MIDTERM#1. 2-(3pts) What is the difference between Von Neumann & Harvard processor architectures?

Size: px
Start display at page:

Download "MIDTERM#1. 2-(3pts) What is the difference between Von Neumann & Harvard processor architectures?"

Transcription

1 CSE421-Microprocessors & Microcontrollers-Spring 2013 (March 26, 2013) NAME: MIDTERM#1 1- (2pts) What does MSP stand for in MSP430? Why? Mixed Signal Processor. It contains both analog and digital circuitry. 2-(3pts) What is the difference between Von Neumann & Harvard processor architectures? In Harvard Architecture, the volatile (data) and nonvolatile (program) memories are treated as separate systems,each with its own address and data bus. In von Neumann Architecture, there is only a single memory system in the von Neumann or Princeton architecture. Thismeans that only one set of addresses covers both the volatile and nonvolatile memories. 3- (5pts) List the differences between a microprocessor and a microcontroller. A microprocessor contains a complete digital processor,which includes at least the arithmetic logic unit and associated registers. A microprocessor needs many other components to support it. These include a (large) external memory and the other components that can be found on the motherboard of a personal computer. The integration of as many functions as possible on to the same chip as the processor gives rise to the microcontrollers. Microcontrollers have nearly fixed hardware built around a central processingunit (CPU).The CPU controls a range of peripherals, which may provide both digitaland analog functions such as timers and analog-to-digital converters. Small devices usually include both volatile and nonvolatile memory on the chip but larger processorsmay need separate memory. Their operation is usually programmed using a languagesuch as C or C++. Microprocessors have larger address bus (32, 64-bit) whereas microcontrollers can address (8, 16-bit) a small memory with no paging or banking. OS can run on microprocessors whereas small microcontrollers are unlikely to use an OS at all. Sometimes, a specialized real-time OS (RTOS) is used in microcontrollers for real-time apps. 1

2 4- (30pts) For the following machine code, write down the corresponding instruction. Refer to cheat sheet. a. (5pts) 0x B6 MOV.W #0x03b6,SP b. (5pts) 0x8DFB FFF5 c. (5pts) 0xF6EF 4031 d. (5pts) 0xD2E2 002A BIS.B #4, 2Ah(SR) e. (5pts) 0x40B2 5A MOV.W #5A80, 0x0120(SR) f. (5pts) 0x1005 RRC.w R5 5- (10pts) Consider the machine code 0x23FE. You are also given the PC value as 0x312a. a. (5pts) Tell me which jump instruction is being executed. JNE/JNZ offset=0x3fe b. (5pts) Calculate the new PC value for the case when the status register zero bit (Z) is 0. Refer to Fig. 2. If status register zero bit is 0 and no jump happens. Therefore, new PC= 0x312c. If status register zero bit is 1 and jump happens. Therefore, new PC= 0x312a +2+(-4) = 0x3128 because (0x3FE *2 = 0x3FC = -0x004 (two s complement)) 6- (10pts) Write the assembly for the following: while (! (P1IN & 0x01)); go: BIT.B #1, &P1IN JEQ go 2

3 7-(10pts) Convert the following C-code into assembly. Complete the corresponding assembly below the C-code. C-code: #include <msp430xg46x.h> void main (void){ volatile unsigned int i; WDTCTL = WDTPW WDTHOLD; P2DIR = 0x04; //Stop Watchdog Timer //Configure P2.2 as Output } while(1){ i=30000; do (i--); while (i!=0); P2OUT ^= 0x04; } //Infinite loop //Delay //Toggle Port P2.2 using an exclusive-or Assembly: - LOOP mov.w #0x7530,0x0000(SP) DECREMENT dec.w 0x0000(SP) tst.w 0x0000(SP) jne DECREMENT xor.b #4,&P2OUT ;Toggle P2.2 using an exclusive-or jmp LOOP ;Infinite loop 3

