Question Bank Microprocessor and Microcontroller

Size: px
Start display at page:

Download "Question Bank Microprocessor and Microcontroller"

Transcription

1 QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to be the master during that cycle and the component it is communicating with is said to be the slave. The CPU with its bus control logic is normally the master, but other specially designed components can gain control of the bus by sending a bus request to the CPU. After the current bus cycle is completed the CPU will return a bus grant signal and the component sending the request will become the master. Taking control of the bus for a bus cycle is called cycle stealing. 2. How DMA operations are performed? (K1-CO3) Following is the sequence of operations performed by a DMA. Initially, when any device has to send data between the device and the memory, the device has to send DMA request (DRQ) to DMA controller. The DMA controller sends Hold request (HRQ) to the CPU and waits for the CPU to assert the HLDA. Then the microprocessor tri-states all the data bus, address bus, and control bus. The CPU leaves the control over bus and acknowledges the HOLD request through HLDA signal. Now the CPU is in HOLD state and the DMA controller has to manage the operations over buses between the CPU, memory, and I/O devices. The chip support four DMA channels, i.e. four peripheral devices can independently request for DMA data transfer through these channels at a time. 3. Compare Burst transfer and Hidden DMA. (K2-CO3) Burst Transfer: To achieve block transfers, some DMAC's incorporate an automatic sequencing of the value presented on the address bus. A register is used as a byte count, being decremented for each byte transfer, and upon the byte count reaching zero, the DMAC will release the bus. When the DMAC operates in burst mode, the CPU is halted for the duration of the data transfer. Prepared by : R. Kavitha Page 1

2 Hidden DMA: Question Bank Microprocessor and Microcontroller It is possible to perform hidden DMA, which is transparent to the normal operation of the CPU. In other words, the bus is grabbed by the DMAC when the processor is not using it. The DMAC monitors the execution of the processor, and when it recognises the processor executing an instruction which has sufficient empty clock cycles to perform a byte transfer; it waits till the processor is decoding the op code, then grabs the bus during this time. 4. Show the interfacing diagram of 8257with 8086? (K1-CO3) 5. Show the internal architecture of 8257? (K1-CO3) Prepared by : R. Kavitha Page 2

3 6. Show the internal architecture of 8259? (K1-CO3) Prepared by : R. Kavitha Page 3

4 7. Summarize about cascade connection of (K2-CO3) Cascade buffer/comparator: This section generates control signal necessary for cascade operations. 8259A can be cascaded with the other 8259 to increase the interrupt handling capability. In such case, the former is called as master, and the later are called as slaves. The 8259 can be set up as a master or a slave by the SP*/EN*. 8. Show the structure of ICW1. (K1-CO3) 9. Show the structure of ICW4. (K1-CO3) Prepared by : R. Kavitha Page 4

5 10. Summarize the features of (K2-CO3) 1)Handle eight interrupt inputs. This is equivalent to providing eight interrupt pins on the processor in place of one INTR/INT pin. 2)It is possible to locate vector table for these additional interrupts request anywhere in the memory map. However, all the eight interrupt are spaced at the interval of either four or eight location. 3)By cascading 8259, it is possible to get 64 priority interrupts. 4) Mask each interrupt request individually. 5) 8259 can be programmed to accept either the level triggered or edge triggered interrupt request. 6) With the help of 8259 user can get information of pending interrupts, in service interrupt and masked interrupts. 7) It minimize the software and real-time overhead in handling multiple interrupt priorities. 11. How does the master slave concept work? (K1-CO3) Prepared by : R. Kavitha Page 5

6 12. Explain the interrupt sequence of 8259? (K2-CO3) Prepared by : R. Kavitha Page 6

7 13. Show the flowchart to initialize (K2-CO3) 14. Compare Microprocessor and Microcontroller. (K2-CO4) Prepared by : R. Kavitha Page 7

8 15. List out the application of (K1-CO4) 16. Summarize about CISC of (K2-CO4) Memory in those days was expensive. Bigger programs required more storage which included more money. There was a need to reduce the number of instructions per program. This was achieved by having multiple operations within single instruction. Multiple operations lead to many different kinds of instructions. Access to memory in turn makes the instruction length variable and fetch-decode execute time unpredictable making it more complex. Thus hardware was made to understand the complexity of instruction set. The computer having such instruction set was named as Complex Instruction Set Computer (CISC). Intel 8051 is an example for CISC architecture. 17. Compare Von Neumann and Harward architecture. (K2-CO4) Prepared by : R. Kavitha Page 8

9 18. What is an instruction cycle of 8051? (K1-CO4) The time taken to complete any instruction is called as machine cycle or instruction cycle. In 8051 one instruction cycle consists of 6 states or 12 clock cycles, instruction cycle is also referred as Machine cycle. 19. How Many Ways the Keyboard is Interfaced with the CPU? (K1-CO5) The Keyboard can be interfaced either in the interrupt or the polled mode. In the Interrupt mode, the processor is requested service only if any key is pressed, otherwise the CPU will continue with its main task. Prepared by : R. Kavitha Page 9

