Homework 8. Robert Wortman CpE 185 Mon / Wed Dennis Dahlquist. November 14, 2011

Size: px
Start display at page:

Download "Homework 8. Robert Wortman CpE 185 Mon / Wed Dennis Dahlquist. November 14, 2011"

Transcription

1 Homework 8 Robert Wortman CpE 185 Mon / Wed Dennis Dahlquist November 14, Question (a) PROG51.ASM(14) : warning A4012: line number information for segment without class CODE : cseg Instructions (code) must be in a segemnt that has a class name ending in "CODE". 1.2 (b) LINK : warning L4055: start address not equal to 0x100 for /TINY If no.model statement is given, the tiny memory model is assumed. For that memory model, the starting address must be 0x (c) PROG51.ASM(20) : error A2006: undefined symbol : e00h In MASM, numbers must start with a decimal digit, even if the numbers are hexadecimal. There is something magnificently broken about this. 1

2 1.4 (d) No assembly or linking errors, but since it s calling interrupt 0a h instead of 10 h, the program doesn t print anything. 1.5 (e) PROG51.ASM(25) : error A2006: undefined symbol : IIIA Labels must be defined before they can be used as the destination for a jump. 1.6 (f) PROG51.ASM(28) : fatal error A1010: unmatched block nesting : cseg Holy crap. A helpful error message. Sort of. 1.7 (g) LINK : warning L4055: start address not equal to 0x100 for /TINY Haven t we been here before? It seems that MASM uses the END directive to specify a program entry point (i.e. the starting address). So, if none is specified, it does the wrong thing, and then complains about it. 1.8 (h) PROG51.ASM(28) : error A2046: missing single or double quotation mark in string PROG51.ASM(30) : error A2046: missing single or double quotation mark in string PROG51.ASM(32) : error A2046: missing single or double quotation mark in string PROG51.ASM(34) : error A2046: missing single or double quotation mark in string PROG51.ASM(36) : error A2046: missing single or double quotation mark in string PROG51.ASM(38) : error A2046: missing single or double quotation mark in string PROG51.ASM(40) : error A2046: missing single or double quotation mark in string PROG51.ASM(42) : error A2046: missing single or double quotation mark in string PROG51.ASM(44) : error A2046: missing single or double quotation mark in string 2

3 PROG51.ASM(46) : error A2046: missing single or double quotation mark in string PROG51.ASM(48) : error A2046: missing single or double quotation mark in string PROG51.ASM(50) : error A2046: missing single or double quotation mark in string PROG51.ASM(52) : error A2046: missing single or double quotation mark in string PROG51.ASM(54) : error A2046: missing single or double quotation mark in string PROG51.ASM(56) : error A2046: missing single or double quotation mark in string PROG51.ASM(58) : error A2046: missing single or double quotation mark in string PROG51.ASM(60) : error A2046: missing single or double quotation mark in string PROG51.ASM(62) : error A2046: missing single or double quotation mark in string PROG51.ASM(64) : error A2046: missing single or double quotation mark in string PROG51.ASM(66) : error A2046: missing single or double quotation mark in string PROG51.ASM(68) : error A2046: missing single or double quotation mark in string PROG51.ASM(70) : error A2046: missing single or double quotation mark in string PROG51.ASM(72) : error A2046: missing single or double quotation mark in string PROG51.ASM(74) : error A2046: missing single or double quotation mark in string PROG51.ASM(76) : error A2046: missing single or double quotation mark in string PROG51.ASM(78) : error A2046: missing single or double quotation mark in string PROG51.ASM(80) : error A2046: missing single or double quotation mark in string PROG51.ASM(82) : error A2046: missing single or double quotation mark in string PROG51.ASM(84) : error A2046: missing single or double quotation mark in string PROG51.ASM(86) : error A2046: missing single or double quotation mark in string PROG51.ASM(88) : error A2046: missing single or double quotation mark in string PROG51.ASM(90) : error A2046: missing single or double quotation mark in string PROG51.ASM(92) : error A2046: missing single or double quotation mark in string PROG51.ASM(94) : error A2046: missing single or double quotation mark in string PROG51.ASM(96) : error A2046: missing single or double quotation mark in string PROG51.ASM(98) : error A2046: missing single or double quotation mark in string PROG51.ASM(100) : error A2046: missing single or double quotation mark in string PROG51.ASM(102) : error A2046: missing single or double quotation mark in string PROG51.ASM(104) : error A2046: missing single or double quotation mark in string PROG51.ASM(106) : error A2046: missing single or double quotation mark in string PROG51.ASM(108) : error A2046: missing single or double quotation mark in string PROG51.ASM(110) : error A2046: missing single or double quotation mark in string PROG51.ASM(112) : error A2046: missing single or double quotation mark in string PROG51.ASM(114) : error A2046: missing single or double quotation mark in string PROG51.ASM(116) : error A2046: missing single or double quotation mark in string PROG51.ASM(118) : error A2046: missing single or double quotation mark in string PROG51.ASM(120) : error A2046: missing single or double quotation mark in string PROG51.ASM(122) : error A2046: missing single or double quotation mark in string PROG51.ASM(124) : error A2046: missing single or double quotation mark in string PROG51.ASM(126) : error A2046: missing single or double quotation mark in string PROG51.ASM(128) : error A2046: missing single or double quotation mark in string PROG51.ASM(130) : error A2046: missing single or double quotation mark in string PROG51.ASM(132) : error A2046: missing single or double quotation mark in string PROG51.ASM(134) : error A2046: missing single or double quotation mark in string PROG51.ASM(136) : error A2046: missing single or double quotation mark in string PROG51.ASM(138) : error A2046: missing single or double quotation mark in string PROG51.ASM(140) : error A2046: missing single or double quotation mark in string PROG51.ASM(142) : error A2046: missing single or double quotation mark in string PROG51.ASM(144) : error A2046: missing single or double quotation mark in string PROG51.ASM(146) : error A2046: missing single or double quotation mark in string 3

