addressing Modes and Operations: Introduction, Addressing modes, External data Moves, Code Memory, Read Only Data Moves / Indexed Addressing mode, PUSH and POP Opcodes, Data exchanges, Example

More information

Module Contents of the Module Hours COs

Module Contents of the Module Hours COs Microcontrollers (EE45): Syllabus: Module Contents of the Module Hours COs 1 8051 MICROCONTROLLER ARCHITECTURE: Introduction to Microprocessors and Microcontrollers, the 8051 Architecture, 08 1 and pin

More information

SN8F5000 Family Instruction Set

SN8F5000 Family Instruction Set SONiX Technology Co., Ltd. 8051-based Microcontroller 1 Overview SN8F5000 is 8051 Flash Type microcontroller supports comprehensive assembly instructions and which are fully compatible with standard 8051.

More information

Programming Book Microcontroller Kit. Rev 3.0 January, Wichit Sirichote

Programming Book Microcontroller Kit. Rev 3.0 January, Wichit Sirichote Programming Book1 8051 Microcontroller Kit Rev 3.0 January, 016 016 Wichit Sirichote 1 Contents Overview...3 SAFTY INFORMATION...3 Tools...3 Experiment 1 Blinking LED...4 Experiment Binary number counting...9

More information

Introduction To MCS-51

Introduction To MCS-51 Introduction To MCS-51 By Charoen Vongchumyen Department of Computer Engineering Faculty of Engineering KMITLadkrabang 8051 Hardware Basic Content Overview Architechture Memory map Register Interrupt Timer/Counter

More information

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples.

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MICROCONTROLLERS AND APPLICATIONS 1 Module 2 Module-2 Contents: Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MEMORY

More information

8051 Microcontroller Assembly Programming

8051 Microcontroller Assembly Programming 8051 Microcontroller Assembly Programming EE4380 Fall 2002 Class 3 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Topics Machine code 8051 Addressing Modes

More information

Application Brief D-005

Application Brief D-005 Interfacing the Avago HDSP-2xxx LED Alphanumeric Displays with the Intel 8751H Microcontroller Application Brief D-005 Introduction The HDSP-21xx/-25xx series of products is ideal for applications where

More information

Lab-Report Microprocessors

Lab-Report Microprocessors Lab-Report Microprocessors Digital Voltage Meter (DVM) NO YES Name: Dirk Becker Course: BEng 2 Group: A Student No.: 9801351 Date: 05/May/1999 1. Contents 1. CONTENTS... 2 2. INTRODUCTION... 3 3. THE PROJECT...

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

8051 Core Specification

8051 Core Specification 8051 Core Specification Authors: Jaka Simsic Simon Teran jakas@opencores.org simont@opencores.org Rev. 0.1 August 14, 2001 First Draft www.opencores.org Rev 0.1 First Draft 1 of 26 Revision History Rev.

More information

UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

Dodatak. Skup instrukcija

Dodatak. Skup instrukcija Dodatak Skup instrukcija Arithmetic Operations [@Ri] implies contents of memory location pointed to by R0 or R1 Rn refers to registers R0-R7 of the currently selected register bank 2 ADD A,

More information

~: Simple Programs in 8051 assembly language :~

~: Simple Programs in 8051 assembly language :~ ~: Simple Programs in 8051 assembly language :~ Here some simple programs of 8051 are given to understand the operation of different instructions and to understand the logic behind particular program.

More information

Timers and interrupts

Timers and interrupts Timers and interrupts CSCI 255: Introduction to Embedded Systems Keith Vertanen Copyright 2011 Timers Overview Creating fixed pauses Calculate length of events Counts events Generate baud rate for serial

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

NAME as31 - An Intel 8031/8051 assembler. SYNOPSIS as31 [-h] [-l] [-s] [-v] [-Aarg] [-Ffmt] [-Ofile] infile.asm

NAME as31 - An Intel 8031/8051 assembler. SYNOPSIS as31 [-h] [-l] [-s] [-v] [-Aarg] [-Ffmt] [-Ofile] infile.asm NAME as31 - An Intel 8031/8051 assembler SYNOPSIS as31 [-h] [-l] [-s] [-v] [-Aarg] [-Ffmt] [-Ofile] infile.asm DESCRIPTION As31 assembles infile.asm into one of several different output formats. The output