10 In the Polled mode, the CPU periodically reads an internal flag of 8279 to check whether any key is pressed or not with key pressure. 20. Summarize about Left entry and right entry mode. (K2-CO3) 1. Left Entry Mode In the Left entry mode, the data is entered from the left side of the display unit. Address 0 of the display RAM contains the leftmost display character and address 15 of the RAM contains the rightmost display character. 2. Right Entry Mode In the right entry mode, the first entry to be displayed is entered on the rightmost display. The next entry is also placed in the right most display but after the previous display is shifted left by one display position. 21. Show the structure of PSW of (K2-CO4) 22. List out the features of (K1-CO4) 8-bit CPU Prepared by : R. Kavitha Page 10

11 16-bit Program Counter 8-bit Processor Status Word (PSW) 8-bit Stack Pointer Internal RAM of 128bytes Special Function Registers (SFRs) of 128 bytes 32 I/O pins arranged as four 8-bit ports (P0 - P3) Two 16-bit timer/counters : T0 and T1 Two external and three internal vectored interrupts One full duplex serial I/O 23. Outline an Exchange instruction of (K2-CO4) The content of source ie., register, direct memory or indirect memory will be exchanged with the contents of destination ie., accumulator. i. XCH A,R3, ii. XCH A,@R1, iii. XCH A,54h 24. Summarize about DAA of 8051 with an example. (K2-CO4) DAA (Decimal Adjust After Addition). When two BCD numbers are added, the answer is a non-bcd number. To get the result in BCD, we use DA A instruction after the addition. DA A works as follows. If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble. If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble. Eg 1: MOV A,#23H MOV R1,#55H ADD A,R1 // [A]=78 DA A // [A]=78 no changes in the accumulator after da a Eg 2: MOV A,#53H MOV R1,#58H ADD A,R1 // [A]=ABh DA A // [A]=11, C=1. ANSWER IS 111. Accumulator data is changed after DA A Prepared by : R. Kavitha Page 11

12 1. Explain the architecture of (K2-CO4) PART B Features: 8-bit CPU 16-bit Program Counter 8-bit Processor Status Word (PSW) Prepared by : R. Kavitha Page 12

13 8-bit Stack Pointer Internal RAM of 128bytes Special Function Registers (SFRs) of 128 bytes 32 I/O pins arranged as four 8-bit ports (P0 - P3) Two 16-bit timer/counters : T0 and T1 Two external and three internal vectored interrupts One full duplex serial I/O The heart of 8051 is the circuitry that generates the clock pulses by which all internal operations are synchronised. Pins XTAL1 and XTAL2 are provided for connecting resonator to form an oscillator. The time taken to complete any instruction is called as machine cycle or instruction cycle. In 8051 one instruction cycle consists of 6 states or 12 clock cycles, instruction cycle is also referred as Machine cycle. Instruction cycle of 8051 (Instruction cycle has six states (S 1 - S 6 ). Each state has two pulses (P1 and P2)) 128 bytes of Internal RAM Structure Prepared by : R. Kavitha Page 13

14 The lower 32 bytes are divided into 4 separate banks. Each register bank has 8 registers of one byte each. A register bank is selected depending upon two bank select bits in the PSW register. (RS1,RS0 bits of PSW) Next 16bytes are bit addressable. In total, 128bits (16X8) are available in bit addressable area. Each bit can be accessed and modified by suitable instructions.a bit variable can be set with a command such as SETB and cleared with a command such as CLR. Example instructions are: SETB 25h ; sets the bit 25h (becomes 1) CLR 25h ; clears bit 25h (becomes 0) The bit addresses are from 00H (LSB of the first byte in 20H) to 7FH (MSB of the last byte in 2FH). Remaining 80bytes of RAM are available for general purpose. The general purpose RAM can be accessed using direct or indirect addressing modes. Internal Data Memory and Special Function Register (SFR) Map Prepared by : R. Kavitha Page 14

15 The special function registers (SFRs) are mapped in the upper 128 bytes of internal data memory address. Hence there is an address overlap between the upper 128 bytes of data RAM and SFRs. Note that the upper 128 bytes of data RAM are present only in the 8052 family. The lower128 bytes of RAM (00H - 7FH) can be accessed both by direct or indirect addressing while the upper 128 bytes of RAM (80H - FFH) are accessed by indirect addressing. The SFRs (80H - FFH) are accessed by direct addressing only. This feature distinguishes the upper 128 bytes of memory from the SFRs, as shown in figure. The set of Special Function Registers (SFRs) contains important registers such as Accumulator, Register B, I/O Port latch registers, Stack pointer, Data Pointer, Processor Status Word (PSW) and various control registers. Processor Status Word (PSW) Prepared by : R. Kavitha Page 15

