Programming with CUDA and OpenCL. Dana Schaa and Byunghyun Jang Northeastern University

Size: px
Start display at page:

Download "Programming with CUDA and OpenCL. Dana Schaa and Byunghyun Jang Northeastern University"

Transcription

1 Programming with CUDA and OpenCL Dana Schaa and Byunghyun Jang Northeastern University

2 Tutorial Overview CUDA - Architecture and programming model - Strengths and limitations of the GPU - Example applications OpenCL - Architecture and programming model - Comparison with CUDA - Example applications

3 CUDA Programming Guide References - NVIDIA_CUDA_Programming_Guide_2.3.pdf CUDA SDK (example application) - OpenCL Specification - Introduction to GPU Programming - Volodymyr Kindratenko Innovative Systems NCSA Institute for Advanced Computing Applications and Technologies (IACAT)

4 CUDA

5 Installing CUDA CUDA Driver - Software to communicate with the GPU CUDA Toolkit - Compiler, libraries, emulator, development tools CUDA SDK - Example programs

6 Hardware Architecture Scalable array of Streaming Multiprocessors (SMs) - 8 scalar processors (SIMD) Multiple memory spaces - On-chip memory (shared memory, registers, some caches) - Off-chip memory (global/device, texture, constant) High-latency, high-bandwidth PCIe interface with CPU - Transfer ~GB/s

7 GPU vs. CPU Architectures

8 Programming Model meets HW Massively multithreaded programs - Program will run correctly without considering underlying hardware, but will be very slow Programmer must divide threads between SMs (discussed in following slides) Divergence in control flow serializes SIMD execution No global synchronization*

9 Thread Structure A CUDA kernel is executed by a grid of threads Host Device Grid 1 Kernel 1 Block (0, 0) Block (1, 0) Block (2, 0) Due to GPU architecture, threads are Block (0, 1) Block (1, 1) Block (2, 1) grouped into blocks which execute together on an SM Kernel 2 Grid 2 Block (1, 1) Each block has a unique ID within a grid (block ID) and a unique ID within a block (thread ID) Thread (0,0,0) Thread (0,1,0) (0,0,1) (1,0,1) (2,0,1) (3,0,1) Thread (1,0,0) Thread (1,1,0) Thread (2,0,0) Thread (2,1,0) Thread (3,0,0) Thread (3,1,0) - Used to compute global ID

10 Thread Blocks Threads within a block: - Can perform local barriers - Have access to the same shared memory (SW cache) - Are scheduled in SIMD groups called warps Threads within a warp execute the same instruction simultaneously with different data (here is where divergence impacts performance)

11 Porting Applications Porting application to GPU - Create standalone C version (remove classes, library calls) - Write multi-threaded CPU version (debugging, partitioning) - Create simple CUDA version - Optimize CUDA version for underlying hardware Learning curve similar to threaded C programming - Large performance gains require mapping program to specific underlying architecture

12 Vector Addition (CPU) void vecadd(float *A, float *B, float *C, int N) { for(int i = 0; i < N; i++) C[i] = A[i] + B[i]; } Computational kernel int main() { int N = 4096; float *A = (float *)malloc(sizeof(float)*n); float *B = (float *)malloc(sizeof(float)*n); float *C = (float *)malloc(sizeof(float)*n); init(a); init(b); Allocate memory Initialize memory } vecadd(a, B, C, N); free(a); free(b); free(c); Deallocate memory

13 Vector Addition (GPU) global void gpuvecadd(float *A, float *B, float *C) { int tid = blockidx.x * blockdim.x + threadidx.x GPU Computational kernel C[tid] = A[tid] + B[tid]; blockidx.x threadidx.x GRID BLOCK (0,0) (0,0) (1,0) (2,0)... (31,0) blockdim.x = 32 BLOCK (1,0) (0,0) (1,0) (2,0)... (31,0)... tid = blockidx.x * blockdim.x + threadidx.x

14 Vector Addition (GPU) int main() { int N = 4096; float *A = (float *)malloc(sizeof(float)*n); float *B = (float *)malloc(sizeof(float)*n); float *C = (float *)malloc(sizeof(float)*n) init(a); init(b); float *d_a, *d_b, *d_c; cudamalloc(&d_a, sizeof(float)*n); cudamalloc(&d_b, sizeof(float)*n); cudamalloc(&d_c, sizeof(float)*n); cudamemcpy(d_a, A, sizeof(float)*n, HtoD); cudamemcpy(d_b, B, sizeof(float)*n, HtoD); dim3 dimblock(32,1); dim3 dimgrid(n/32,1); gpuvecadd <<< dimblock,dimgrid >>> (d_a, d_b, d_c); cudamemcpy(c, d_c, sizeof(float)*n, DtoH); cudafree(d_a); cudafree(d_b); cudafree(d_c); free(a); free(b); free(c); Allocate memory on GPU Initialize memory on GPU Configure threads Run kernel (on GPU) Copy results back to CPU Deallocate memory on GPU

