Harmony Poten,als: Fusing Global and Local Scale for Seman,c Image Segmenta,on

Size: px
Start display at page:

Download "Harmony Poten,als: Fusing Global and Local Scale for Seman,c Image Segmenta,on"

Transcription

1 Harmony Poten,als: Fusing Global and Local Scale for Seman,c Image Segmenta,on J. M. Gonfaus X. Boix F. S. Khan J. van de Weijer A. Bagdanov M. Pedersoli J. Serrat X. Roca J. Gonzàlez

2 Mo,va,on (I) Why combine global and local scale?

3 Mo,va,on (I) Why combine global and local scale?

4 Mo,va,on (I) Classifica,on is open impossible based on local appearance only. Image Classifier Aeroplane Bus Sofa Plant Chair 0 0,5 1 Context is a powerful and dis,nc,ve cue

5 Mo,va,on (II) How can we improve local classifiers? Aeroplane Horse Is this object X or some other object Cow Cat Dog 0 0,5 1 Is this the foreground or the background of Aeroplane Cow Horse Cat Dog 0 0,5 1 Inaccurate segmenta,on Good class discrimina,on Why not combine them? Good figure segmenta,on Bad class discrimina,on

6 Mo,va,on (II) How can we improve local classifiers? Aeroplane Horse Is this object X or some other object Cow Cat Dog 0 0,5 1 Is this the foreground or the background of Aeroplane Cow Horse Cat Dog 0 0,5 1 Inaccurate segmenta,on Good class discrimina,on Why not combine them? Good figure segmenta,on Bad class discrimina,on

7 Mo,va,on (II) How can we improve local classifiers? More informa,on sources Mid- level informa,on through object detectors

8 Outline Overview of our method How to fuse local and global scale Harmony Poten,als* CVC_Harmony submission (35.4% on test) Improving local classifiers CVC_Harmony+Det submission (40.1% on test) Results Conclusions *J.M. Gonfaus, X. Boix, J. Van de Weijer, A. D. Bagdanov, J. Serrat, J. Gonzàlez Harmony Poten,als for Joint Classifica,on and Segmenta,on, in CVPR 2010

9 Overview of our method

10 Overview of our method Unsupervised segmenta,on. Around 500 superpixels/image

11 Overview of our method Unsupervised segmenta,on. Superpixel nodes Unary poten,al (CVC_Harmony) BoW inside AND neighborhood Smoothness poten,al BoW Pairwise Pois poten,al SIFT, RGB Histogram, SSIM Mul,scale: 12, 24, 36, 48 square patches Step size 50% of the patch Quan,zed to 1000, 400, 300 words Learned on SVM with 8000 samples + retraining

12 Overview of our method Unsupervised segmenta,on. Superpixel nodes Unary poten,al BoW inside AND neighborhood Detec,on scores Loca,on prior Smoothness poten,al BoW Pairwise Pois poten,al (CVC_Harmony+det) SIFT, RGB Histogram, SSIM Mul,scale: 12, 24, 36, 48 square patches Step size 50% of the patch Quan,zed to 1000, 400, 300 words Learned on SVM with 8000 samples + retraining

13 Overview of our method Unsupervised segmenta,on. Superpixel nodes Global Node Unary poten,al: Global classifier method CVC_flat submission: map: 61% for classifica,on task Consistency poten,al From global node to each sp Harmony Poten,al

14 Model Unary Poten,al Smoothness Poten,al Consistency Poten,al

15 Model Consistency Poten,al

16 Consistency poten,al Ground- Truth Unary Poten,als Pois- based Poten,als Robust P N Poten,als Harmony Poten,als

17 Consistency poten,al GT Ground- Truth Unary Poten,als Pois- based Poten,als Robust P N Poten,als Harmony Poten,als

18 Consistency poten,al GT Ground- Truth Unary Poten,als Pois- based Poten,als Robust P N Poten,als Harmony Poten,als

19 Consistency poten,al GT Free Ground- Truth Unary Poten,als Pois- based Poten,als Robust P N Poten,als Harmony Poten,als

20 Consistency poten,al GT Ground- Truth Unary Poten,als Pois- based Poten,als Robust P N Poten,als Harmony Poten,als

21 Consistency poten,al = All possible label combina,ons is unfeasible

22 Consistency poten,al Ranked subsampling of Few best combina,ons are required to saturate the performance Prior From the training data we extract the co- occurrence sta,s,cs of labels Likelihood Image classifica,on scores each combina,on