16 Accumulator is an 8 bit register widely used for all arithmetic and logical operations. Accumulator is also used to transfer data between external memory. B register is used along with Accumulator for multiplication and division. A and B registers together is also called MATH registers. Stack Pointer (SP) it contains the address of the data item on the top of the stack. Stack may reside anywhere on the internal RAM. On reset, SP is initialized to 07 so that the default stack will start from address 08 onwards. Data Pointer (DPTR) DPH (Data pointer higher byte), DPL (Data pointer lower byte). This is a 16 bit register which is used to furnish address information for internal and external program memory and for external data memory. Program Counter (PC) 16 bit PC contains the address of next instruction to be executed. On reset PC will set to After fetching every instruction PC will increment by one. 2. Explain the following addressing modes of 8051 with an Example. ( K2-CO4) 1. Immediate addressing, 2. Register addressing, 3. Direct addressing, 4. Indirect addressing, 5. Relative addressing. 1. Immediate addressing. In this addressing mode the data is provided as a part of instruction itself. In other words data immediately follows the instruction. Eg. MOV A,#30H ADD A, #83 # Symbol indicates the data is immediate. 2. Register addressing. Prepared by : R. Kavitha Page 16

17 In this addressing mode the register will hold the data. One of the eight general registers (R0 to R7) can be used and specified as the operand. Eg. MOV A,R0 ADD A,R6 R0 R7 will be selected from the current selection of register bank. The default register bank will be bank Direct addressing There are two ways to access the internal memory. Using direct address and indirect address. Using direct addressing mode we can not only address the internal memory but SFRs also. In direct addressing, an 8 bit internal data memory address is specified as part of the instruction and hence, it can specify the address only in the range of 00H to FFH. In this addressing mode, data is obtained directly from the memory. Eg. MOV A,60h ADD A,30h 4. Direct addressing There are two ways to access the internal memory. Using direct address and indirect address. Using direct addressing mode we can not only address the internal memory but SFRs also. In direct addressing, an 8 bit internal data memory address is specified as part of the instruction and hence, it can specify the address only in the range of 00H to FFH. In this addressing mode, data is obtained directly from the memory. Eg. MOV A,60h ADD A,30h 5. Indexed addressing. In indexed addressing, either the program counter (PC), or the data pointer (DTPR) is used to hold the base address, and the A is used to hold the offset address. Adding the value of the base address to the value of the offset address forms the effective address. Indexed addressing is used with JMP or MOVC instructions. Look up tables are easily implemented with the help of index addressing. Eg. MOVC // copies the contents of memory location pointed by the sum of the accumulator A and the DPTR into accumulator A. MOVC // copies the contents of memory location pointed by the sum of the accumulator A and the program counter into accumulator A. 3. Explain the following addressing modes of 8051 with an Example. (K2-CO4) 1. Absolute addressing, 2. Long addressing 3. Indexed addressing, 4. Bit inherent addressing, 5. Bit direct addressing. Prepared by : R. Kavitha Page 17

18 1. Relative Addressing. Relative addressing is used only with conditional jump instructions. The relative address, (offset), is an 8 bit signed number, which is automatically added to the PC to make the address of the next instruction. The 8 bit signed offset value gives an address range of +127 to 128 locations. The jump destination is usually specified using a label and the assembler calculates the jump offset accordingly. The advantage of relative addressing is that the program code is easy to relocate and the address is relative to position in the memory. Eg. SJMP LOOP1 2. Absolute addressing Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call) instructions. These are 2 bytes instructions. The absolute addressing mode specifies the lowest 11 bit of the memory address as part of the instruction. The upper 5 bit of the destination address are the upper 5 bit of the current program counter. Hence, absolute addressing allows branching only within the current 2 Kbyte page of the program memory. Eg. AJMP LOOP1 ACALL LOOP2 3. Long Addressing The long addressing mode is used with the instructions LJMP and LCALL. These are 3 byte instructions. The address specifies a full 16 bit destination address so that a jump or a call can be made to a location within a 64 Kbyte code memory space. Eg. LJMP FINISH LCALL DELAY 4. Bit Inherent Addressing In this addressing, the address of the flag which contains the operand, is implied in the opcode of the instruction. Eg. CLR C ; Clears the carry flag to 0 5. Bit Direct Addressing In this addressing mode the direct address of the bit is specified in the instruction. The RAM space 20H to 2FH and most of the special function registers are bit addressable. Bit address values are between 00H to 7FH. Eg. CLR 07h ; Clears the bit 7 of 20h RAM space SETB 07H ; Sets the bit 7 of 20H RAM space. Prepared by : R. Kavitha Page 18