15 Example: Image Flip Original Input Image Rotated Output Image

16 Image Flip (GPU) main() { int width, height; float *inimage, *outimage; readimage(inimage, &width, &height); int size = width * height; outimage = (float*)malloc(sizeof(float)*size); float *d_inimage, *d_outimage; cudamalloc(&d_inimage, sizeof(float)*size); cudamalloc(&d_outimage, sizeof(float)*size); cudamemcpy(d_inimage, inimage, sizeof(float)*size, HtoD); dim3 dimblock(8, 8); dim3 dimgrid(width / dimblock.x, height / dimblock.y); flipimage <<< dimgrid, dimblock >>> (d_inimage, d_outimage, width, height); cudamemcpy(outimage, d_outimage, sizeof(float)*size, DtoH) cudafree(d_inimage); cudafree(d_outimage); writeimage(outimage); } free(inimage); free(outimage);

17 Image Flip (GPU) global void flipimage(float *inimage, float *outimage, int width, int height) { } int x = blockidx.x * blockdim.x + threadidx.x; int y = blockidx.y * blockdim.y + threadidx.y; outimage[((height-1)-y)*width + x] = inimage[y*width + x]; Thread Block (0, 0) Thread Block (1, 0) Thread Block (63, 0) 512 Thread Block (0, 63) Thread Block (63, 63)

18 Checking GPU Capabilities Run devicequery program in CUDA SDK

19 OpenCL

20 OpenCL Architecture Parallel computing for heterogenous devices - CPUs, GPUs, other processors (Cell, DSPs, etc) - Portable accelerated code Defined in four parts - Platform Model - Execution Model - Memory Model - Programming Model

21 Platform Model The model consists of a host connected to one or more OpenCL devices A device is divided into one or more compute units Compute units are divided into one or more processing elements

22 Execution Model CUDA Terminology Grid Block Thread OpenCL Terminology Index space Work-group Work-item

23 Execution Model 2 main parts: - Host programs execute on the host - Kernels execute on one or more OpenCL devices Each instance of a kernel is called a work-item Work-items are organized as work-groups When a kernel is submitted, an index space of work-groups and work-items is defined Work-items can identify themselves based on their work-group ID and their local ID within the work-group (sound familiar?)

24 Execution Model 2SHQ&/ &38 *38 &RQWH[W 3URJUDPV.HUQHOV 0HPRU\2EMHFWV &RPPDQG4XHXHV BBNHUQHOYRLG GSBPXOJOREDO FRQVWIORDWD JOREDOFRQVWIORDWE JOREDOIORDWF ^ LQWLG JHWBJOREDOBLG F>LG@ D>LG@E>LG@ ` GSBPXO &38SURJUDPELQDU\ GSBPXO *38SURJUDPELQDU\ GSBPXO DUJ DUJ >@ >@ DUJ>@YDOXH DUJ DUJ >@ >@ DUJ>@YDOXH DUJ DUJ >@ >@ DUJ>@YDOXH,PDJHV %XIIHUV,QIn 2UGHU Order 4XHXH Queue *38 GPU 2XWRI Out of 2UGHU Order 4XHXH Queue &RS\ULJKW.KURQRV*URXS 3DJH

25 Execution Model A context refers to the environment in which kernels execute - Devices - Kernels (OpenCL functions that run on OpenCL devices) - Program objects (The program source that implements the kernel) - Memory objects (Data that can be operated on by the device) - Command queues are used to coordinate execution of the kernels on the devices Memory commands (data transfers) Kernel synchronization commands Synchronization Execution between host and device(s) is asynchronous Commands can execute in-order or out-of-order

26 Memory Model Defines the various types of supported memories No guarantees of consistency between different work-groups Memory Global Constant Local Private Description Accessible by all work-items RO, global Local to a work-group Private to a work-item

27 Programming Model Data parallel - One-to-one mapping between work-items and elements in a memory object - Work-groups can be defined explicitly (like CUDA) or implicitly (specify the number of work-items and OpenCL creates the work-groups) Task parallel - Kernel is executed independent of an index space - Other ways to express parallelism: enqueueing multiple tasks, using device-specific vector types, etc. Synchronization - Possible between items in a work-group - Possible between commands in a context command queue

28 OpenCL Program Flow Typical OpenCL program: - Select the desired devices (ex: all GPUs) - Create a context - Create command queues (per device) - Compile programs - Create kernels - Allocate memory on devices - Transfer data to devices - Execute - Transfer results back - Free memory on devices