4 PROG51.ASM(148) : error A2046: missing single or double quotation mark in string PROG51.ASM(150) : error A2046: missing single or double quotation mark in string PROG51.ASM(152) : error A2046: missing single or double quotation mark in string PROG51.ASM(154) : error A2046: missing single or double quotation mark in string PROG51.ASM(156) : error A2046: missing single or double quotation mark in string PROG51.ASM(158) : error A2046: missing single or double quotation mark in string PROG51.ASM(160) : error A2046: missing single or double quotation mark in string PROG51.ASM(162) : error A2046: missing single or double quotation mark in string PROG51.ASM(164) : error A2046: missing single or double quotation mark in string PROG51.ASM(166) : error A2046: missing single or double quotation mark in string PROG51.ASM(168) : error A2046: missing single or double quotation mark in string PROG51.ASM(170) : error A2046: missing single or double quotation mark in string PROG51.ASM(172) : error A2046: missing single or double quotation mark in string PROG51.ASM(174) : error A2046: missing single or double quotation mark in string PROG51.ASM(176) : error A2046: missing single or double quotation mark in string PROG51.ASM(178) : error A2046: missing single or double quotation mark in string PROG51.ASM(180) : error A2046: missing single or double quotation mark in string PROG51.ASM(182) : error A2046: missing single or double quotation mark in string PROG51.ASM(184) : error A2046: missing single or double quotation mark in string PROG51.ASM(186) : error A2046: missing single or double quotation mark in string PROG51.ASM(188) : error A2046: missing single or double quotation mark in string PROG51.ASM(190) : error A2046: missing single or double quotation mark in string PROG51.ASM(192) : error A2046: missing single or double quotation mark in string PROG51.ASM(194) : error A2046: missing single or double quotation mark in string PROG51.ASM(196) : error A2046: missing single or double quotation mark in string PROG51.ASM(198) : error A2046: missing single or double quotation mark in string PROG51.ASM(200) : error A2046: missing single or double quotation mark in string PROG51.ASM(202) : error A2046: missing single or double quotation mark in string PROG51.ASM(204) : error A2046: missing single or double quotation mark in string PROG51.ASM(206) : error A2046: missing single or double quotation mark in string PROG51.ASM(208) : error A2046: missing single or double quotation mark in string PROG51.ASM(210) : error A2046: missing single or double quotation mark in string PROG51.ASM(212) : error A2046: missing single or double quotation mark in string PROG51.ASM(214) : error A2046: missing single or double quotation mark in string PROG51.ASM(216) : error A2046: missing single or double quotation mark in string PROG51.ASM(218) : error A2046: missing single or double quotation mark in string PROG51.ASM(220) : error A2046: missing single or double quotation mark in string PROG51.ASM(222) : error A2046: missing single or double quotation mark in string PROG51.ASM(224) : error A2046: missing single or double quotation mark in string PROG51.ASM(226) : error A2046: missing single or double quotation mark in string PROG51.ASM(228) : fatal error A1012: error count exceeds 100; stopping assembly Apparently, MASM thinks that s supposed to be a string. Apparently, MASM also thinks that there I have something north of 228 lines in my program, instead of only twentysomething. 4