4 8-(12pts) Use the assembly that you wrote in question 7. Define a subroutine called DELAY. - bis.b #4,&P2OUT ; Configure P2.2 as Output LOOP call #DELAY xor.b #4,&P2OUT ;Toggle P2.2 using an exclusive-or jmp LOOP ;Infinite loop DELAY sub.w #2,SP ; Allocate 1 word (2 bytes) on stack mov.w #0x7530,0x0000(SP) DECREMENT dec.w 0x0000(SP) tst.w 0x0000(SP) jne DECREMENT add.w #2,SP ; Yes: finished, release space on stack ret 9-(10pts) The assembly in question 8 is re-written such that the delay value is passed as an argument. Fill in the blanks accordingly. - bis.b #4,&P2OUT ; Configure P2.2 as Output push.w #0x7530 ; Push delay parameter on to stack LOOP call #DELAY incd.w SP ; Release space used for parameter xor.b #4,&P2OUT ; Toggle P2.2 using an exclusive-or jmp LOOP ; Infinite loop DELAY; DECREMENT dec.w 0x4(SP) tst.w 0x4(SP) jne DECREMENT ret 10-(8pts) What happens when an interrupt is requested in MSP430? The PC and SR are pushed on the stack. What happens after the interrupt service routine? First SR pops, and next PC pops from the stack. 4

5 CHEAT SHEET Fig.1 Format I (Double Operand Instruction) Fig.2 Jump InstructionFormat Fig.3 Single Operand InstructionFormat Fig.4 Addressing modes Fig.5. MSP430 Instruction Set 5

Block diagram of processor (Harvard)

Block diagram of processor (Harvard) Block diagram of processor (Harvard) Register transfer view of Harvard architecture Separate busses for instruction memory and data memory Example: PIC 16 load path OP REG AC 16 16 store path rd wr data

More information

PHYS 319. Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1.

PHYS 319. Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1. PHYS 319 Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1. Before next week's lab: Read manual for Lab 2 and your OS setup guide then prepare your

More information

Lecture test next week

Lecture test next week Lecture test next week Write a short program in Assembler doing. You will be given the print outs of all the assembler programs from the manual You can bring any notes you want Today: Announcements General

More information

Before next weeks lab:

Before next weeks lab: Before next weeks lab: - To sign in to lab computers use student and Phys319. - read the lab manual for week two. - look at the tools installation guide for OS of your choice and/or lab computer guide,

More information

ECE2049 Homework #2 The MSP430 Architecture & Basic Digital IO (DUE Friday 9/8/17 at 4 pm in class)

ECE2049 Homework #2 The MSP430 Architecture & Basic Digital IO (DUE Friday 9/8/17 at 4 pm in class) ECE2049 Homework #2 The MSP430 Architecture & Basic Digital IO (DUE Friday 9/8/17 at 4 pm in class) Your homework should be neat and professional looking. You will loose points if your HW is not properly

More information

Interrupts CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Interrupts CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 嵌入式系統概論 Interrupts Prof. Chung-Ta King Department of Computer Science, Taiwan Materials from MSP430 Microcontroller Basics, John H. Davies, Newnes, 2008 Inside MSP430 (MSP430G2551) 1 Introduction

More information

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives:

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: This lab will introduce basic embedded systems programming concepts by familiarizing the user with an embedded programming

More information

Exam 1. EE319K Spring 2013 Exam 1 (Practice 1) Page 1. Date: February 21, 2013; 9:30-10:45am. Printed Name:

Exam 1. EE319K Spring 2013 Exam 1 (Practice 1) Page 1. Date: February 21, 2013; 9:30-10:45am. Printed Name: EE319K Spring 2013 Exam 1 (Practice 1) Page 1 Exam 1 Date: February 21, 2013; 9:30-10:45am Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this

More information

Using peripherals on the MSP430 (if time)

Using peripherals on the MSP430 (if time) Today's Plan: Announcements Review Activities 1&2 Programming in C Using peripherals on the MSP430 (if time) Activity 3 Announcements: Midterm coming on Feb 9. Will need to write simple programs in C and/or

More information

MICROPROCESSOR BASED SYSTEM DESIGN

MICROPROCESSOR BASED SYSTEM DESIGN MICROPROCESSOR BASED SYSTEM DESIGN Lecture 5 Xmega 128 B1: Architecture MUHAMMAD AMIR YOUSAF VON NEUMAN ARCHITECTURE CPU Memory Execution unit ALU Registers Both data and instructions at the same system

More information

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA)

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective Introduce MSP430 Instruction Set Architecture (Class of ISA,