19 4. Show the structure of registers in Timer and Counter of ( K3-CO5) 1. Timer Timers/Counters are used generally for Time reference Creating delay Wave form properties measurement Periodic interrupt generation Waveform generation The two timers in 8051 share two SFRs (TMOD and TCON) which control the timers, and each timer also has two SFRs dedicated solely to itself (TH0/TL0 and TH1/TL1) has two 16-bit programmable UP timers/counters. They can be configured to operate either as timers or as event counters In the "timer" function mode, the counter is incremented in every machine cycle. In the "counter" function mode, the register is incremented in response to a 1 to 0 transition at its corresponding external input pin (T0 or T1). It requires 2 machine cycles to detect a high to low transition. 1.1.Timer Mode control (TMOD) Special Function Register Gate: Based on the status of the signal. Timer starts counting using either internal clock (timer mode) or external pulses (counter mode). C/T*: It is used for the selection of Counter/Timer mode. Mode Select Bits: 1.2. Timer control (TCON) Special function register: TCON is bit addressable. The address of TCON is 88H. It is partly related to Timer and partly to interrupt. Prepared by : R. Kavitha Page 19

20 2. Interrupt 8051 has five interrupts. They are maskable and vectored interrupts. Out of these five, two are external interrupt and three are internal interrupts makes use of two registers to deal with interrupts IE Register - Interrupt Enable register Prepared by : R. Kavitha Page 20

21 This is an 8 bit register used for enabling or disabling the interrupts. The structure of IE is 2.2. IP Register. This is an 8 bit register used for setting the priority of the interrupts. Prepared by : R. Kavitha Page 21

22 5. Construct the architecture diagram of (K2-CO3) I/O Control and Data Buffer This unit controls the flow of data through the microprocessor. It is enabled only when D is low. Its data buffer interfaces the external bus of the system with the internal bus of the microprocessor. The pins A0, RD, and WR are used for command, status or data read/write operations. Prepared by : R. Kavitha Page 22

23 Control and Timing Register These registers store the keyboard and display modes and other operating conditions programmed by CPU. Timing Control The timing control consists of the basic timing counter chain. The internal frequency gives the internal timings as given in table Parameter Key scan time Display scan time Digit on time Blanking time Timings 80 micro sec 10.3 msec 480 micro sec 10 micro sec Scan Counter The Scan Counter has two modes to scan the key matrix and refresh the display. In the Encoded mode, the counter provides a binary count that is to be externally decoded to provide the scan lines for keyboard and display (four externally decoded scan lines may drive up to 16 displays). In the decoded scan mode, the counter internally decodes the least significant 2 bits and provides a decoded 1 out of 4 scan on SL0-SL3 (four internally decoded scan lines may drive up to 4 Displays). These four active low output lines can be used directly to interface 4 digit 7 segment display. Keyboard Section: Return Buffers and Keyboard Debounce and Control This unit first scans the key closure row-wise, if found then the keyboard debounce unit debounces the key entry. In case, the same key is detected, then the code of that key is directly transferred to the sensor RAM along with SHIFT & CONTROL key status. FIFO/Sensor RAM and Status Logic Prepared by : R. Kavitha Page 23

24 This unit acts as 8-byte first-in-first-out (FIFO) RAM where the key code of every pressed key is entered into the RAM as per their sequence. The status logic generates an interrupt request after each FIFO read operation till the FIFO gets empty. In the scanned sensor matrix mode, this unit acts as sensor RAM where its each row is loaded with the status of their corresponding row of sensors into the matrix. When the sensor changes its state, the IRQ line changes to high and interrupts the CPU. Display Address Registers and Display RAM. The Display address registers hold the addresses of the word currently being written or read by the CPU to or from the display RAM. 6. Construct flowchart for initialization of keyboard and display mode and explain the program for interfacing 8279 with ( K3-CO3) PART C 1. Develop General algorithm for ADC interfacing. ( CO3- K3) 1. Ensure the stability of analog input, applied to the ADC. 2. Issue start of conversion pulse to ADC 3.Read end of conversion signal to mark the end of conversion processes. 4. Read digital data output of the ADC as equivalent digital output. 5. Analog input voltage must be constant at the input of the ADC right from the start of conversion till the end of the conversion to get correct results. This may be ensured by a sample and hold circuit which samples the analog signal and holds it constant for a specific time duration. The microprocessor may issue a hold signal to the sample and hold circuit. 6. If the applied input changes before the complete conversion process is over, the digital equivalent of the analog input calculated by the ADC may not be correct. 2. Develp an assembly language program to perform 8 bit addition, subtraction Multiplication and division with neat flowchart. (K1-CO3) Prepared by : R. Kavitha Page 24

25 3. Identify the OUT signal of different modes of Timer (K3-CO3) Prepared by : R. Kavitha Page 25

26 Prepared by : R. Kavitha Page 26

27 Prepared by : R. Kavitha Page 27

UNIT IV MICROCONTROLLER

UNIT IV MICROCONTROLLER UNIT IV 8051- MICROCONTROLLER Prepared by R. Kavitha Page 1 Application Prepared by R. Kavitha Page 2 Pin Description of the 8051 UNIT IV- 8051 MICROCONTROLLER P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

Module Contents of the Module Hours COs

Module Contents of the Module Hours COs Microcontrollers (EE45): Syllabus: Module Contents of the Module Hours COs 1 8051 MICROCONTROLLER ARCHITECTURE: Introduction to Microprocessors and Microcontrollers, the 8051 Architecture, 08 1 and pin

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture Department of Electrical Engineering Lecture 4 The 8051 Architecture 1 In this Lecture Overview General physical & operational features Block diagram Pin assignments Logic symbol Hardware description Pin

More information

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples.

Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MICROCONTROLLERS AND APPLICATIONS 1 Module 2 Module-2 Contents: Memory organization Programming model - Program status word - register banks - Addressing modes - instruction set Programming examples. MEMORY

More information

AE66/AC66/AT66/ AE108/AC108/AT108 MICROPROCESSORS & MICROCONTROLLERS

AE66/AC66/AT66/ AE108/AC108/AT108 MICROPROCESSORS & MICROCONTROLLERS Q.2 a. Draw pin diagram and signal group diagram of 8085 microprocessor. (8) b. List out the various categories of the 8085 instructions. Give examples of the instructions for each group. (8) Data transfer

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microcontroller and Applications Subject Code: I m p o r t a n t I n s t r u c t i o n s t o e x a m i n e r s : 1) The answers should be examined by key

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families The Microcontroller Lecture Set 3 Architecture of the 8051 Microcontroller Microcontrollers can be considered as self-contained systems with a processor, memory and I/O ports. In most cases, all that is

More information

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman

Microprocessors 1. The 8051 Instruction Set. Microprocessors 1 1. Msc. Ivan A. Escobar Broitman Microprocessors 1 The 8051 Instruction Set Microprocessors 1 1 Instruction Groups The 8051 has 255 instructions Every 8-bit opcode from 00 to FF is used except for A5. The instructions are grouped into

More information

Unit DMA CONTROLLER 8257

Unit DMA CONTROLLER 8257 DMA CONTROLLER 8257 In microprocessor based system, data transfer can be controlled by either software or hardware. To transfer data microprocessor has to do the following tasks: Fetch the instruction

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

CPEG300 Embedded System Design. Lecture 3 Memory

CPEG300 Embedded System Design. Lecture 3 Memory CPEG300 Embedded System Design Lecture 3 Memory Hamad Bin Khalifa University, Spring 2018 Review Von Neumann vs. Harvard architecture? System on Board, system on chip? Generic Hardware Architecture of

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051: DEPARTMENT OF ECE MICROPROCESSORS AND MICROCONTROLLERS MATERIAL UNIT V 8051 MICROCONTROLLERS To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to add other

More information

Programming of 8085 microprocessor and 8051 micro controller Study material

Programming of 8085 microprocessor and 8051 micro controller Study material 8085 Demo Programs Now, let us take a look at some program demonstrations using the above instructions Adding Two 8-bit Numbers Write a program to add data at 3005H & 3006H memory location and store the

More information

Embedded Controller Programming

Embedded Controller Programming Embedded Controller Programming Counters, Timers and I/O in Assembly Language Ken Arnold Copyright 2000-2004 Ken Arnold 1 Outline Timer/Counters Serial Port More 8051 Instructions Examples Copyright 2000-2004

More information

VALLIAMMAI ENGINEERING COLLEGE S.R.M. NAGAR, KATTANKULATHUR-603203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING VII-EEE EE6502- MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK UNIT I 1. What

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 7: MCS-51 Architecture I : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Architecture I Page 2 Outlines: 8051 Microcontroller Hardware

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

MICROPROCESSOR QUESTION BANK. Unit 1

MICROPROCESSOR QUESTION BANK. Unit 1 QUESTION BANK Unit 1 1. Explain the term Microprocessor. ( CO1-K2) A microprocessor is a multipurpose, programmable logic device that receives binary instructions from a storage device called memory accepts

More information

EE6502- MICROPROCESSOR AND MICROCONTROLLER

EE6502- MICROPROCESSOR AND MICROCONTROLLER . EE6502- MICROPROCESSOR AND MICROCONTROLLER UNIT III - 8051 MICROCONTROLLER PART - A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

CS 320. Computer Architecture Core Architecture

CS 320. Computer Architecture Core Architecture CS 320 Computer Architecture 8051 Core Architecture Evan Hallam 19 April 2006 Abstract The 8051 is an 8-bit microprocessor designed originally in the 1980 s by the Intel Corporation. This inexpensive and

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information

FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A

FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A Reg No Name FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER 2017 CS 305: Microprocessor and Microcontrollers Max. Marks: 100 Duration: 3 Hours PART A Answer all questions.