More information

Control Transfer Instructions Jump, Loop, and Call. ECE473/573 Microprocessor System Design, Dr. Shiue

Control Transfer Instructions Jump, Loop, and Call. ECE473/573 Microprocessor System Design, Dr. Shiue Control Transfer Instructions Jump, Loop, and Call 1 Jump Instructions JZ label ; Jump if A=0 JNZ label ; Jump if A!=0 DJNZ reg, label ; Decrement and Jump if A (or reg.)!=0 CJNE A, byte ; Compare and

More information

INSTRUCCIONES ARITMETICAS ERROR! MARCADOR NO DEFINIDO.

INSTRUCCIONES ARITMETICAS ERROR! MARCADOR NO DEFINIDO. INSTRUCCIONES ARITMETICAS ERROR! MARCADOR NO DEFINIDO. ADD A,Rn Add register to 28..2F 1 12 X X X accumulator ADD A,direct Add direct byte 25 2 12 X X X to accumulator ADD A,@Ri Add indirect RAM 26..27

More information

Instruction Set Of 8051

Instruction Set Of 8051 Instruction Set Of 8051 By Darshan Patel M.Tech (Power Electronics & Drives) Assistant Professor, Electrical Department Sankalchand Patel college of Engineering-Visnagar Introduction The process of writing

More information

Contents 8051 Instruction Set BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter I : Control Transfer Instructions Lesson (a): Loop Lesson (b): Jump (i) Conditional Lesson (c): Lesson (d): Lesson (e):

More information

Highlights. FP51 (FPGA based 1T 8051 core)

Highlights. FP51 (FPGA based 1T 8051 core) Copyright 2017 PulseRain Technology, LLC. FP51 (FPGA based 1T 8051 core) 10555 Scripps Trl, San Diego, CA 92131 858-877-3485 858-408-9550 http://www.pulserain.com Highlights 1T 8051 Core Intel MCS-51 Compatible

More information

Q. Classify the instruction set of 8051 and list out the instructions in each type.

Q. Classify the instruction set of 8051 and list out the instructions in each type. INTRODUCTION Here is a list of the operands and their meanings: A - accumulator; Rn - is one of working registers (R0-R7) in the currently active RAM memory bank; Direct - is any 8-bit address register

More information

8051 I/O and 8051 Interrupts

8051 I/O and 8051 Interrupts 8051 I/O and 8051 Interrupts Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Agenda 8051 I/O Interfacing Scanned LED displays LCD displays

More information

Principle and Interface Techniques of Microcontroller

Principle and Interface Techniques of Microcontroller Principle and Interface Techniques of Microcontroller --8051 Microcontroller and Embedded Systems Using Assembly and C LI, Guang ( 李光 ) Prof. PhD, DIC, MIET WANG, You ( 王酉 ) PhD, MIET 杭州 浙江大学 2011 Chapter

More information

D: arc SRC KUT51 KUT51LCD.LST KUT51LCD PAGE 1

D: arc SRC KUT51 KUT51LCD.LST KUT51LCD PAGE 1 D: arc SRC KUT51.LST PAGE 1 1 1 ; Ver 1.1 : Hyper Terminal and LCD supported(line delay=20 ms, 19200 bps) 2 3 $mod51 4 5 ; PORT DEFINITION F800 6 LCD_COMMAND_WR EQU 0F800H F801 7 LCD_DATA_WR EQU 0F801H

More information

DR bit RISC Microcontroller. Instructions set details ver 3.10

DR bit RISC Microcontroller. Instructions set details ver 3.10 DR80390 8-bit RISC Microcontroller Instructions set details ver 3.10 DR80390 Instructions set details - 2 - Contents 1. Overview 7 1.1. Document structure. 7 2. Instructions set brief 7 2.1. Instruction

More information

CPEG300 Embedded System Design. Lecture Interface with Peripheral Devices

CPEG300 Embedded System Design. Lecture Interface with Peripheral Devices CPEG300 Embedded System Design Lecture 0 805 Interface with Peripheral Devices Hamad Bin Khalifa University, Spring 208 Typical Devices for an Electronics System Power generation PWM control Input devices