23 Unary Poten,al Model

24 Unary poten,al Local classifiers are weak classifiers Too ambiguous because liile informa,on is used Combining mul,ple classifiers makes our local unary poten,al stronger. Features: foreground/background class versus others object detec,ons spa,al loca,on prior

25 F fg- bg : Fore- Background Easy to iden,fy whether the superpixel belongs to the object class or to its common background

26 F fg- bg : Fore- Background Easy to iden,fy whether the superpixel belongs to the object class or to its common background

27 F fg- bg : Fore- Background Easy to iden,fy whether the superpixel belongs to the object class or to its common background

28 Fclass: Class vs. other classes Learning how different an object is from its common background becomes difficult for certain class combina,ons Foreground Background

29 Fclass: Class vs. other classes Learning how different an object is from its common background becomes difficult for certain class combina,ons

30 F posi,on : Loca,on prior Objects tend to appear in class- specific, par,cular loca,ons (and not at the borders)

31 F det : Object detector* scores Mid- level informa,on is added by considering object detec,ons [Felzenszwalb et al. 2010]. Average over superpixel area with maximum detec,on score at each pixel. Scores = [- 1, ) Class specific No detec,on score is learned. Keeps the CRF and the model simple. *Felzenszwalb, Girshick, McAllester, Ramanan, Object Detec,on with Discriminately Trained Part based models, PAMI 2010

32 F det : Object detector* scores

33 Results on valida,on set 2010 Mean Average Precision Fg_Bk 33, submission Class 23,4 Loc 20 Det 26 Fg_Bk + Loc 34,5 Fg_Bk + Class 36,6 All 40,1

34 Combina,on of features Naïve Bayes approach Specific sigmoid per class and per classifier φ(x i ) = f F Total number of parameters to be learned: 2x20x = 185 parameters 1 1+ exp( a f x i f + b f ) feature sigmoids no_detec,on score CRF weights background probability All parameters are jointly op,mized by stochas,c steepest ascent

35 Results on valida,on set 2010 Mean Average Precision Fg_Bk 33, submission Class Loc Det 20 23,4 26 CVC_Harmony 2010 submission 35,4 on test Fg_Bk + Loc Fg_Bk + Class 34,5 36,6 CVC_Harmony_Det 2010 submission 40,1 on test All 39,2

36 Illustra,ve examples class Fg/bg det loc final unary * = * = * = * = * = * = * = * = * =

37 Illustra,ve examples Fg/bg class det loc final unary * = * = * = * = * = * = * = * = * =

38 Final results

39 Conclusions Harmony poten,al is an effec,ve way to fuse global and local scales for seman,c image segmenta,on. We have focused on improving the local classifiers Baseline: 29% + combining fg/bg and mul,class classifiers (+2%) + object detec,on (+3%) + loca,on prior (+1%) + per class parameter op,miza,on (+5%) more details: hip://iselab.cvc.uab.es/pvoc2010

40 Thanks for your aien,on! Gràcies per la vostra atenció! Ευχαριστω για την προσοχη σας

41 Full Prac,cal Example

42 F fgbg : Fore- Back ground

43 F class : Class against other classes

44 Close- up comparison Fore- Back ground learning Class against others learning

45 Ffgbg * Fclass

46 F det : Detector Scores

47 Ffgbg*Fclass*Fdet

48 F loca,on : Loca,on Prior

49 Ffgbg*Fclass*Fdet*Floc

50 Result

Deformable Part Models

Deformable Part Models Deformable Part Models References: Felzenszwalb, Girshick, McAllester and Ramanan, Object Detec@on with Discrimina@vely Trained Part Based Models, PAMI 2010 Code available at hkp://www.cs.berkeley.edu/~rbg/latent/

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Harmony Potentials for Joint Classification and Segmentation

Harmony Potentials for Joint Classification and Segmentation Harmony Potentials for Joint Classification and Segmentation Josep M. Gonfaus 1,2, Xavier Boix 1, Joost van de Weijer 1,2 Andrew D. Bagdanov 1 Joan Serrat 1,2 Jordi Gonzàlez 1,2 1 Centre de Visió per Computador