More information

EASWARI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION QUESTION BANK - V SEMESTER ECE EC2304 MICROPROCESSORS AND MICROCONTROLLERS UNIT I 1. When the 8086 processor is in minimum mode and

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

UNIT MICROCONTROLLER AND ITS PROGRAMMING

UNIT MICROCONTROLLER AND ITS PROGRAMMING M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 UNIT-7 8051 MICROCONTROLLER AND ITS PROGRAMMING INTRODUCTION The microcontroller incorporates all the features that are found

More information

SN8F5000 Family Instruction Set

SN8F5000 Family Instruction Set SONiX Technology Co., Ltd. 8051-based Microcontroller 1 Overview SN8F5000 is 8051 Flash Type microcontroller supports comprehensive assembly instructions and which are fully compatible with standard 8051.

More information

8051 Microcontroller Assembly Programming

8051 Microcontroller Assembly Programming 8051 Microcontroller Assembly Programming EE4380 Fall 2002 Class 3 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Topics Machine code 8051 Addressing Modes

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

UNIT - II PERIPHERAL INTERFACING WITH 8085

UNIT - II PERIPHERAL INTERFACING WITH 8085 UNIT - II PERIPHERAL INTERFACING WITH 8085 Peripheral Interfacing is considered to be a main part of Microprocessor, as it is the only way to interact with the external world. The interfacing happens with

More information

MICROCONTROLLER UNIT 1

MICROCONTROLLER UNIT 1 MICROCONTROLLER UNIT 1 OUTLINE INTRODUCTION MICROCONTROLLERS AND EMBEDDED PROCESSORS OVERVIEW OF THE 8051 8051 MICTROCONTROLLER HARDWARE ADDRESSING MODES INTRODUCTION The first task to use a new computer

More information

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK Subject Code : EC307 Subject Name : Microprocessor and Interfacing Year & Sem : III Year, V Sem

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR : III SEM : VI

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR : III SEM : VI DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR : III SEM : VI EE2354- MICROPROCESSORS AND MICROCONTROLLER UNIT I 8085 and 8086 PROCESSOR PART A 1. Define

More information

Q. Classify the instruction set of 8051 and list out the instructions in each type.

Q. Classify the instruction set of 8051 and list out the instructions in each type. INTRODUCTION Here is a list of the operands and their meanings: A - accumulator; Rn - is one of working registers (R0-R7) in the currently active RAM memory bank; Direct - is any 8-bit address register

More information

Topics. Interfacing chips

Topics. Interfacing chips 8086 Interfacing ICs 2 Topics Interfacing chips Programmable Communication Interface PCI (8251) Programmable Interval Timer (8253) Programmable Peripheral Interfacing - PPI (8255) Programmable DMA controller

More information

MODULE-1. Short Answer Questions

MODULE-1. Short Answer Questions MODULE-1 Short Answer Questions 1. Give the comparison between microprocessor and microcontroller. It is very clear from figure that in microprocessor we have to interface additional circuitry for providing

More information

INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor

INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor Subject Name: Microprocessor and Microcontroller Year: 3 rd Year Subject Code: CS502 Semester: 5 th Module Day Assignment 1 Microprocessor

More information

1. What is Microprocessor? Give the power supply & clock frequency of 8085?

1. What is Microprocessor? Give the power supply & clock frequency of 8085? 1. What is Microprocessor? Give the power supply & clock frequency of 8085? A microprocessor is a multipurpose, programmable logic device that reads binary instructions from a storage device called memory

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller EE4380 Fall 2001 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas 8051 Architecture Programmer s View Register Set Instruction Set Memory

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT IV I/O INTERFACING PART A (2 Marks) 1. Name the three modes used by the DMA processor to transfer data? [NOV/DEC 2006] Signal transfer mode (cycling

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as input,processes the data according to those instructions and provides

More information

8051 Instruction Set

8051 Instruction Set 8051 Instruction Set 23-ug-16 ptkarule@rediffmail.com 1 Programmers Model of 8051 7FH 30H 2FH 20H 1FH 00H General Purpose Bit addressable Register Banks 1FH 18H 17H 10H 0FH 08H 07H 00H R7 R6 R5 R4 R3 R2

More information

8086 Interrupts and Interrupt Responses:

8086 Interrupts and Interrupt Responses: UNIT-III PART -A INTERRUPTS AND PROGRAMMABLE INTERRUPT CONTROLLERS Contents at a glance: 8086 Interrupts and Interrupt Responses Introduction to DOS and BIOS interrupts 8259A Priority Interrupt Controller

More information

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC.

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC. MICROCONTROLLERS AND APPLICATIONS 1 Module 1 Module I Introduction to Microcontrollers: Comparison with Microprocessors Harvard and Von Neumann Architectures - 80C51 microcontroller features - internal

More information

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller.