29 Vector Addition (OpenCL) kernel void VectorAdd( global const float* A, global const float* B, global float* C) { // get index into global data array int igid = get_global_id(0); } // add the vector elements c[igid] = a[igid] + b[igid];

30 Vector Addition (OpenCL) // create the OpenCL context on a GPU device context = clcreatecontextfromtype(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); // get the list of GPU devices associated with context clgetcontextinfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb); devices = malloc(cb); clgetcontextinfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL); // create a command-queue cmd_queue = clcreatecommandqueue(context, devices[0], 0, NULL); // allocate the buffer memory objects memobjs[0] = clcreatebuffer(context, CL_MEM_READ_ONLY CL_MEM_COPY_HOST_PTR, sizeof(cl_float4) * n, srca, NULL); memobjs[1] = clcreatebuffer(context, CL_MEM_READ_ONLY CL_MEM_COPY_HOST_PTR, sizeof(cl_float4) * n, srcb, NULL); memobjs[2] = clcreatebuffer(context, CL_MEM_READ_WRITE, sizeof(cl_float) * n, NULL, NULL); // create the program program = clcreateprogramwithsource(context, 1, (const char**)&program_source, NULL, NULL); // build the program clbuildprogram(program, 0, NULL, NULL, NULL, NULL); // create the kernel kernel = clcreatekernel(program, "dot_product", NULL);...

31 Vector Addition (OpenCL) // set the args values clsetkernelarg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]); clsetkernelarg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]); clsetkernelarg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]); // set work-item dimensions global_work_size[0] = n; local_work_size[0]= 1; // execute kernel err = clenqueuendrangekernel(cmd_queue, kernel, 1, NULL, global_work_size, 0, NULL, NULL); // read output image err = clenqueuereadbuffer(cmd_queue, memobjs[2], CL_TRUE, 0, n * sizeof(cl_float), dst, 0, NULL, NULL); // clean up clreleasekernel(kernel); clreleaseprogram(program); clreleasecommandqueue(cmd_queue); clreleasecontext(context);

32 GPU projects at NU Tomosynthesis mammography 3D Cardiac CT Vascular segmentation Physics simulation (surgical simulator) Hyperspectral imaging Image manipulation (convolution, filtering) Phase unwrapping Ray tracing Memory hierarchy analysis Compiler optimizations Clustering algorithms (kmeans)

33 Thank you!

Programmable Graphics Hardware (GPU) A Primer

Programmable Graphics Hardware (GPU) A Primer Programmable Graphics Hardware (GPU) A Primer Klaus Mueller Stony Brook University Computer Science Department Parallel Computing Explained video Parallel Computing Explained Any questions? Parallelism

More information

MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics Hardware (GPUs)

MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics Hardware (GPUs) MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics Hardware (GPUs) CUDA API Klaus Mueller, Ziyi Zheng, Eric Papenhausen Stony Brook University Function Qualifiers Device Global,

More information

GPGPU COMPUTE ON AMD. Udeepta Bordoloi April 6, 2011

GPGPU COMPUTE ON AMD. Udeepta Bordoloi April 6, 2011 GPGPU COMPUTE ON AMD Udeepta Bordoloi April 6, 2011 WHY USE GPU COMPUTE CPU: scalar processing + Latency + Optimized for sequential and branching algorithms + Runs existing applications very well - Throughput

More information

Parallel programming languages:

Parallel programming languages: Parallel programming languages: A new renaissance or a return to the dark ages? Simon McIntosh-Smith University of Bristol Microelectronics Research Group simonm@cs.bris.ac.uk 1 The Microelectronics Group

More information

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list CUDA Programming Week 1. Basic Programming Concepts Materials are copied from the reference list G80/G92 Device SP: Streaming Processor (Thread Processors) SM: Streaming Multiprocessor 128 SP grouped into

More information

OpenCL and the quest for portable performance. Tim Mattson Intel Labs

OpenCL and the quest for portable performance. Tim Mattson Intel Labs OpenCL and the quest for portable performance Tim Mattson Intel Labs Disclaimer The views expressed in this talk are those of the speaker and not his employer. I am in a research group and know very little

More information

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Basic Elements of CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of

More information

OPENCL C++ Lee Howes AMD Senior Member of Technical Staff, Stream Computing

OPENCL C++ Lee Howes AMD Senior Member of Technical Staff, Stream Computing OPENCL C++ Lee Howes AMD Senior Member of Technical Staff, Stream Computing Benedict Gaster AMD Principle Member of Technical Staff, AMD Research (now at Qualcomm) OPENCL TODAY WHAT WORKS, WHAT DOESN T