More information

Introduction to general architectures of 8 and 16 bit micro-processor and micro-controllers

Introduction to general architectures of 8 and 16 bit micro-processor and micro-controllers Introduction to general architectures of 8 and 16 bit micro-processor and micro-controllers A microcontroller is a microprocessor with inbuilt peripherals.a microcontroller can also be compared with a

More information

CONTENTS: Program 1 in C:

CONTENTS: Program 1 in C: CONTENTS: 1) Program 1 in C (Blink) 2) Program 2 in C (Interrupt ) 3) ADC example 4) Addressing Modes 5) Selected Assembly instructions 6) ADC10 register descriptions Program 1 in C: /* * PHYS319 Lab3

More information

Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2

Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2 Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2 Intro to programming in C time permitting Lab 1&2 Marking scheme: Announcements: Turn

More information

CPE/EE 323 Introduction to Embedded Computer Systems Homework III

CPE/EE 323 Introduction to Embedded Computer Systems Homework III CPE/EE 323 Introduction to Embedded Computer Systems Homework III 1(40) 2(30) 3(30) Total Problem #1 (40 points) Consider the following C program. Assume all variables are allocated on the stack in the

More information

CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview

CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview Aleksandar Milenkovic Electrical and Computer Engineering The University of Alabama in Huntsville milenka@ece.uah.edu

More information

CPU: SOFTWARE ARCHITECTURE INSTRUCTION SET (PART

CPU: SOFTWARE ARCHITECTURE INSTRUCTION SET (PART General Introduction CPU: SOFTWARE ARCHITECTURE INSTRUCTION SET (PART 1) General Introduction (1/5): On Instructions Instruction operate with data or with the flow of the program The following information

More information

Hacettepe University

Hacettepe University MSP430 Teaching Materials Week 3 Further into the MSP430 Hacettepe University Copyright 2009 Texas Instruments All Rights Reserved MSP430MtFaFbMc Mt: Memory Type C: ROM F: Flash P: OTP E: EPROM (for developmental

More information

CPE 323 Introduction to Embedded Computer Systems: MSP430: Assembly Language and C. Instructor: Dr Aleksandar Milenkovic Lecture Notes

CPE 323 Introduction to Embedded Computer Systems: MSP430: Assembly Language and C. Instructor: Dr Aleksandar Milenkovic Lecture Notes CPE 323 Introduction to Embedded Computer Systems: MSP430: Assembly Language and C Instructor: Dr Aleksandar Milenkovic Lecture Notes Outline Assembly Language Programming Adding two 32-bit numbers (decimal,

More information

Getting Started with the MSP430 IAR Assembly

Getting Started with the MSP430 IAR Assembly Getting Started with the MSP430 IAR Assembly by Alex Milenkovich, milenkovic@computer.org Objectives: This tutorial will help you get started with the MSP30 IAR Assembly program development. You will learn

More information

Texas Instruments Mixed Signal Processor Tutorial Abstract

Texas Instruments Mixed Signal Processor Tutorial Abstract Texas Instruments Mixed Signal Processor Tutorial Abstract This tutorial goes through the process of writing a program that uses buttons to manipulate LEDs. One LED will be hard connected to the output

More information

Create and Add the Source File

Create and Add the Source File IAR Kickstart Procedure Create and Add the Source File 8. Create the Source File From the IAR Embedded Workbench menu bar, select File New File. In the untitled editor window that appears, type the following

More information

Interrupts, Low Power Modes

Interrupts, Low Power Modes Interrupts, Low Power Modes Registers Status Register Interrupts (Chapter 6 in text) A computer has 2 basic ways to react to inputs: 1) polling: The processor regularly looks at the input and reacts as

More information

MICROCONTROLLERS 8051

MICROCONTROLLERS 8051 MICROCONTROLLERS 8051 PART A Unit 1: Microprocessor and Microcontroller. Introduction, Microprocessor and Microcontrollers, A Microcontroller survey. RISC & CISC CPU Architectures, Harvard & Von Neumann

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Operating Systems M. Schölzel Operating System Tasks Traditional OS Controlling and protecting access to resources (memory, I/O, computing resources) managing their allocation

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O ECE2049-E17 Lecture 4 1 ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O Administrivia Homework 1: Due today by 7pm o Either place in box in ECE office or give to me o Office hours tonight!