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 9 Simple I/O Interfacing

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 9 Simple I/O Interfacing Department of Electrical Engineering Lecture 9 Simple I/O Interfacing Week 10 1 In this Lecture. Interface 8051 with the following Input/Output Devices Switches Solenoid and relays LEDs Seven Segment Display

More information

Vector-based Pong on an Oscilloscope

Vector-based Pong on an Oscilloscope Vector-based Pong on an Oscilloscope Edmond Lau 6.115 Final Project May 13, 2004 Edmond Lau Page 2 5/13/2004 Table of Contents 1 Introduction 3 2 Hardware Design Description 3 2.1 Using the Oscilloscope

More information

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 - Interrupts EE4380 Fall 2001 Class 9 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Polling Vs Interrupts Polling: MCU monitors all served devices continuously,

More information

Microcontroller and Applications

Microcontroller and Applications S.Y. Diploma : Sem. IV [DE/EJ/ET/EN/EX/EQ/IS/IC/IE] Microcontroller and Applications Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following : [10] Q.1(a) Define

More information

Lecture 5. EEE3410 Microcontroller Applications Department of Electrical Engineering Assembly Language Programming (1)

Lecture 5. EEE3410 Microcontroller Applications Department of Electrical Engineering Assembly Language Programming (1) Department of Electrical Engineering Lecture 5 8051 Assembly Language Programming (1) 1 In this Lecture 8051 programming model Assembly language syntax Operation codes and operands Machine instructions

More information

Dragonchip. Instruction Set Manual

Dragonchip. Instruction Set Manual Dragonchip Instruction Set Manual Version 3.1 July 2004 The Objective of this document is to provide the user a detail description to the each instruction set used in Dragonchip s MCU family. There are

More information

1. Write A Program to move a block of data within the internal RAM

1. Write A Program to move a block of data within the internal RAM UNIT 2: Example Programs. 1. Write A Program to move a block of data within the internal RAM Org 0h start1: mov r0,#40h ;r0 pointed to internal RAM 40h mov r1,#30h ;r1 pointing to internal RAM 030h mov

More information

ELEG3923 Microprocessor Ch.9 Timer Programming

ELEG3923 Microprocessor Ch.9 Timer Programming Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.9 Timer Programming Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Programming 8051 Timers Counter programming Timer programming

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET MICROCONTROLLER AND MICROPROCESSOR SYSTEMS ECE2216 TRIMESTER 1 (2017/2018) MP2: Construction and programming of a basic electronic piano *Note: On-the-spot evaluation may

More information

TUTORIAL. Donal Heffernan University of Limerick May Tutorial D.Heffernan 2000,

TUTORIAL. Donal Heffernan University of Limerick May Tutorial D.Heffernan 2000, 8051 TUTORIAL Donal Heffernan University of Limerick May-2002 8051 Tutorial D.Heffernan 2000, 2001 1 Blank 8051 Tutorial D.Heffernan 2000, 2001 2 Some reference material: Test books + MacKenzie Scott.

More information

Assembly Language programming (3)

Assembly Language programming (3) EEE3410 Microcontroller Applications LABORATORY Experiment 3 Assembly Language programming (3) Name Class Date Class No. Marks Conditional Program Branching and Subroutine Call in 8051 Objectives To learn

More information

Principle and Interface Techniques of Microcontroller

Principle and Interface Techniques of Microcontroller Principle and Interface Techniques of Microcontroller --8051 Microcontroller and Embedded Systems Using Assembly and C LI, Guang ( 李光 ) Prof. PhD, DIC, MIET WANG, You ( 王酉 ) PhD, MIET 杭州 浙江大学 2014 Chapter

More information

Arithmetic and Logic

Arithmetic and Logic 8051 - Arithmetic and Logic EE4380 Fall 2001 Class 8 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Signed Arithmetic - Concepts Representation of the sign

More information

Chapter Family Microcontrollers Instruction Set

Chapter Family Microcontrollers Instruction Set Chapter 4 8051 Family Microcontrollers Instruction Set Lesson 5 Program Flow Control and Interrupt Flow Control Instructions 2 Branch instructions- Jump to new value of Program Counter (PC) LJMP address16