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller. Course B.E(EEE) Batch 2015 Semester V Subject code subject Name UAEE503 Microprocessor and Microcontroller question bank UNIT-1 Architecture of a Microprocessor PART-A Marks: 2 1 Distinguish between microprocessor

More information

Department of Electronics and Instrumentation Engineering Question Bank

Department of Electronics and Instrumentation Engineering Question Bank www.examquestionpaper.in Department of Electronics and Instrumentation Engineering Question Bank SUBJECT CODE / NAME: ET7102 / MICROCONTROLLER BASED SYSTEM DESIGN BRANCH : M.E. (C&I) YEAR / SEM : I / I

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A EC6504 MICROPROCESSOR AND MICROCONTROLLER Question Bank EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR 1. List the addressing modes of 8086?give examples [May

More information

C51 Family. Architectural Overview of the C51 Family. Summary

C51 Family. Architectural Overview of the C51 Family. Summary Architectural Overview of the C51 Family C51 Family Summary 1. Introduction............................................................ I.1. 1.1. TSC80C51/80C51/80C31.................................................................

More information

Lecture Note On Microprocessor and Microcontroller Theory and Applications

Lecture Note On Microprocessor and Microcontroller Theory and Applications Lecture Note On Microprocessor and Microcontroller Theory and Applications MODULE: 1 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip

More information

Vidyalankar T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution

Vidyalankar T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution 1. (a) 1. (b) T.E. Sem. V [ETRX] Microprocessors and Microcontrollers I Prelim Question Paper Solution Priority modes. 1) Fully Nested Mode : It is a general purpose mode. IR 0 highest priority IR 1 lowest

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

9. PERIPHERAL CHIPS 9a

9. PERIPHERAL CHIPS 9a 9. PERIPHERAL CHIPS 9a 8255: Programmable Peripheral Interface. Draw the pin diagram of PPI 8255. Ans. The pin diagram of 8255 is shown in Fig. 9a. PA 3 4 PA 4 PA2 2 39 PA 5 PA 3 38 PA 6 PA 4 37 PA7 RD

More information

Three criteria in Choosing a Microcontroller

Three criteria in Choosing a Microcontroller The 8051 Microcontroller architecture Contents: Introduction Block Diagram and Pin Description of the 8051 Registers Some Simple Instructions Structure of Assembly language and Running an 8051 program

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

The Purpose of Interrupt

The Purpose of Interrupt Interrupts 3 Introduction In this chapter, the coverage of basic I/O and programmable peripheral interfaces is expanded by examining a technique called interrupt-processed I/O. An interrupt is a hardware-initiated

More information

TUTORIAL. Donal Heffernan University of Limerick May Tutorial D.Heffernan 2000,

TUTORIAL. Donal Heffernan University of Limerick May Tutorial D.Heffernan 2000, 8051 TUTORIAL Donal Heffernan University of Limerick May-2002 8051 Tutorial D.Heffernan 2000, 2001 1 Blank 8051 Tutorial D.Heffernan 2000, 2001 2 Some reference material: Test books + MacKenzie Scott.

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP 805 SFR Bus Digital Blocks Semiconductor IP 805 Microcontroller Configurable Peripherals General Description The Digital Blocks (Configurable Peripherals) Microcontroller Verilog IP Core is complaint with

More information

Microprocessors and Interfacng. Question bank

Microprocessors and Interfacng. Question bank Microprocessors & Interfacing 8086 ARCHITECTURE: UNIT-I Functional Diagram, Register Organization, Addressing modes, Instructions, Functional schematic, Minimum and Maximum mode operations of 8086, 8086

More information

Micro Processor & Micro Controllers

Micro Processor & Micro Controllers Micro Processor & Micro Controllers 1. What is microprocessor? It is a program controlled semi conductor device (IC), which fetches, decodes and execute instructions. 2. What are the basic units of microprocessor?

More information

Microcontroller and Embedded Systems:

Microcontroller and Embedded Systems: Microcontroller and Embedded Systems: Branches: 1. Electronics & Telecommunication Engineering 2. Electrical & Electronics Engineering Semester: 6 th Semester / 7 th Semester 1. Explain the differences

More information

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system.

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system. Syllabus: : Introduction to, 8051 Microcontroller Architecture and an example of Microcontroller based stepper motor control system (only Block Diagram approach). (5 Hours) Introduction to A microcontroller

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6502- MICROPROCESSORS AND MICROCONTROLLERS Regulation 2013

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP 805 Microcontroller General Description The Digital Blocks Microcontroller Verilog IP Core is complaint with the MCS 5 Instruction Set and contains standard 805 MCU peripherals,

More information

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit.