More information

Lecture 5: MSP430 Interrupt

Lecture 5: MSP430 Interrupt ECE342 Intro. to Embedded Systems Lecture 5: MSP430 Interrupt Ying Tang Electrical and Computer Engineering Rowan University 1 How A Computer React to Inputs? Polling: the processor regularly looks at

More information

Common Computer-System and OS Structures

Common Computer-System and OS Structures Common Computer-System and OS Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture Oct-03 1 Computer-System Architecture

More information

Why embedded systems?

Why embedded systems? MSP430 Intro Why embedded systems? Big bang-for-the-buck by adding some intelligence to systems. Embedded Systems are ubiquitous. Embedded Systems more common as prices drop, and power decreases. Which

More information

CPE 323 MSP430 MSP430 Assembly Language Programming

CPE 323 MSP430 MSP430 Assembly Language Programming CPE 323 MSP430 MSP430 Assembly Language Programming Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective: Introduce MSP430 assembly language Contents Contents...

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Week 4: Embedded Programming Using C

Week 4: Embedded Programming Using C Week 4: Embedded Programming Using C The C language evolved from BCPL (1967) and B (1970), both of which were type-less languages. C was developed as a strongly-typed language by DennisRitchie in 1972,

More information

What is an Interrupt?

What is an Interrupt? MSP430 Interrupts What is an Interrupt? Reaction to something in I/O (human, comm link) Usually asynchronous to processor activities interrupt handler or interrupt service routine (ISR) invoked to take

More information

Organization in Memory

Organization in Memory in 16 addresses for sub-routines Is written once prior to initialization, however it can be changed in chunks of 512 bytes during operation two small blocks programmed via scatt.-fl. only 2kB fast RAM

More information

C Language Programming

C Language Programming C Language Programming for the 8051 Overview C for microcontrollers Review of C basics Compilation flow for SiLabs IDE C extensions In-line assembly Interfacing with C Examples Arrays and Pointers I/O

More information

Befehle des MSP430. ADC Add carry to destination. ADD Add source to destination. ADDC[ Add source and carry to destination

Befehle des MSP430. ADC Add carry to destination. ADD Add source to destination. ADDC[ Add source and carry to destination Befehle des MSP430 ADC ADC ADC.B Add carry to destination Add carry to destination ADC dst or ADC.W dst ADC.B dst dst + C > dst The carry bit (C) is added to the destination operand. The previous contents

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Computer Architecture and System Software Lecture 06: Assembly Language Programming

Computer Architecture and System Software Lecture 06: Assembly Language Programming Computer Architecture and System Software Lecture 06: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Assignment 3 due thursday Midterm

More information

Microprocessors and Microcontrollers. Assignment 1:

Microprocessors and Microcontrollers. Assignment 1: Microprocessors and Microcontrollers Assignment 1: 1. List out the mass storage devices and their characteristics. 2. List the current workstations available in the market for graphics and business applications.

More information

Chapter 8 Architecture and Instruction Set

Chapter 8 Architecture and Instruction Set Chapter 8 8-1 Introduction 8.1 Introduction The instruction set of the ultra low power-microcomputer MSP430 family differs strongly from the instruction sets used by other 8-bit and 16-bit microcomputers.

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP 805 SFR Bus Digital Blocks Semiconductor IP 805 Microcontroller Configurable Peripherals General Description The Digital Blocks (Configurable Peripherals) Microcontroller Verilog IP Core is complaint with

More information

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Today s Menu Methods >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Look into my See examples on web-site: ParamPassing*asm and see Methods in Software and

More information

EE 332 Real Time Systems Midterm Examination Solution Friday February 13, :30 pm to 4:30 pm

EE 332 Real Time Systems Midterm Examination Solution Friday February 13, :30 pm to 4:30 pm EE 332 Real Time Systems Midterm Examination Solution Friday February 13, 2004 2:30 pm to 4:30 pm Student Name Student Number Question Mark #1 / 15 #2 / 20 #3 / 25 TOTAL / 60 General: Two hours (2:30 pm

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

MSP430 instruction set *

MSP430 instruction set * OpenStax-CNX module: m23503 1 MSP430 instruction set * Pedro Dinis António Espírito Santo Bruno Ribeiro This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Microprocessor Systems