More information

Introduction to uc & Embedded Systems

Introduction to uc & Embedded Systems Introduction to uc & Embedded Systems Prepared by, Tamim Roshdy Embedded Systems What is an embedded system? An embedded system is an application that contains at least one programmable computer (typically

More information

Interrupt Programming: Interrupts vs. Polling Method:

Interrupt Programming: Interrupts vs. Polling Method: UNIT 4: INTERRUPT PROGRAMMING & SERIAL COMMUNICATION WITH 8051: Definition of an interrupt, types of interrupts, Timers and Counter programming with interrupts in assembly. 8051 Serial Communication: Data

More information

اصول ميکروکامپيوترها استاد درس: دکتر http://ee.iust.ac.ir/rahmati/index.htm rahmati@iust.ac.ir ا درس Email و Website برای تکاليف و... : http://eel.iust.ac.ir/rahmati/ ١ نوزدهم فصل ا شنايی با دستورالعمل

More information

Alexandria University Faculty of Engineering Communications & Electronics Department.

Alexandria University Faculty of Engineering Communications & Electronics Department. Alexandria University Faculty of Engineering Communications & Electronics Department. TO : DR \ HOSSAM ELDIN MOSTAFA PRESENTED BY : 1. AHMED OSMAN HASSAN NEGM 24 2. AHMED MOHAMED IBRAHIM AHMED ABD ELWAHED

More information

build_char macro P1,P2,P3,P4,P5,P6,P7,P8 ;Macro for building a custom character

build_char macro P1,P2,P3,P4,P5,P6,P7,P8 ;Macro for building a custom character hold macro nop nop nop nop endm disp_str macro string ;Macro for sending string to LCD irpc char, if nul 'char' exitm endif mov a,#'char' lcall data_in endm endm build_char macro P1,P2,P3,P4,P5,P6,P7,P8

More information

80C51 family programmer s guide and instruction set. 80C51 Family. PROGRAMMER S GUIDE AND INSTRUCTION SET Memory Organization. Philips Semiconductors

80C51 family programmer s guide and instruction set. 80C51 Family. PROGRAMMER S GUIDE AND INSTRUCTION SET Memory Organization. Philips Semiconductors PROGRAMMER S GUIDE AND INSTRUCTION SET Memory Organization Program Memory The 80C51 has separate address spaces for program and data memory. The Program memory can be up to 64k bytes long. The lower 4k

More information

C51 Family. Architectural Overview of the C51 Family. Summary

C51 Family. Architectural Overview of the C51 Family. Summary Architectural Overview of the C51 Family C51 Family Summary 1. Introduction............................................................ I.1. 1.1. TSC80C51/80C51/80C31.................................................................

More information

What Registers are available? Programming in Assembler. Assembler Programming - like early Basic. Assembler Data Movement Instructions

What Registers are available? Programming in Assembler. Assembler Programming - like early Basic. Assembler Data Movement Instructions Programming in Assembler Need knowledge of CPU 8051 Programmers model what registers are available? what memory is available? code memory (for programs) data memory (for variables and the stack) what instructions

More information

S.J.P.N Trust's. Hirasugar Institute of Technology, Nidasoshi.

S.J.P.N Trust's. Hirasugar Institute of Technology, Nidasoshi. S.J.P.N Trust's Tq: Hukkeri Dist: Belagavi DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING LABORATORY MANUAL Name of the Lab: Microcontroller Laboratory Semester: V Subject Code: 15EEL57 Staff Incharge:

More information

MCS -51 Programmer s Guide and Instruction Set

MCS -51 Programmer s Guide and Instruction Set MCS -51 Programmer s Guide and Instruction Set November 1992 Order Number 270249-003 COPYRIGHT INTEL CORPORATION 1996 MCS -51 PROGRAMMER S GUIDE AND INSTRUCTION SET CONTENTS PAGE MEMORY ORGANIZATION 1

More information

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1 Timer/Counters Department of EIE / Pondicherry Engineering College 1 The 8051 has two internal sixteen bit hardware Timer/Counters. Each Timer/Counter can be configured in various modes, typically based

More information

Timer-1 can be run using the internal clock, fosc/12 (timer mode) or from any external source via pin T1 (P3.5) (Counter mode).