More information

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President. Copyright Khronos Group, Page 1

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President. Copyright Khronos Group, Page 1 Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President Copyright Khronos Group, 2009 - Page 1 Introduction and aims of OpenCL - Neil Trevett, NVIDIA OpenCL Specification walkthrough - Mike

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

OpenCL The Open Standard for Heterogeneous Parallel Programming

OpenCL The Open Standard for Heterogeneous Parallel Programming OpenCL The Open Standard for Heterogeneous Parallel Programming March 2009 Copyright Khronos Group, 2009 - Page 1 Close-to-the-Silicon Standards Khronos creates Foundation-Level acceleration APIs - Needed

More information

CUDA Parallelism Model

CUDA Parallelism Model GPU Teaching Kit Accelerated Computing CUDA Parallelism Model Kernel-Based SPMD Parallel Programming Multidimensional Kernel Configuration Color-to-Grayscale Image Processing Example Image Blur Example

More information

Lecture 2: CUDA Programming

Lecture 2: CUDA Programming CS 515 Programming Language and Compilers I Lecture 2: CUDA Programming Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/12/2017 Review: Programming in CUDA Let s look at a sequential program in C first:

More information

GPU Computing: Introduction to CUDA. Dr Paul Richmond

GPU Computing: Introduction to CUDA. Dr Paul Richmond GPU Computing: Introduction to CUDA Dr Paul Richmond http://paulrichmond.shef.ac.uk This lecture CUDA Programming Model CUDA Device Code CUDA Host Code and Memory Management CUDA Compilation Programming

More information

Lecture 8: GPU Programming. CSE599G1: Spring 2017

Lecture 8: GPU Programming. CSE599G1: Spring 2017 Lecture 8: GPU Programming CSE599G1: Spring 2017 Announcements Project proposal due on Thursday (4/28) 5pm. Assignment 2 will be out today, due in two weeks. Implement GPU kernels and use cublas library

More information

Josef Pelikán, Jan Horáček CGG MFF UK Praha

Josef Pelikán, Jan Horáček CGG MFF UK Praha GPGPU and CUDA 2012-2018 Josef Pelikán, Jan Horáček CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 41 Content advances in hardware multi-core vs. many-core general computing

More information

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Michael Bader Alexander Heinecke Technische Universität München, Germany Outline Intel Cilk Plus OpenCL Übung, October 7, 2012 2 Intel Cilk

More information

The resurgence of parallel programming languages

The resurgence of parallel programming languages The resurgence of parallel programming languages Jamie Hanlon & Simon McIntosh-Smith University of Bristol Microelectronics Research Group hanlon@cs.bris.ac.uk 1 The Microelectronics Research Group at

More information

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Basic Elements of CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include

Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include 3.1 Overview Accelerator cards are typically PCIx cards that supplement a host processor, which they require to operate Today, the most common accelerators include GPUs (Graphics Processing Units) AMD/ATI

More information

Lecture 3: Introduction to CUDA

Lecture 3: Introduction to CUDA CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Introduction to CUDA Some slides here are adopted from: NVIDIA teaching kit Mohamed Zahran (aka Z) mzahran@cs.nyu.edu

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca (Slides http://support.scinet.utoronto.ca/ northrup/westgrid CUDA.pdf) March 12, 2014

More information

Scientific discovery, analysis and prediction made possible through high performance computing.

Scientific discovery, analysis and prediction made possible through high performance computing. Scientific discovery, analysis and prediction made possible through high performance computing. An Introduction to GPGPU Programming Bob Torgerson Arctic Region Supercomputing Center November 21 st, 2013

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca March 13, 2014 Outline 1 Heterogeneous Computing 2 GPGPU - Overview Hardware Software

More information

Parallel Computing. Lecture 19: CUDA - I

Parallel Computing. Lecture 19: CUDA - I CSCI-UA.0480-003 Parallel Computing Lecture 19: CUDA - I Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com GPU w/ local DRAM (device) Behind CUDA CPU (host) Source: http://hothardware.com/reviews/intel-core-i5-and-i7-processors-and-p55-chipset/?page=4

More information

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum GPU & High Performance Computing (by NVIDIA) CUDA Compute Unified Device Architecture 29.02.2008 Florian Schornbaum GPU Computing Performance In the last few years the GPU has evolved into an absolute

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Basics of CADA Programming - CUDA 4.0 and newer

Basics of CADA Programming - CUDA 4.0 and newer Basics of CADA Programming - CUDA 4.0 and newer Feb 19, 2013 Outline CUDA basics Extension of C Single GPU programming Single node multi-gpus programing A brief introduction on the tools Jacket CUDA FORTRAN