Microprocessor Systems Microprocessor Systems Networks and Embedded Software Module 4.1.1 by Wolfgang Neff Components (1) Microprocessor System Microprocessor (CPU) Memory Peripherals Control Bus Address Bus Data Bus 2 Components(2)

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

Review Activity 1 CALL and RET commands in assembler

Review Activity 1 CALL and RET commands in assembler Today's Plan: Announcements Review Activity 1 CALL and RET commands in assembler Lecture test Programming in C continue Announcements: Projects: should be starting to think about. You will need to provide

More information

ECE2049-E18 Lecture 6 Notes 1. ECE2049: Embedded Computing in Engineering Design E Term Lecture #6: Exam Review

ECE2049-E18 Lecture 6 Notes 1. ECE2049: Embedded Computing in Engineering Design E Term Lecture #6: Exam Review ECE2049-E18 Lecture 6 Notes 1 ECE2049: Embedded Computing in Engineering Design E Term 2018 Lecture #6: Exam Review Administrivia Exam 1: Next Tuesday (6/5) HW4: Short assignment, due Tuesday Lab 1: Due

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP 805 Microcontroller General Description The Digital Blocks Microcontroller Verilog IP Core is complaint with the MCS 5 Instruction Set and contains standard 805 MCU peripherals,

More information

Description of the Simulator

Description of the Simulator Description of the Simulator The simulator includes a small sub-set of the full instruction set normally found with this style of processor. It includes advanced instructions such as CALL, RET, INT and

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 04 Timer Interrupts Goals: Learn about Timer Interrupts. Learn how to

More information

Intel Instruction Set (gas)

Intel Instruction Set (gas) Intel Instruction Set (gas) These slides provide the gas format for a subset of the Intel processor instruction set, including: Operation Mnemonic Name of Operation Syntax Operation Examples Effect on

More information

Designing for Ultra-Low Power with MSP430

Designing for Ultra-Low Power with MSP430 Designing for Ultra-Low Power with MSP430 Christian Hernitscheck MSP430 FAE Europe Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power

More information

EKT222 Miroprocessor Systems Lab 5

EKT222 Miroprocessor Systems Lab 5 LAB 5: Interrupts Objectives: 1) Ability to define interrupt in 8085 microprocessor 2) Ability to understanding the interrupt structure in the 8085 microprocessor 3) Ability to create programs using the

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as input,processes the data according to those instructions and provides

More information

Tutorial 1: Programming Model 1

Tutorial 1: Programming Model 1 Tutorial 1: Programming Model 1 Introduction Objectives At the end of this lab you should be able to: Use the CPU simulator to create basic CPU instructions Use the simulator to execute the basic CPU instructions

More information

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud.

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud. Chapter 1 Microprocessor architecture ECE 3130 Dr. Mohamed Mahmoud The slides are copyright protected. It is not permissible to use them without a permission from Dr Mahmoud http://www.cae.tntech.edu/~mmahmoud/

More information

MICROPROCESSOR MEMORY ORGANIZATION

MICROPROCESSOR MEMORY ORGANIZATION MICROPROCESSOR MEMORY ORGANIZATION 1 3.1 Introduction 3.2 Main memory 3.3 Microprocessor on-chip memory management unit and cache 2 A memory unit is an integral part of any microcomputer, and its primary

More information

Module Contents of the Module Hours COs

Module Contents of the Module Hours COs Microcontrollers (EE45): Syllabus: Module Contents of the Module Hours COs 1 8051 MICROCONTROLLER ARCHITECTURE: Introduction to Microprocessors and Microcontrollers, the 8051 Architecture, 08 1 and pin

More information

ECE2049: Embedded Computing in Engineering Design A Term Fall Lecture #9: Exam Review w/ Solutions

ECE2049: Embedded Computing in Engineering Design A Term Fall Lecture #9: Exam Review w/ Solutions ECE2049: Embedded Computing in Engineering Design A Term Fall 2018 Lecture #9: Exam Review w/ Solutions Reading for Today: Review all reading and notes, Davies Ch 1, 2, 4,7, MSP430 User's Guide Ch 6.1,