5 2 Question 2 Listing 1: p52.asm cseg segment code assume cs : cseg, ds : cseg, s s : cseg, es : cseg org 100h ; l e a v e room f o r PSP s t a r t : mov ah, 00h ; r e q u e s t " s e t mode" f u n c t i o n mov al, 02h ; r e q u e s t mode 2 i n t 0ah ; c a l l video s e r v i c e s mov ax,0920 h ; r e q u e s t " w r i t e c h a r a c t e r " function, char space mov bl, 1 ah ; r e q u e s t a t t r i b u t e s blue bg, b r i g h t green f g mov cx, 0 7 d0h ; r e q u e s t repeat, 0x07d0 r e p e a t s i n t 10h ; c a l l video s e r v i c e s mov ah, 0 2 h ; r e q u e s t "move c u r s o r " f u n c t i o n mov dx, 0 a00h ; r e q u e s t row 0x0a, column 0x00 mov bh, 0 0 ; r e q u e s t page 0 i n t 10h ; c a l l video s e r v i c e s mov ah, 0 eh ; r e q u e s t d i s p l a y ASCII c h a r a c t e r mov al, 0 0 ; s e t c h a r a c t e r next : i n t 10h ; c a l l video s e r v i c e s i n c a l ; s e t next c h a r a c t e r cmp al, 8 0 h ; i s c h a r a c t e r past ASCII range jnz next ; i f not, go to next c h a r a c t e r i n t 20h ; i f so, return to DOS cseg end ends s t a r t Assembling the above program produced the following listing file: Microsoft (R) Macro Assembler Version /14/11 16:33:12 Q52.ASM Page cseg segment code assume cs:cseg, ds:cseg, ss:cseg, es:cseg org 100h ; leave room for PSP 5

6 0100 start: 0100 B4 00 mov ah, 00h ; request "set mode" function 0102 B0 02 mov al, 02h ; request mode CD 0A int 0ah ; call video services 0106 B mov ax,0920h ; request "write character" function, char space 0109 B3 1A mov bl,1ah ; request attributes blue bg, bright green fg 010B B9 07D0 mov cx,07d0h ; request repeat, 0x07d0 repeats 010E CD 10 int 10h ; call video services 0110 B4 02 mov ah,02h ; request "move cursor" function 0112 BA 0A00 mov dx,0a00h ; request row 0x0a, column 0x B7 00 mov bh,00 ; request page CD 10 int 10h ; call video services 0119 B4 0E mov ah,0eh ; request display ASCII character 011B B0 00 mov al,00 ; set character 011D next: 011D CD 10 int 10h ; call video services 011F FE C0 inc al ; set next character C 80 cmp al,80h ; is character past ASCII range F8 jnz next ; if not, go to next character 0125 CD 20 int 20h ; if so, return to DOS 0127 cseg ends end start Microsoft (R) Macro Assembler Version /14/11 16:33:12 Q52.ASM Symbols 2-1 Segments and Groups: N a m e Size Length Align Combine Class cseg Bit 0127 Para Private CODE Symbols: N a m e Type Value Attr next L Near 011D cseg 6

7 start L Near 0100 cseg 0 Warnings 0 Errors 7

ECpE 185 Laboratory Hand Assembly Fall 2006

ECpE 185 Laboratory Hand Assembly Fall 2006 ECpE 185 Laboratory Hand Assembly Fall 2006 Hand-Assembly, Using DEBUG Introduction: In this Hand-Assembly Lab, you will develop an 8-bit version of the program from Debug Introduction Lab, using byte-size

More information

Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs

Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs INT 10H: screen handling INT 21H: for displaying screen output and

More information

UNIT 4. Modular Programming

UNIT 4. Modular Programming 1 UNIT 4. Modular Programming Program is composed from several smaller modules. Modules could be developed by separate teams concurrently. The modules are only assembled producing.obj modules (Object modules).