More information

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh GPU Programming EPCC The University of Edinburgh Contents NVIDIA CUDA C Proprietary interface to NVIDIA architecture CUDA Fortran Provided by PGI OpenCL Cross platform API 2 NVIDIA CUDA CUDA allows NVIDIA

More information

GPU programming: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique

GPU programming: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique GPU programming: CUDA basics Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.fr This lecture: CUDA programming We have seen some GPU architecture Now how to program it? 2 Outline

More information

Making OpenCL Simple with Haskell. Benedict R. Gaster January, 2011

Making OpenCL Simple with Haskell. Benedict R. Gaster January, 2011 Making OpenCL Simple with Haskell Benedict R. Gaster January, 2011 Attribution and WARNING The ideas and work presented here are in collaboration with: Garrett Morris (AMD intern 2010 & PhD student Portland

More information

OpenCL on the GPU. San Jose, CA September 30, Neil Trevett and Cyril Zeller, NVIDIA

OpenCL on the GPU. San Jose, CA September 30, Neil Trevett and Cyril Zeller, NVIDIA OpenCL on the GPU San Jose, CA September 30, 2009 Neil Trevett and Cyril Zeller, NVIDIA Welcome to the OpenCL Tutorial! Khronos and industry perspective on OpenCL Neil Trevett Khronos Group President OpenCL

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU Real-time Graphics 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing

More information

High Performance Computing and GPU Programming

High Performance Computing and GPU Programming High Performance Computing and GPU Programming Lecture 1: Introduction Objectives C++/CPU Review GPU Intro Programming Model Objectives Objectives Before we begin a little motivation Intel Xeon 2.67GHz

More information

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 22: Introduction to OpenCL

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 22: Introduction to OpenCL CS/EE 217 GPU Architecture and Parallel Programming Lecture 22: Introduction to OpenCL Objective To Understand the OpenCL programming model basic concepts and data types OpenCL application programming

More information

CS377P Programming for Performance GPU Programming - I

CS377P Programming for Performance GPU Programming - I CS377P Programming for Performance GPU Programming - I Sreepathi Pai UTCS November 9, 2015 Outline 1 Introduction to CUDA 2 Basic Performance 3 Memory Performance Outline 1 Introduction to CUDA 2 Basic

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Introduc)on to GPU Programming

Introduc)on to GPU Programming Introduc)on to GPU Programming Mubashir Adnan Qureshi h3p://www.ncsa.illinois.edu/people/kindr/projects/hpca/files/singapore_p1.pdf h3p://developer.download.nvidia.com/cuda/training/nvidia_gpu_compu)ng_webinars_cuda_memory_op)miza)on.pdf

More information

GPU Programming Using CUDA

GPU Programming Using CUDA GPU Programming Using CUDA Michael J. Schnieders Depts. of Biomedical Engineering & Biochemistry The University of Iowa & Gregory G. Howes Department of Physics and Astronomy The University of Iowa Iowa

More information

GPU 1. CSCI 4850/5850 High-Performance Computing Spring 2018

GPU 1. CSCI 4850/5850 High-Performance Computing Spring 2018 GPU 1 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President 4 th Annual Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President Copyright Khronos Group, 2009 - Page 1 CPUs Multiple cores driving performance increases Emerging Intersection GPUs Increasingly

More information

Introduction to GPU programming. Introduction to GPU programming p. 1/17

Introduction to GPU programming. Introduction to GPU programming p. 1/17 Introduction to GPU programming Introduction to GPU programming p. 1/17 Introduction to GPU programming p. 2/17 Overview GPUs & computing Principles of CUDA programming One good reference: David B. Kirk

More information

$ cd ex $ cd 1.Enumerate_GPUs $ make $./enum_gpu.x. Enter in the application folder Compile the source code Launch the application

$ cd ex $ cd 1.Enumerate_GPUs $ make $./enum_gpu.x. Enter in the application folder Compile the source code Launch the application $ cd ex $ cd 1.Enumerate_GPUs $ make $./enum_gpu.x Enter in the application folder Compile the source code Launch the application --- General Information for device 0 --- Name: xxxx Compute capability:

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing GPGPU general-purpose

More information

OpenCL. Dr. David Brayford, LRZ, PRACE PATC: Intel MIC & GPU Programming Workshop

OpenCL. Dr. David Brayford, LRZ, PRACE PATC: Intel MIC & GPU Programming Workshop OpenCL Dr. David Brayford, LRZ, brayford@lrz.de PRACE PATC: Intel MIC & GPU Programming Workshop 1 Open Computing Language Open, royalty-free standard C-language extension For cross-platform, parallel