More information

Have difficulty identifying any products Not incorporating embedded processor FPGA or CPLD In one form or another

Have difficulty identifying any products Not incorporating embedded processor FPGA or CPLD In one form or another Introduction Embedded systems Continue pervasive expansion into Vast variety of electronic systems and products Aircraft and automobiles games and medical equipment Have difficulty identifying any products

More information

Chapter 7 Central Processor Unit (S08CPUV2)

Chapter 7 Central Processor Unit (S08CPUV2) Chapter 7 Central Processor Unit (S08CPUV2) 7.1 Introduction This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more

More information

CS401 - Computer Architecture and Assembly Language Programming Glossary By

CS401 - Computer Architecture and Assembly Language Programming Glossary By CS401 - Computer Architecture and Assembly Language Programming Glossary By absolute address : A virtual (not physical) address within the process address space that is computed as an absolute number.

More information

538 Lecture Notes Week 1

538 Lecture Notes Week 1 538 Clowes Lecture Notes Week 1 (Sept. 6, 2017) 1/10 538 Lecture Notes Week 1 Announcements No labs this week. Labs begin the week of September 11, 2017. My email: kclowes@ryerson.ca Counselling hours:

More information

Basic System Memory Architecture View (Functional)

Basic System Memory Architecture View (Functional) Memory Organization Basic System Memory Architecture View (Functional) Notation: [FFFE]=27h FFFE: 27 Basic Characteristics (1/3) Memory cell registers are one byte wide Memory Word is the contents of the

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP DB805C-FSM 805 Microcontroller FSM Finite State Machine General Description The Digital Blocks DB805C-FSM IP Core contains Digital Blocks compact DB805C CPU Core & GPIO

More information

Microcontrollers. vs Microprocessors

Microcontrollers. vs Microprocessors Microcontrollers vs Microprocessors Microprocessors Arbitrary computations Arbitrary control structures Arbitrary data structures Specify function at high-level and use compilers and debuggers Composed

More information

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA)

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA) COMP2121: Microprocessors and Interfacing Instruction Set Architecture (ISA) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Contents Memory models Registers Data types Instructions

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

MSP430 Interrupts. Change value of internal variable (count) Read a data value (sensor, receive) Write a data value (actuator, send)

MSP430 Interrupts. Change value of internal variable (count) Read a data value (sensor, receive) Write a data value (actuator, send) MSP430 Interrupts What is an Interrupt? Reaction to something in I/O (human, comm link) Usually asynchronous to processor activities interrupt handler or interrupt service routine (ISR) invoked to take

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

Getting Started with the Texas Instruments ez430

Getting Started with the Texas Instruments ez430 1 of 6 03.01.2009 01:33 HOME Running Your Code>> Getting Started with the Texas Instruments ez430 Working with the Workbench Software Step 1: Each program needs an associated project. The project includes

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Accumulator and memory instructions 1. Loads, stores, and transfers 2. Arithmetic operations 3. Multiply and divide 4. Logical operations 5. Data test

Accumulator and memory instructions 1. Loads, stores, and transfers 2. Arithmetic operations 3. Multiply and divide 4. Logical operations 5. Data test HC11 Instruction Set Instruction classes 1. 2. 3. 4. Accumulator and Memory Stack and Index Register Condition Code Register Program control instructions 2 1 Accumulator and memory instructions 1. Loads,

More information

ET2640 Microprocessors

ET2640 Microprocessors ET2640 Microprocessors Unit -2 Processor Programming Concepts Basic Control Instructor : Stan Kong Email : skong@itt-tech.edu Figure 2 4 Bits of the PSW Register 8051 REGISTER BANKS AND STACK 80 BYTES

More information

TYPES OF INTERRUPTS: -

TYPES OF INTERRUPTS: - There are 3 types of interrupts. TYPES OF INTERRUPTS: - External Interrupts. Internal Interrupts. Software interrupts. Hardware Interrupts (1) External interrupts come from I/O devices, from a timing device

More information

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang ME 475 Lab2 Introduction of PIC and Programming Instructor: Zhen Wang 2013.1.25 Outline Lecture Introduction of PIC microcontroller Programming cycle Read CH5 Programming guidelines Read CH6 Sample program