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler:

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler: Assembling, Linking and Executing 1) Assembling: - Assembling converts source program into object program if syntactically correct and generates an intermediate.obj file or module. - It calculates the

More information

Lecture (06) x86 programming 5

Lecture (06) x86 programming 5 Lecture (06) x86 programming 5 By: Dr. Ahmed ElShafee 1 TOC Format of DOS programs Format of the.com programs Addressing Modes 1> Immediate Addressing Mode 2> Register Addressing Mode 3> Direct Addressing

More information

Assembly Language Each statement in an assembly language program consists of four parts or fields.

Assembly Language Each statement in an assembly language program consists of four parts or fields. Chapter 3: Addressing Modes Assembly Language Each statement in an assembly language program consists of four parts or fields. The leftmost field is called the label. - used to identify the name of a memory

More information

Experiment N o 1. 1 Introduction to Assembly Language Programming

Experiment N o 1. 1 Introduction to Assembly Language Programming Experiment N o 1 1 Introduction to Assembly Language Programming Introduction: This experiment introduces the student to assembly language programming. In order to illustrate the basic concepts of assembly

More information

Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming)

Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming) Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming) Learning any imperative programming language involves mastering a number of common concepts: Variables: declaration/definition

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

Experiment 3 3 Basic Input Output

Experiment 3 3 Basic Input Output Experiment 3 3 Basic Input Output Introduction The aim of this experiment is to introduce the use of input/output through the DOS interrupt. Objectives: INT Instruction Keyboard access using DOS function

More information

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This chapter explains the operation of the stack

More information

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse Experiment N o 12 12 Using the Mouse Introduction The mouse is an I/O device that replaces the arrow keys on the keyboard for graphical and text style programs. This experiment shows how to add the mouse

More information

x86 and C refresher Lab

x86 and C refresher Lab x86 and C refresher Lab Background: The x86 is a very widely used microprocessor, it is in Windows and Macintosh personal computers. It is important to be familiar with Intel Architecture, IA. In this

More information

How to write an assembly language program.

How to write an assembly language program. Copyright 1999 by Barry B. Brey How to write an assembly language program. Someone asked about this and, at first, I thought this was a very difficult question until I thought about it for a few minutes.

More information

ELEC VIDEO BIOS ROUTINES

ELEC VIDEO BIOS ROUTINES It is less confusing to the user if we remove unnecessary messages from the display before giving information or instructions. At the command prompt, we do this with the DOS command CLS. However, this

More information

Transfer of Control. Lecture 10 JMP. JMP Formats. Jump Loop Homework 3 Outputting prompts Reading single characters

Transfer of Control. Lecture 10 JMP. JMP Formats. Jump Loop Homework 3 Outputting prompts Reading single characters Lecture 10 Jump Loop Homework 3 Outputting prompts Reading single characters Transfer of Control The CPU loads and executes programs sequentially. You d like to be able to implement if statements, gotos,

More information

LABORATORY 8: USING BIOS ROUTINES FOR KEYBOARD INPUT AND DISPLAY OUTPUT

LABORATORY 8: USING BIOS ROUTINES FOR KEYBOARD INPUT AND DISPLAY OUTPUT LABORATORY 8: USING BIOS ROUTINES FOR KEYBOARD INPUT AND DISPLAY OUTPUT NAME: STUDENT ID#: Objectives Learn how to: Use the read keyboard and display character BIOS routines. Display prompt messages on

More information

Basic Assembly SYSC-3006

Basic Assembly SYSC-3006 Basic Assembly Program Development Problem: convert ideas into executing program (binary image in memory) Program Development Process: tools to provide people-friendly way to do it. Tool chain: 1. Programming

More information

db "Please enter up to 256 characters (press Enter Key to finish): ",0dh,0ah,'$'

db Please enter up to 256 characters (press Enter Key to finish): ,0dh,0ah,'$' PA4 Sample Solution.model large.stack 100h.data msg1 db "This programs scans a string of up to 256 bytes and counts the repetitions of the number 4206 and sums them.",0dh,0ah,'$' msg2 db "Please enter

More information

EEM336 Microprocessors I. Addressing Modes

EEM336 Microprocessors I. Addressing Modes EEM336 Microprocessors I Addressing Modes Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010402 System Programming Question Bank Unit 1: Introduction 1. Write the decimal equivalent for each integral power of 2 from 2! to 2!". 2. Convert the following

More information

ELEC 242 Time Delay Procedure

ELEC 242 Time Delay Procedure There are many occasions where we wish to time events. If we are using a personal computer, we have a number of ways to do this. The 8088/8086 computer had a Programmable Interval Timer like the 8253/54

More information

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP.