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

Sampling Strategies for Object Classifica6on. Gautam Muralidhar

Sampling Strategies for Object Classifica6on. Gautam Muralidhar Sampling Strategies for Object Classifica6on Gautam Muralidhar Reference papers The Pyramid Match Kernel Grauman and Darrell Approximated Correspondences in High Dimensions Grauman and Darrell Video Google

More information

Learning and Inference to Exploit High Order Poten7als

Learning and Inference to Exploit High Order Poten7als Learning and Inference to Exploit High Order Poten7als Richard Zemel CVPR Workshop June 20, 2011 Collaborators Danny Tarlow Inmar Givoni Nikola Karamanov Maks Volkovs Hugo Larochelle Framework for Inference

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

Harmony Potentials. Fusing Global and Local Scale for Semantic Image Segmentation

Harmony Potentials. Fusing Global and Local Scale for Semantic Image Segmentation DOI 10.1007/s11263-011-0449-8 Harmony Potentials Fusing Global and Local Scale for Semantic Image Segmentation Xavier Boix Josep M. Gonfaus Joost van de Weijer Andrew D. Bagdanov Joan Serrat Jordi Gonzàlez

More information

https://en.wikipedia.org/wiki/the_dress Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola

More information

What, Where & How Many? Combining Object Detectors and CRFs

What, Where & How Many? Combining Object Detectors and CRFs What, Where & How Many? Combining Object Detectors and CRFs Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip H.S. Torr Oxford Brookes University http://cms.brookes.ac.uk/research/visiongroup

More information

Harmony Potentials. Fusing Global and Local Scale for Semantic Image Segmentation. Noname manuscript No. (will be inserted by the editor)

Harmony Potentials. Fusing Global and Local Scale for Semantic Image Segmentation. Noname manuscript No. (will be inserted by the editor) Noname manuscript No. (will be inserted by the editor) Harmony Potentials Fusing Global and Local Scale for Semantic Image Segmentation Xavier Boix Josep M. Gonfaus Joost van de Weijer Andrew D. Bagdanov

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Semantic Segmentation without Annotating Segments

Semantic Segmentation without Annotating Segments Chapter 3 Semantic Segmentation without Annotating Segments Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this chapter, we address semantic segmentation

More information

Decision Trees, Random Forests and Random Ferns. Peter Kovesi

Decision Trees, Random Forests and Random Ferns. Peter Kovesi Decision Trees, Random Forests and Random Ferns Peter Kovesi What do I want to do? Take an image. Iden9fy the dis9nct regions of stuff in the image. Mark the boundaries of these regions. Recognize and

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Anurag Arnab and Philip H.S. Torr University of Oxford {anurag.arnab, philip.torr}@eng.ox.ac.uk 1. Introduction

More information

Find that! Visual Object Detection Primer

Find that! Visual Object Detection Primer Find that! Visual Object Detection Primer SkTech/MIT Innovation Workshop August 16, 2012 Dr. Tomasz Malisiewicz tomasz@csail.mit.edu Find that! Your Goals...imagine one such system that drives information

More information

3D Scene Understanding by Voxel-CRF

3D Scene Understanding by Voxel-CRF 3D Scene Understanding by Voxel-CRF Byung-soo Kim University of Michigan bsookim@umich.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Silvio Savarese Stanford University ssilvio@stanford.edu

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP- Computer Vision Lecture - Image Segmenta;on as an Op;miza;on Problem Dr. Ulas Bagci bagci@ucf.edu Reminders Oct Guest Lecture: SVM by Dr. Gong Oct 8 Guest Lecture: Camera Models by Dr. Shah PA# October

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Object Segmentation by Alignment of Poselet Activations to Image Contours

Object Segmentation by Alignment of Poselet Activations to Image Contours Object Segmentation by Alignment of Poselet Activations to Image Contours Thomas Brox 1, Lubomir Bourdev 2,3, Subhransu Maji 2, and Jitendra Malik 2 1 University of Freiburg, Germany 2 University of California

More information

Top-Down Visual Saliency via Joint CRF and Dictionary Learning

Top-Down Visual Saliency via Joint CRF and Dictionary Learning Top-Down Visual Saliency via Joint CRF and Dictionary Learning Jimei Yang and Ming-Hsuan Yang University of California at Merced {jyang44,mhyang}@ucmerced.edu Abstract Top-down visual saliency facilities