More information

COSC 6374 Parallel Computations Introduction to CUDA

COSC 6374 Parallel Computations Introduction to CUDA COSC 6374 Parallel Computations Introduction to CUDA Edgar Gabriel Fall 2014 Disclaimer Material for this lecture has been adopted based on various sources Matt Heavener, CS, State Univ. of NY at Buffalo

More information

Module 2: Introduction to CUDA C. Objective

Module 2: Introduction to CUDA C. Objective ECE 8823A GPU Architectures Module 2: Introduction to CUDA C 1 Objective To understand the major elements of a CUDA program Introduce the basic constructs of the programming model Illustrate the preceding

More information

Vector Addition on the Device: main()

Vector Addition on the Device: main() Vector Addition on the Device: main() #define N 512 int main(void) { int *a, *b, *c; // host copies of a, b, c int *d_a, *d_b, *d_c; // device copies of a, b, c int size = N * sizeof(int); // Alloc space

More information

Data Parallelism. CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016

Data Parallelism. CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016 Data Parallelism CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016 1 Goals Cover the material in Chapter 7 of Seven Concurrency Models in Seven Weeks by Paul Butcher Data Parallelism

More information

GPU Architecture and Programming with OpenCL. OpenCL. GPU Architecture: Why? Today s s Topic. GPUs: : Architectures for Drawing Triangles Fast

GPU Architecture and Programming with OpenCL. OpenCL. GPU Architecture: Why? Today s s Topic. GPUs: : Architectures for Drawing Triangles Fast Today s s Topic GPU Architecture and Programming with OpenCL David Black-Schaffer david.black-schaffer@it black-schaffer@it.uu.se Room 1221 GPU architecture What and why The good The bad Compute Models

More information

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture Rafia Inam Mälardalen Real-Time Research Centre Mälardalen University, Västerås, Sweden http://www.mrtc.mdh.se rafia.inam@mdh.se CONTENTS

More information

OpenCL. Matt Sellitto Dana Schaa Northeastern University NUCAR

OpenCL. Matt Sellitto Dana Schaa Northeastern University NUCAR OpenCL Matt Sellitto Dana Schaa Northeastern University NUCAR OpenCL Architecture Parallel computing for heterogenous devices CPUs, GPUs, other processors (Cell, DSPs, etc) Portable accelerated code Defined

More information

PATC Training. OmpSs and GPUs support. Xavier Martorell Programming Models / Computer Science Dept. BSC

PATC Training. OmpSs and GPUs support. Xavier Martorell Programming Models / Computer Science Dept. BSC PATC Training OmpSs and GPUs support Xavier Martorell Programming Models / Computer Science Dept. BSC May 23 rd -24 th, 2012 Outline Motivation OmpSs Examples BlackScholes Perlin noise Julia Set Hands-on

More information

Programming in CUDA. Malik M Khan

Programming in CUDA. Malik M Khan Programming in CUDA October 21, 2010 Malik M Khan Outline Reminder of CUDA Architecture Execution Model - Brief mention of control flow Heterogeneous Memory Hierarchy - Locality through data placement

More information

Parallel Accelerators

Parallel Accelerators Parallel Accelerators Přemysl Šůcha ``Parallel algorithms'', 2017/2018 CTU/FEL 1 Topic Overview Graphical Processing Units (GPU) and CUDA Vector addition on CUDA Intel Xeon Phi Matrix equations on Xeon

More information

Introduction to Parallel Computing with CUDA. Oswald Haan

Introduction to Parallel Computing with CUDA. Oswald Haan Introduction to Parallel Computing with CUDA Oswald Haan ohaan@gwdg.de Schedule Introduction to Parallel Computing with CUDA Using CUDA CUDA Application Examples Using Multiple GPUs CUDA Application Libraries

More information

GPU Architecture and Programming with OpenCL

GPU Architecture and Programming with OpenCL GPU Architecture and Programming with OpenCL David Black-Schaffer david.black-schaffer@it black-schaffer@it.uu.se Room 1221 Today s s Topic GPU architecture What and why The good The bad Compute Models

More information

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction Francesco Rossi University of Bologna and INFN * Using this terminology since you ve already heard of SIMD and SPMD at this school

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Zheng Zhang Fall 2016 Dec 14 GPU Programming Rutgers University Programming with CUDA Compute Unified Device Architecture (CUDA) Mapping and managing computations

More information

Lecture 11: GPU programming

Lecture 11: GPU programming Lecture 11: GPU programming David Bindel 4 Oct 2011 Logistics Matrix multiply results are ready Summary on assignments page My version (and writeup) on CMS HW 2 due Thursday Still working on project 2!