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP. IBM PC Hardware CPU 8088, 8086 80286 80386 80486 Pentium... ALU (Arithmetic and Logic Unit) Registers CU (Control Unit) IP Memory ROM BIOS I/O RAM OS Programs Video memory BIOS data Interrupt Vectors Memory

More information

Week /8086 Microprocessor Programming I

Week /8086 Microprocessor Programming I Week 4 8088/8086 Microprocessor Programming I Example. The PC Typewriter Write an 80x86 program to input keystrokes from the PC s keyboard and display the characters on the system monitor. Pressing any

More information

EXPERIMENT TWELVE: USING DISK FILES

EXPERIMENT TWELVE: USING DISK FILES EXPERIMENT TWELVE: USING DISK FILES INTRODUCTION Because just about any program ever written requires the use of a disk file to store or retrieve data, this experiment shows how to create, read, write,

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI 8 Unsigned and Signed Integer Numbers 1. Unsigned integer numbers: each type of integer can be either byte-wide or word-wide. This data type can be used to represent decimal numbers in the range 0 through

More information

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language 4345 Assembly Language Assembly Language Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology Assembly Language 3-1 Overview of Assembly Language Advantages: Faster as compared

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program.

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program. Experiment 3 Introduction: In this experiment the students are exposed to the structure of an assembly language program and the definition of data variables and constants. Objectives: Assembly language

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND Interrupts The INT instruction is the instruction which does the most work in any assembler program. What it does is it calls a DOS interrupt (like a function) to perform a special task. When

More information

X86-NASM STANDARD COMMANDS. Comment your code with a semicolon (;)! The assembler won t read anything after it.

X86-NASM STANDARD COMMANDS. Comment your code with a semicolon (;)! The assembler won t read anything after it. X86-NASM STANDARD COMMANDS Comment your code with a semicolon (;)! The assembler won t read anything after it. Move mov ax,bx ; ax = bx Use this command when you want to move a value around. You can also

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

EE2007 Microprocessor systems.

EE2007 Microprocessor systems. EE2007 Microprocessor systems Tutorial 1 Semester 1 AY 2010-11 Ganesh Iyer ganesh.vigneswara@gmail.com (facebook, gtalk) http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore,

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 6 8086/88 Microprocessor Programming (Arithmetic Instructions) Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC

More information

COMPUTER ENGINEERING DEPARTMENT

COMPUTER ENGINEERING DEPARTMENT Page 1 of 11 COMPUTER ENGINEERING DEPARTMENT December 31, 2007 COE 205 COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING Major Exam II First Semester (071) Time: 7:00 PM-9:30 PM Student Name : KEY Student ID.

More information

INTRODUCTION. NOTE Some symbols used in this manual CL = Click Left CR = Click Right DCL = Double Click Left = Enter. Page 1

INTRODUCTION. NOTE Some symbols used in this manual CL = Click Left CR = Click Right DCL = Double Click Left = Enter. Page 1 INTRODUCTION OBJECTIVE The purpose of this manual is to provide the student with practical experience in the writing of assembly language programs, and give them background and instructions on how to use

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 6 Ch.3 Addressing Modes 1 Chapter Objectives Explain the operation of each data-addressing mode. Use data-addressing modes to form

More information

Babu Madhav Institute of Information Technology, UTU

Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010309 : DSE3 Microprocessor Programming and Interfacing Question Bank 1. Write an assembly language program to check whether the given number is odd or even.

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 4 Addressing Modes Dr Hashim Ali Spring - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides taken from Computer

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 02/04/2018 Max Marks: 40 Subject & Code : Microprocessor (15CS44) Section : IV A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Note: Answer any five complete

More information

Experiment N o 3 Segmentation and Addressing Modes

Experiment N o 3 Segmentation and Addressing Modes Introduction: Experiment N o 3 Segmentation and Addressing Modes In this experiment you will be introduced to physical segmentation of the memory, and the logical segmentation of programs. You will also

More information

Programming in Assembler. Laboratory manual. Exercise 3

Programming in Assembler. Laboratory manual. Exercise 3 Zakład Mikroinformatyki i Teorii Automatów Cyfrowych Programming in Assembler Laboratory manual Exercise 3 Simple MS-DOS program assembling and debugging 2008,2011 Krzysztof Tokarz, Piotr Czekalski (edt.)