Timer-1 can be run using the internal clock, fosc/12 (timer mode) or from any external source via pin T1 (P3.5) (Counter mode). EC 6504 MICROPROCESSOR AND MICROCONTROLLER Electronics and Communication Engineering Fifth Semester UNIT-V Part A 1. List the modes of Timer in 8051. [N/D16] The timers available in 8051 are Timer 0 (T0)

More information

MicroConverter Technical Note - uc007 User Download (ULOAD) Mode

MicroConverter Technical Note - uc007 User Download (ULOAD) Mode 1.0 INTRODUCTION : The ADuC83X family ( big memory family ) all integrate a large program memory space, with 62kBytes of flash/ee program memory available to the user. As with the standard MicroConverter

More information

University of Toronto at Scarborough CSC CSSF - Microprocessor Systems

University of Toronto at Scarborough CSC CSSF - Microprocessor Systems Final Exam - December l&l997 University of Toronto at Scarborough CSC CSSF - Microprocessor Systems 3 hours - No notes or similar aids allowed. Marks Examiner: Gyula Lorincz P3 oc-3-20 1. Explain in detail

More information

CoE3DJ4 Digital Systems Design. Chapter 6: Interrupts

CoE3DJ4 Digital Systems Design. Chapter 6: Interrupts CoE3DJ4 Digital Systems Design Chapter 6: Interrupts Interrupts An interrupt is the occurrence of an event that causes a temporary suspension of a program while the condition is serviced by another program.

More information

ET355 Microprocessors Thursday 6:00 pm 10:20 pm

ET355 Microprocessors Thursday 6:00 pm 10:20 pm ITT Technical Institute ET355 Microprocessors Thursday 6:00 pm 10:20 pm Unit 4 Chapter 6, pp. 139-174 Chapter 7, pp. 181-188 Unit 4 Objectives Lecture: BCD Programming Examples of the 805x Microprocessor

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller Subject Code: 17534 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

ELEG3923 Microprocessor Ch.6 Arithmetic and Logics

ELEG3923 Microprocessor Ch.6 Arithmetic and Logics Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.6 Arithmetic and Logics Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Arithmetic instructions Signed number operations Logic

More information

AL8051S 8-BIT MICROCONTROLLER Application Notes

AL8051S 8-BIT MICROCONTROLLER Application Notes AL8051S 8-BIT MICROCONTROLLER Application Notes 6-14-2012 Table of Contents GENERAL INFORMATION... 3 FEATURES... 3 Key features... 3 Design features... 3 INTERFACE... 4 Symbol... 4 Signal description...

More information

TUTORIAL Assembly Language programming (2)

TUTORIAL Assembly Language programming (2) 8051 Assembly Language programming (2) TUTORIAL 4 EEE3410 Microcontroller Applications 1. Write the instructions to move value 34h into register A and value 3Fh into register B, then add them together.

More information

اصول ميکروکامپيوترها استاد درس: دکتر http://eeiustacir/rahmati/indexhtm rahmati@iustacir ا درس Email و Website برای تکاليف و : http://eeliustacir/rahmati/ ١ /١۴ هفدهم فصل ا شنايی با دستورالعمل ها وMode

More information

UNIT MICROCONTROLLER AND ITS PROGRAMMING

UNIT MICROCONTROLLER AND ITS PROGRAMMING M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 UNIT-7 8051 MICROCONTROLLER AND ITS PROGRAMMING INTRODUCTION The microcontroller incorporates all the features that are found

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code: I m p o r t a n t I n s t r u c t i o n s t o e x a m i n e r s : 1) The answers should be examined by key

More information

Q.1. A) Attempt any THREE of the following:

Q.1. A) Attempt any THREE of the following: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

MODEL ANSWER WINTER 17 EXAMINATION Subject Title: Microcontroller and applications

MODEL ANSWER WINTER 17 EXAMINATION Subject Title: Microcontroller and applications Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

1. LCD (Liquid Crystal Display)interface

1. LCD (Liquid Crystal Display)interface e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: I/O devices Interfacing Module No: CS/ES/16 Quadrant 1 e-text In this lecture, the interfacing of 8051 with an output device and

More information

Report Title: Digital Voltmeter using 89C51

Report Title: Digital Voltmeter using 89C51 VIVEKANAND EDUCATION SOCIETY'S INSTITUTE OF TECHNOLOGY Approved by AICTE & Affiliated to Mumbai University ELECTRONIC WORKSHOP - 2 REPORT Report Title: Digital Voltmeter using 89C51 PROJECT MEMBERS: 1.