More information

HPCSE II. GPU programming and CUDA

HPCSE II. GPU programming and CUDA HPCSE II GPU programming and CUDA What is a GPU? Specialized for compute-intensive, highly-parallel computation, i.e. graphic output Evolution pushed by gaming industry CPU: large die area for control

More information

Introduction to GPU Programming

Introduction to GPU Programming Introduction to GPU Programming Volodymyr (Vlad) Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) Tutorial Goals Become familiar with

More information

OpenCL in Action. Ofer Rosenberg

OpenCL in Action. Ofer Rosenberg pencl in Action fer Rosenberg Working with pencl API pencl Boot Platform Devices Context Queue Platform Query int GetPlatform (cl_platform_id &platform, char* requestedplatformname) { cl_uint numplatforms;

More information

GPGPU A Supercomputer on Your Desktop

GPGPU A Supercomputer on Your Desktop GPGPU A Supercomputer on Your Desktop GPUs 2 Graphics Processing Units (GPUs) were originally designed to accelerate graphics tasks like image rendering. They became very very popular with videogamers,

More information

Lecture 2: Introduction to CUDA C

Lecture 2: Introduction to CUDA C CS/EE 217 GPU Architecture and Programming Lecture 2: Introduction to CUDA C David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2013 1 CUDA /OpenCL Execution Model Integrated host+device app C program Serial or

More information

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Dirk Ribbrock Faculty of Mathematics, TU dortmund 2016 Table of Contents Why parallel

More information

Module 2: Introduction to CUDA C

Module 2: Introduction to CUDA C ECE 8823A GPU Architectures Module 2: Introduction to CUDA C 1 Objective To understand the major elements of a CUDA program Introduce the basic constructs of the programming model Illustrate the preceding

More information

CUDA Exercises. CUDA Programming Model Lukas Cavigelli ETZ E 9 / ETZ D Integrated Systems Laboratory

CUDA Exercises. CUDA Programming Model Lukas Cavigelli ETZ E 9 / ETZ D Integrated Systems Laboratory CUDA Exercises CUDA Programming Model 05.05.2015 Lukas Cavigelli ETZ E 9 / ETZ D 61.1 Integrated Systems Laboratory Exercises 1. Enumerate GPUs 2. Hello World CUDA kernel 3. Vectors Addition Threads and

More information

Parallel Accelerators

Parallel Accelerators Parallel Accelerators Přemysl Šůcha ``Parallel algorithms'', 2017/2018 CTU/FEL 1 Topic Overview Graphical Processing Units (GPU) and CUDA Vector addition on CUDA Intel Xeon Phi Matrix equations on Xeon

More information

EEM528 GPU COMPUTING

EEM528 GPU COMPUTING EEM528 CS 193G GPU COMPUTING Lecture 2: GPU History & CUDA Programming Basics Slides Credit: Jared Hoberock & David Tarjan CS 193G History of GPUs Graphics in a Nutshell Make great images intricate shapes

More information

An Introduction to GPU Computing and CUDA Architecture

An Introduction to GPU Computing and CUDA Architecture An Introduction to GPU Computing and CUDA Architecture Sarah Tariq, NVIDIA Corporation GPU Computing GPU: Graphics Processing Unit Traditionally used for real-time rendering High computational density

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalab.is.s.u-tokyo.ac.jp/~reiji/pna14/ [ 10 ] GPU and CUDA Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1. Architecture and Performance

More information

GPU programming. Dr. Bernhard Kainz

GPU programming. Dr. Bernhard Kainz GPU programming Dr. Bernhard Kainz Overview About myself Motivation GPU hardware and system architecture GPU programming languages GPU programming paradigms Pitfalls and best practice Reduction and tiling

More information

COSC 6339 Accelerators in Big Data

COSC 6339 Accelerators in Big Data COSC 6339 Accelerators in Big Data Edgar Gabriel Fall 2018 Motivation Programming models such as MapReduce and Spark provide a high-level view of parallelism not easy for all problems, e.g. recursive algorithms,

More information

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5)

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5) CUDA programming model N. Cardoso & P. Bicudo Física Computacional (FC5) N. Cardoso & P. Bicudo CUDA programming model 1/23 Outline 1 CUDA qualifiers 2 CUDA Kernel Thread hierarchy Kernel, configuration

More information

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research Introduction to CUDA CME343 / ME339 18 May 2011 James Balfour [ jbalfour@nvidia.com] NVIDIA Research CUDA Programing system for machines with GPUs Programming Language Compilers Runtime Environments Drivers

More information

CUDA C/C++ BASICS. NVIDIA Corporation

CUDA C/C++ BASICS. NVIDIA Corporation CUDA C/C++ BASICS NVIDIA Corporation What is CUDA? CUDA Architecture Expose GPU parallelism for general-purpose computing Retain performance CUDA C/C++ Based on industry-standard C/C++ Small set of extensions