More information

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES 1. Object of laboratory Getting used to defining and using macros, procedure defining and using LIB library librarian. 2. Theoretical considerations

More information

Assignment no:4 on chapter no :3 : Instruction set of 8086

Assignment no:4 on chapter no :3 : Instruction set of 8086 Assignment no:4 on chapter no :3 : Instruction set of 8086 1) Describe any two string operation instruction of 8086 with syntax & one example of each. 1] REP: REP is a prefix which is written before one

More information

CS499. Intel Architecture

CS499. Intel Architecture CS499 Intel Architecture Intel Architecture References IA-32 Intel Architecture Software Developer s Manual, Volume 1: Basic Architecture Volume 2: Instruction Set Reference www.intel.com/design/pentiumii/manuals/

More information

Lecture (07) x86 programming 6

Lecture (07) x86 programming 6 Lecture (07) x86 programming 6 By: Dr. Ahmed ElShafee 1 The Flag Register 31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0 ID VIP VIF AC VM RF NT IOP 1 IOP 0 O D I T S Z A P C 8088/8086 80286 80386 80486

More information

if 2 16bit operands multiplied the result will be

if 2 16bit operands multiplied the result will be how many operands in ADC? ans:3 how 32 bit word is defined? ans define double if 2 16bit operands multiplied the result will be ans 32bit if div by ero occurs then?? ans div by zero int for software int

More information

Come and join us at WebLyceum

Come and join us at WebLyceum Come and join us at WebLyceum For Past Papers, Quiz, Assignments, GDBs, Video Lectures etc Go to http://www.weblyceum.com and click Register In Case of any Problem Contact Administrators Rana Muhammad

More information

MPID MICROPROCESSOR AND ITS INTERFACING DEVICES EEE III II SEMESTER OBJECTIVE QUESTIONS

MPID MICROPROCESSOR AND ITS INTERFACING DEVICES EEE III II SEMESTER OBJECTIVE QUESTIONS MPID MICROPROCESSOR AND ITS INTERFACING DEVICES EEE III II SEMESTER OBJECTIVE QUESTIONS UNIT I 8086 ARCHITECTURE OBJECTIVE TYPE QUESTIONS 1 The number of address spaces of 8085 is ( a) 4 ( b ) 8 ( c )

More information

Computer Organization and Assembly Language CSC-210

Computer Organization and Assembly Language CSC-210 Computer Organization and Assembly Language CSC-2 Lab # Lab() Lab(2) Lab(3) Lab(4) Lab(5) Lab(6) Lab(7) Lab(8) Lab(9) Lab() Lab() Lab(2) Lab(3) Title Computer Anatomy Memory and ports Motherboard and cards

More information

Midterm Exam #2 Answer Key

Midterm Exam #2 Answer Key Midterm Exam #2 Answer Key Name: Student ID #: I have read and understand Washington State University s policy on academic dishonesty and cheating YOU Signed: Problem 1) Consider the following fragment

More information

Week /8086 Microprocessor Programming II

Week /8086 Microprocessor Programming II Week 5 8088/8086 Microprocessor Programming II Quick Review Shift & Rotate C Target register or memory SHL/SAL 0 C SHR 0 SAR C Sign Bit 2 Examples Examples Ex. Ex. Ex. SHL dest, 1; SHL dest,cl; SHL dest,

More information

Signed number Arithmetic. Negative number is represented as

Signed number Arithmetic. Negative number is represented as Signed number Arithmetic Signed and Unsigned Numbers An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the first 128 combinations (0 to 127) represent positive numbers

More information

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics Experiment #5 Using BIOS Services and DOS functions Part 1: Text-based Graphics 5.0 Objectives: The objective of this experiment is to introduce BIOS and DOS interrupt service routines to be utilized in

More information

CG2007 Microprocessor systems.