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

@databasescaling Wednesday, 18 th April 2013

@databasescaling Wednesday, 18 th April 2013 andyjpb@ashurst.eu.org @databasescaling Wednesday, 18 th April 2013 OSHUG #24 1 / 56 Writing C For Constrained Systems a@jpb.li @databasescaling Wednesday, 18 th April 2013 OSHUG #24 2 / 56 Writing C For

More information

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C Final Review CS304 Introduction to C Why C? Difference between Python and C C compiler stages Basic syntax in C Pointers What is a pointer? declaration, &, dereference... Pointer & dynamic memory allocation

More information

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #7: More Digital IO

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #7: More Digital IO ECE2049: Embedded Computing in Engineering Design C Term Spring 2018 Lecture #7: More Digital IO Reading for Today: Davies 7.5-7.9, Users Guide Ch 12 Reading for Next Class: Davies 7.5-7.9, Users Guide

More information

PART - B (Answer all five units, 5 X 10 = 50 Marks)

PART - B (Answer all five units, 5 X 10 = 50 Marks) Code: 13A04507 R13 B.Tech III Year I Semester (R13) Supplementary Examinations June 2017 MICROPROCESSS & INTERFACING (Common to CSE & IT) PART - A (a) Mention the function of the instruction ADD M of 8085

More information

MSP430. More on MSP430

MSP430. More on MSP430 MSP430 More on MSP430 CodeComposer TI recently launched Code Composer Essentials v3. This IDE s latest version (version 3) supports all available MSP430 devices. The new features of CCE v3 include: - Free

More information

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Processor Core. Günther Gridling Bettina Weiss Grundlagen Microcontroller Processor Core Günther Gridling Bettina Weiss 1 Processor Core Architecture Instruction Set Lecture Overview 2 Processor Core Architecture Computes things > ALU (Arithmetic Logic

More information

ECE2049-E17 Lecture 6 1. ECE2049: Embedded Computing in Engineering Design E Term Lecture #6: Exam Review

ECE2049-E17 Lecture 6 1. ECE2049: Embedded Computing in Engineering Design E Term Lecture #6: Exam Review ECE2049-E17 Lecture 6 1 ECE2049: Embedded Computing in Engineering Design E Term 2017 Lecture #6: Exam Review Administrivia Exam 1: Next Tuesday (6/6) HW2: Due Tonight at 7pm Lab 1: Due next Tuesday (6/6),

More information

CSE 351 Midterm - Winter 2015

CSE 351 Midterm - Winter 2015 CSE 351 Midterm - Winter 2015 February 09, 2015 Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 1. (a) What is an embedded computer system? Give an example. (b) Explain the characteristics of embedded computing applications. 2. Draw the figure showing the connections between an 8051 and

More information

COURSE NAME : ELECTRICAL ENGINEERING GROUP COURSE CODE : EE/EP SEMESTER : FIFTH SUBJECT TITLE : Microcontroller and Applications (Elective I for EP) SUBJECT CODE : Teaching and Examination Scheme: Teaching

More information

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 Introduction to Embedded Systems Lab 4: Interrupt Prof. Chung-Ta King Department of Computer Science, Taiwan Introduction In this lab, we will learn interrupts of MSP430 Handling interrupts in MSP430

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

University of Texas at Austin Electrical and Computer Engineering Department. EE319K, Embedded Systems, Spring 2013 Final Exam

University of Texas at Austin Electrical and Computer Engineering Department. EE319K, Embedded Systems, Spring 2013 Final Exam University of Texas at Austin Electrical and Computer Engineering Department EE319K, Embedded Systems, Spring 2013 Final Exam Directions There are 6 problems worth a total of 100 points. The number of

More information

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012)

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to

More information

UNIT 2 (ECS-10CS72) VTU Question paper solutions

UNIT 2 (ECS-10CS72) VTU Question paper solutions UNIT 2 (ECS-10CS72) VTU Question paper solutions 1. Differentiate between Harvard and von Neumann architecture. Jun 14 The Harvard architecture is a computer architecture with physically separate storage

More information

Computer Systems Lecture 9

Computer Systems Lecture 9 Computer Systems Lecture 9 CPU Registers in x86 CPU status flags EFLAG: The Flag register holds the CPU status flags The status flags are separate bits in EFLAG where information on important conditions

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information