More information

Lecture 1: Introduction and Computational Thinking

Lecture 1: Introduction and Computational Thinking PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 1: Introduction and Computational Thinking 1 Course Objective To master the most commonly used algorithm techniques and computational

More information

Supporting Computer Vision through High Performance GPU Programming. Dong Ping Zhang 12 Jan, 2013 AMD Research

Supporting Computer Vision through High Performance GPU Programming. Dong Ping Zhang 12 Jan, 2013 AMD Research Supporting Computer Vision through High Performance GPU Programming Dong Ping Zhang 12 Jan, 2013 AMD Research Most parallel code runs on CPUs designed for scalar workloads 2 Supporting Computer Vision

More information

OpenCL. Computation on HybriLIT Brief introduction and getting started

OpenCL. Computation on HybriLIT Brief introduction and getting started OpenCL Computation on HybriLIT Brief introduction and getting started Alexander Ayriyan Laboratory of Information Technologies Joint Institute for Nuclear Research 05.09.2014 (Friday) Tutorial in frame

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

CUDA C Programming Mark Harris NVIDIA Corporation

CUDA C Programming Mark Harris NVIDIA Corporation CUDA C Programming Mark Harris NVIDIA Corporation Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory Models Programming Environment

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2017 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2017 Jens Teubner Computer Architecture Summer 2017 34 Part II Graphics

More information

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks.

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks. Sharing the resources of an SM Warp 0 Warp 1 Warp 47 Register file A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks Shared A single SRAM (ex. 16KB)

More information

GPU programming: CUDA. Sylvain Collange Inria Rennes Bretagne Atlantique

GPU programming: CUDA. Sylvain Collange Inria Rennes Bretagne Atlantique GPU programming: CUDA Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.fr This lecture: CUDA programming We have seen some GPU architecture Now how to program it? 2 Outline GPU

More information

Programming Parallel Computers

Programming Parallel Computers ICS-E4020 Programming Parallel Computers Jukka Suomela Jaakko Lehtinen Samuli Laine Aalto University Spring 2016 users.ics.aalto.fi/suomela/ppc-2016/ New code must be parallel! otherwise a computer from

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

OpenCL. An Introduction for HPC programmers. Benedict Gaster, AMD Tim Mattson, Intel. - Page 1

OpenCL. An Introduction for HPC programmers. Benedict Gaster, AMD Tim Mattson, Intel. - Page 1 OpenCL An Introduction for HPC programmers Benedict Gaster, AMD Tim Mattson, Intel - Page 1 Preliminaries: Disclosures - The views expressed in this tutorial are those of the people delivering the tutorial.

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

CUDA C/C++ BASICS. NVIDIA Corporation

CUDA C/C++ BASICS. NVIDIA Corporation CUDA C/C++ BASICS NVIDIA Corporation What is CUDA? CUDA Architecture Expose GPU parallelism for general-purpose computing Retain performance CUDA C/C++ Based on industry-standard C/C++ Small set of extensions

More information

CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation

CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation What is CUDA? CUDA Platform Expose GPU computing for general purpose Retain performance CUDA C/C++ Based on industry-standard C/C++ Small

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library Libraries Don t reinvent the wheel. Specialized math libraries are likely faster. BLAS: Basic Linear Algebra Subprograms LAPACK: Linear Algebra Package (uses BLAS) http://www.netlib.org/lapack/ to download

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming. Lecturer: Alan Christopher

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming. Lecturer: Alan Christopher CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 30: GP-GPU Programming Lecturer: Alan Christopher Overview GP-GPU: What and why OpenCL, CUDA, and programming GPUs GPU Performance

More information

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci TECHNISCHE UNIVERSITÄT WIEN Fakultät für Informatik Cyber-Physical Systems Group CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci Outline of CUDA Basics Basic Kernels and Execution on GPU

More information

Example 1: Color-to-Grayscale Image Processing

Example 1: Color-to-Grayscale Image Processing GPU Teaching Kit Accelerated Computing Lecture 16: CUDA Parallelism Model Examples Example 1: Color-to-Grayscale Image Processing RGB Color Image Representation Each pixel in an image is an RGB value The

More information

COSC 6385 Computer Architecture. - Data Level Parallelism (II)

COSC 6385 Computer Architecture. - Data Level Parallelism (II) COSC 6385 Computer Architecture - Data Level Parallelism (II) Fall 2013 SIMD Instructions Originally developed for Multimedia applications Same operation executed for multiple data items Uses a fixed length

More information