CG2007 Microprocessor systems. CG2007 Microprocessor systems Tutorial 1 Semester 2 AY 2011-12 Ganesh Iyer ganesh.vigneswara@gmail.com http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore, India. I

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class For Late Submissions 10 out of 100 points will be taken off. For your first program, you are to

More information

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut dthiebaut@smith.edu Homework Solutions Outline Review Hexdump Pentium Data Registers 32-bit, 16-bit and 8-bit quantities (registers

More information

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points]

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points] Problem : Programming in Assembly [ Points] The following assembly program is supposed to: receive three integer numbers from the console, call a function, name sort, function sort arranges the three input

More information

Mnem. Meaning Format Operation Flags affected ADD Addition ADD D,S (D) (S)+(D) (CF) Carry ADC Add with ADC D,C (D) (S)+(D)+(CF) O,S,Z,A,P,C

Mnem. Meaning Format Operation Flags affected ADD Addition ADD D,S (D) (S)+(D) (CF) Carry ADC Add with ADC D,C (D) (S)+(D)+(CF) O,S,Z,A,P,C ARITHMETIC AND LOGICAL GROUPS 6-1 Arithmetic and logical groups: The arithmetic group includes instructions for the addition, subtraction, multiplication, and division operations. The state that results

More information

Lecture (08) x86 programming 7

Lecture (08) x86 programming 7 Lecture (08) x86 programming 7 By: Dr. Ahmed ElShafee 1 Conditional jump: Conditional jumps are executed only if the specified conditions are true. Usually the condition specified by a conditional jump

More information

Arithmetic Instructions

Arithmetic Instructions Segment 3C Arithmetic Instructions This topic covers the following instructions: Addition (ADD, INC, ADC) Subtraction (SUB, DEC, SBB,CMP) Multiplication (MUL, IMUL) Division (DIV, IDIV) BCD Arithmetic

More information

Experiment 8 8 Subroutine Handling Instructions and Macros

Experiment 8 8 Subroutine Handling Instructions and Macros Introduction Experiment 8 8 Subroutine Handling Instructions and Macros In this experiment you will be introduced to subroutines and how to call them. You will verify the exchange of data between a main

More information

Microprocessors (A) DOS Services

Microprocessors (A) DOS Services 1 Services 2 System Calls Operating System services: Disk and file system management Screen display and printing Keyboard entry Other I/O management Date and time Program run and terminate Command arguments

More information

Lecture 5 Program Logic and Control

Lecture 5 Program Logic and Control Lecture 5 Program Logic and Control Chapter Outline Short, near and far address JMP Instruction The CMP Instruction Conditional Jump instruction The Loop instruction While Loop REPEAT Loop Short,near,and

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program to search a number in given array. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

Experiment N o 3. Segmentation and Addressing Modes

Experiment N o 3. Segmentation and Addressing Modes Introduction: Experiment N o 3 Segmentation and Addressing Modes In this experiment you will be introduced to physical segmentation of the memory, and the logical segmentation of programs. You will also

More information

Lecture (05) x86 programming 4

Lecture (05) x86 programming 4 Lecture (05) x86 programming 4 By: Dr. Ahmed ElShafee ١ TOC IA32 cont,.. Segmentation Assembler Directives Format of console programs Practical deliverable 01 ٢ Simple Memory Addressing Modes Normal (R)

More information

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU)

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU) Part 2 Computer Processors Processors The Brains of the Box Computer Processors Components of a Processor The Central Processing Unit (CPU) is the most complex part of a computer In fact, it is the computer

More information

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H.

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. MOV AX, 5000H MOV DS, AX MOV AL, 20H MOV CL, 30H ADD AL, CL MOV CL, 10H MUL CL

More information

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher Reverse Engineering II: Basics Gergely Erdélyi Senior Antivirus Researcher Agenda Very basics Intel x86 crash course Basics of C Binary Numbers Binary Numbers 1 Binary Numbers 1 0 1 1 Binary Numbers 1

More information

Kingdom of Saudi Arabia Ministry of Higher Education. Taif University. Faculty of Computers & Information Systems

Kingdom of Saudi Arabia Ministry of Higher Education. Taif University. Faculty of Computers & Information Systems Kingdom of Saudi Arabia Ministry of Higher Education Taif University Faculty of Computers & Information Systems المملكة العربية السعودية وزارة التعليم العالي جامعة الطاي ف آلية الحاسبات ونظم المعلومات

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET ECE366: ADVANCED MICROPROCESSORS TRIMESTER (08/09) AM: Real- Mode Programming *Note: On-the-spot evaluation may be carried out during or at the end of the experiment. Students

More information

The registers(di,si) are automatically incremented or decremented depending on the value of the direction flag:

The registers(di,si) are automatically incremented or decremented depending on the value of the direction flag: String Instructions String instructions were designed to operate on large data structures. The SI and DI registers are used as pointers to the data structures being accessed or manipulated. The operation

More information

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017)

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017) Microprocessor and Assembly Language Week-5 System Programming, BCS 6th, IBMS (2017) High Speed Memory Registers CPU store data temporarily in these location CPU process, store and transfer data from one