More information

8051 Timers and Serial Port

8051 Timers and Serial Port 8051 Timers and Serial Port EE4380 Fall 2001 Class 10 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Timer: Mode 1 Operation (recap) 16 bit counter. Load the

More information

System & Program Developments of 8051

System & Program Developments of 8051 System & Program Developments of 8051 Program Structure and Design Introduction Advantages and Disadvantages of Structured Programming The Three Structures: statements, loops, choice Pseudo Code Syntax

More information

CPEG300 Embedded System Design. Lecture 6 Interrupt System

CPEG300 Embedded System Design. Lecture 6 Interrupt System CPEG300 Embedded System Design Lecture 6 Interrupt System Hamad Bin Khalifa University, Spring 2018 Correction Lecture 3, page 18: Only direct addressing mode is allowed for pushing or popping the stack:

More information

MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS

MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS MASSEY UNIVERSITY PALMERSTON NORTH CAMPUS EXAMINATION FOR 159.253 COMPUTER SYSTEMS Semester I - 2005 Time allowed: THREE (3) hours THIS IS A CLOSED BOOK EXAMINATION ANSWER ALL QUESTIONS SECTION A 28 Multi-choice

More information

8051 Programming: Arithmetic and Logic

8051 Programming: Arithmetic and Logic 8051 Programming: Arithmetic and Logic EE4380 Fall 2002 Class 4 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Topics Signed and Unsigned arithmetic Binary

More information

A Facilitated Learning Environment for Mentally Disabled Children

A Facilitated Learning Environment for Mentally Disabled Children A Facilitated Learning Environment for Mentally Disabled Children Jeanette Chan Massachusetts Institute of Technology 6.115 Microprocessor Lab May 14, 2002 Contents 1 Introduction 2 1.1 Overview... 2 1.2

More information

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 Timers Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Introduction Timers Timing devices - Generate specific time delay Event

More information

MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following.

MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following. MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following. (9M) 1) Describe the instructions SWAP A and MOVX@DPTR,A with one example. (3Marks) SWAP A

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 9: MCS-51: Moving Data : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Moving Data Page 2 Moving Data: Objectives Use commands that

More information

Chapter Addressing Modes

Chapter Addressing Modes Chapter 5 8051 Addressing Modes 1 Sections 5.1 Immediate and register addressing modes 5.2 Accessing memory using various address modes 2 Objective 程式中的資料可能是放在 Register 中, 或在 RAM 中某一位址上, 或在 ROM 一塊特殊區域放置資料,

More information

User-defined Download Application Note

User-defined Download Application Note User-defined Download 1. Applied Products: SM59XX Series, SM59DXX Series, SM59RXX Series. 2. Object: User can define command as entry ISP password through ISAP software to run programming. 3. Operation

More information

Hardware Setups for Communication with a DS1267

Hardware Setups for Communication with a DS1267 Maxim > Design Support > Technical Documents > Application Notes > Digital Potentiometers > APP 409 Maxim > Design Support > Technical Documents > Application Notes > General Engineering Topics > APP 409

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 15, 2016 8051 INSTRUCTIONS JUMP, LOOP AND CALL INSTRUCTIONS 8051 INSTRUCTIONS Repeating a sequence of instructions

More information

Microcontroller Lab Manual

Microcontroller Lab Manual Microcontroller Lab Manual PROGRAM TO TRANSFER A BLOCK OF DATA FROM SOURCE TO DESTINATION Write an Assembly Level Program to transfer a source block of Five Bytes, stored at RAM location 20H to 24H, to

More information

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

8051 Interfacing and Applications Microcontroller

8051 Interfacing and Applications Microcontroller 8051 Interfacing and Applications Objectives: At the end of this chapter, we will be able to: List the different devices that can be interfaced with 8051 Understand the working principle. Develop the following

More information