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit. Hall Ticket Number: 14 CS/IT 503 November, 2017 Fifth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

More information

Assembly Language programming (2)

Assembly Language programming (2) EEE3410 Microcontroller Applications LABORATORY Experiment 2 Assembly Language programming (2) Name Class Date Class No. Marks Arithmetic, Logic and Jump instructions Objectives To learn and practice the

More information

ET2640 Microprocessors

ET2640 Microprocessors ET2640 Microprocessors Unit -2 Processor Programming Concepts Basic Control Instructor : Stan Kong Email : skong@itt-tech.edu Figure 2 4 Bits of the PSW Register 8051 REGISTER BANKS AND STACK 80 BYTES

More information

Microcontroller. Instruction set of 8051

Microcontroller. Instruction set of 8051 UNIT 2: Addressing Modes and Operations: Introduction, Addressing modes, External data Moves, Code Memory, Read Only Data Moves / Indexed Addressing mode, PUSH and POP Opcodes, Data exchanges, Example

More information

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING CHAPTER 2 8051 ASSEMBLY LANGUAGE PROGRAMMING Registers Register are used to store information temporarily: A byte of data to be processed An address pointing to the data to be fetched The vast majority

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

8051 Memory Organization BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter 1: Memory Organization There are 2 types of memories available in 8051 microcontroller. Program memory/c code memory (ROM)

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP DB805C-FSM 805 Microcontroller FSM Finite State Machine General Description The Digital Blocks DB805C-FSM IP Core contains Digital Blocks compact DB805C CPU Core & GPIO

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor Practical 1 Date : AIM : Introduction Of Microprocessor 8085. 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within µp to carry out the instruction, which has been decoded.

More information

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions.

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 1.What is Microprocessor? It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 2. What are the basic units of a microprocessor? The basic units or blocks

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

Microcontroller & Interfacing

Microcontroller & Interfacing Course Title Course Code Microcontroller & Interfacing EC406 Lecture : 3 Course Credit Practical : 1 Tutorial : 0 Total : 4 Course Objective At the end of the course the students will be able to Understand

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

CPEG300 Embedded System Design. Lecture 8 Timer

CPEG300 Embedded System Design. Lecture 8 Timer CPEG300 Embedded System Design Lecture 8 Timer Hamad Bin Khalifa University, Spring 2018 Review 8051 port and port schematic Internal read/write data path Serial communication vs. parallel communication

More information

EC1362 Microprocessors & Microcontrollers

EC1362 Microprocessors & Microcontrollers Part A- Two Mark Questions 1. What is Microprocessor? It is a program controlled semiconductor device (IC}, which fetches, decodes and executes instructions. 2. What are the basic units of a microprocessor?

More information

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks)

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks) QUESTION BANK EE 6502 / Microprocessor and Microcontroller Unit I- 8085 Processor PART-A (2-Marks) YEAR/SEM : III/V 1. What is meant by Level triggered interrupt? Which are the interrupts in 8085 level

More information

8051 Core Specification

8051 Core Specification 8051 Core Specification Authors: Jaka Simsic Simon Teran jakas@opencores.org simont@opencores.org Rev. 0.1 August 14, 2001 First Draft www.opencores.org Rev 0.1 First Draft 1 of 26 Revision History Rev.

More information

Contents 8051 Instruction Set BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter I : Control Transfer Instructions Lesson (a): Loop Lesson (b): Jump (i) Conditional Lesson (c): Lesson (d): Lesson (e):

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

COURSE NAME : ELECTRICAL ENGINEERING GROUP COURSE CODE : EE/EP SEMESTER : FIFTH SUBJECT TITLE : Microcontroller and Applications (Elective I for EP) SUBJECT CODE : Teaching and Examination Scheme: Teaching

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 9: MCS-51: Moving Data : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Moving Data Page 2 Moving Data: Objectives Use commands that

More information

Vidyalankar T.E. Sem. V [EXTC] Microprocessors and Microcontrollers I Prelim Question Paper Solution V SS (GND)

Vidyalankar T.E. Sem. V [EXTC] Microprocessors and Microcontrollers I Prelim Question Paper Solution V SS (GND) 1. (a) Pin configuration of 8085 X 1 X 2 CLKOUT TRAP RST 7.5 RST 6.5 RST 5.5 INTR INTA SID SOD RESET IN RESET OUT T.E. Sem. V [EXTC] Microprocessors and Microcontrollers I Prelim Question Paper Solution

More information

Microprocessor Architecture

Microprocessor Architecture Microprocessor - 8085 Architecture 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

1. What is microprocessor? It is a program controlled semi conductor device (IC), which fetches, decodes and execute instructions.

1. What is microprocessor? It is a program controlled semi conductor device (IC), which fetches, decodes and execute instructions. Downloaded from www.books4career.blogspot.com 1. What is microprocessor? It is a program controlled semi conductor device (IC), which fetches, decodes and execute instructions. 2. What are the basic units

More information

EC Microprocessor and Microcontroller

EC Microprocessor and Microcontroller DMI COLLEGE OF ENGINEERING EC6504 - Microprocessor and Microcontroller UNIT I THE 8086 MICROPROCESSOR 1. What are different data transfer schemes? The different data transfer schemes are [A/M 12] 2. How

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6504 MICROPROCESSOR AND MICRO CONTROLLER

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6504 MICROPROCESSOR AND MICRO CONTROLLER DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6504 MICROPROCESSOR AND MICRO CONTROLLER UNIT - I : THE 8086 MICROPROCESSOR PART A (2 Marks) 1. What are different

More information