More information

Reverse Engineering II: The Basics

Reverse Engineering II: The Basics Reverse Engineering II: The Basics Gergely Erdélyi Senior Manager, Anti-malware Research Protecting the irreplaceable f-secure.com Binary Numbers 1 0 1 1 - Nibble B 1 0 1 1 1 1 0 1 - Byte B D 1 0 1 1 1

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

Assembly Language LAB

Assembly Language LAB Assembly Language LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering 2013 ECOM 2125: Assembly Language LAB Created by: Eng. Ahmed M. Ayash Modified and Presented By: Eihab

More information

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte.

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. SHEET-2 ANSWERS [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. TITLE PROG2-3 PURPOSE: TRANSFER 6 WORDS OF DATA PAGE 60,132.MODEL SMALL.STACK 64.DATA ORG 10H DATA_IN DW 234DH,

More information

X86 Assembly Language and C Fundamentals. Chapter 5. Data Transfer Instructions. X86 Code Figures

X86 Assembly Language and C Fundamentals. Chapter 5. Data Transfer Instructions. X86 Code Figures 1 X86 Assembly Language and C Fundamentals Chapter 5 Data Transfer Instructions X86 Code Figures 2 Page 200, Figure 5.4 ;swap_bytes.asm ;-----------------------------------------------------------.STACK

More information

1. Introduction to Assembly Language

1. Introduction to Assembly Language www.vchowk.com 1. Introduction to Assembly Language Solved EXERCISE 1 Note: Dear fellows I tried my best to solve this exercise questions if there s any mistake or doubt in any question correct it and

More information

CS-202 Microprocessor and Assembly Language

CS-202 Microprocessor and Assembly Language CS-202 Microprocessor and Assembly Language Lecture 2 Introduction to 8086 Assembly Language Dr Hashim Ali Spring - 2019 Department of Computer Science and Engineering HITEC University Taxila!1 Lecture

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication INTERNAL ASSESSMENT TEST 1 Date : 26/02/2018 Marks: 40 Subject

More information

Proposed Common Configuration Method

Proposed Common Configuration Method Proposed Common Configuration Method July 9, 1991 The Common Configuration Method (CCM) simplifies configuration of disks and other storage devices. This definition includes a Standard AT Compatible Register

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND Segment The "SEGMENT" and "ENDS" directives indicate to the assembler the beginning and ending of a segment and have the following format label SEGMENT [options] ;place the statements belonging

More information

Section 001 & 002. Read this before starting!

Section 001 & 002. Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Spring Semester,

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Lesson 1. Fundamentals of assembly language

Lesson 1. Fundamentals of assembly language Lesson 1. Fundamentals of assembly language Computer Structure and Organization Graduate in Computer Sciences Graduate in Computer Engineering Graduate in Computer Sciences Graduate in Computer Engineering

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

Lecture 9. INC and DEC. INC/DEC Examples ADD. Arithmetic Operations Overflow Multiply and Divide

Lecture 9. INC and DEC. INC/DEC Examples ADD. Arithmetic Operations Overflow Multiply and Divide Lecture 9 INC and DEC Arithmetic Operations Overflow Multiply and Divide INC adds one to a single operand DEC decrements one from a single operand INC destination DEC destination where destination can

More information

CYASM Assembler User s Guide Version 2.02

CYASM Assembler User s Guide Version 2.02 CYASM Assembler User s Guide Version 2.02 May 7, 2004 Cypress Semiconductor Personal Communication Division 3901 North First Street San Jose, CA 95134 (408) 943-2600 www.cypress.com Cypress Semiconductor

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

Assembler Programming. Lecture 2

Assembler Programming. Lecture 2 Assembler Programming Lecture 2 Lecture 2 8086 family architecture. From 8086 to Pentium4. Registers, flags, memory organization. Logical, physical, effective address. Addressing modes. Processor Processor

More information

Objectives. Saving Interrupt Vectors. Writing a Custom Interrupt Handler. Examples of use of System functions for Input-Output and Interrupts

Objectives. Saving Interrupt Vectors. Writing a Custom Interrupt Handler. Examples of use of System functions for Input-Output and Interrupts ICT106 Fundamentals of Computer Systems Week 11 Practical Examples of use of System functions for Input-Output and Interrupts Objectives To illustrate how to write interrupt service routine (ISR) for Intel

More information