More information

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia CPSC340 State-of-the-art Neural Networks Nando de Freitas November, 2012 University of British Columbia Outline of the lecture This lecture provides an overview of two state-of-the-art neural networks:

More information

Learning Representations for Visual Object Class Recognition

Learning Representations for Visual Object Class Recognition Learning Representations for Visual Object Class Recognition Marcin Marszałek Cordelia Schmid Hedi Harzallah Joost van de Weijer LEAR, INRIA Grenoble, Rhône-Alpes, France October 15th, 2007 Bag-of-Features

More information

arxiv: v1 [cs.cv] 7 Jul 2014

arxiv: v1 [cs.cv] 7 Jul 2014 arxiv:1407.1808v1 [cs.cv] 7 Jul 2014 Simultaneous Detection and Segmentation Bharath Hariharan 1, Pablo Arbeláez 1,2, Ross Girshick 1, and Jitendra Malik 1 {bharath2,arbelaez,rbg,malik}@eecs.berkeley.edu

More information

Domain Adapta,on in a deep learning context. Tinne Tuytelaars

Domain Adapta,on in a deep learning context. Tinne Tuytelaars Domain Adapta,on in a deep learning context Tinne Tuytelaars Work in collabora,on with T. Tommasi, N. Patricia, B. Caputo, T. Tuytelaars "A Deeper Look at Dataset Bias" GCPR 2015 A. Raj, V. Namboodiri

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Learning to Localize Detected Objects

Learning to Localize Detected Objects Learning to Localize Detected Objects Qieyun Dai Derek Hoiem Department of Computer Science University of Illinois at Urbana-Champaign {dai9, dhoiem}@illinois.edu Abstract In this paper, we propose an

More information

Modern Object Detection. Most slides from Ali Farhadi

Modern Object Detection. Most slides from Ali Farhadi Modern Object Detection Most slides from Ali Farhadi Comparison of Classifiers assuming x in {0 1} Learning Objective Training Inference Naïve Bayes maximize j i logp + logp ( x y ; θ ) ( y ; θ ) i ij

More information

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 1

More information

Object Category Detection. Slides mostly from Derek Hoiem

Object Category Detection. Slides mostly from Derek Hoiem Object Category Detection Slides mostly from Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical template matching with sliding window Part-based Models

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annota1ons by Michael L. Nelson All slides Addison Wesley, 2008 Evalua1on Evalua1on is key to building effec$ve and efficient search engines measurement usually

More information

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Md Atiqur Rahman and Yang Wang Department of Computer Science, University of Manitoba, Canada {atique, ywang}@cs.umanitoba.ca

More information

Human detection using histogram of oriented gradients. Srikumar Ramalingam School of Computing University of Utah

Human detection using histogram of oriented gradients. Srikumar Ramalingam School of Computing University of Utah Human detection using histogram of oriented gradients Srikumar Ramalingam School of Computing University of Utah Reference Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection,

More information

Detection and Localization with Multi-scale Models

Detection and Localization with Multi-scale Models Detection and Localization with Multi-scale Models Eshed Ohn-Bar and Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego {eohnbar, mtrivedi}@ucsd.edu Abstract

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Segmenting Objects in Weakly Labeled Videos

Segmenting Objects in Weakly Labeled Videos Segmenting Objects in Weakly Labeled Videos Mrigank Rochan, Shafin Rahman, Neil D.B. Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, Canada {mrochan, shafin12, bruce, ywang}@cs.umanitoba.ca

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

arxiv: v1 [cs.cv] 6 Jul 2015

arxiv: v1 [cs.cv] 6 Jul 2015 CAESAR ET AL.: JOINT CALIBRATION FOR SEMANTIC SEGMENTATION 1 arxiv:1507.01581v1 [cs.cv] 6 Jul 2015 Joint Calibration for Semantic Segmentation Holger Caesar holger.caesar@ed.ac.uk Jasper Uijlings jrr.uijlings@ed.ac.uk

More information

Part-Based Models for Object Class Recognition Part 3

Part-Based Models for Object Class Recognition Part 3 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de! http://www.d2.mpi-inf.mpg.de/cv ! State-of-the-Art

More information

Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France

Online Object Tracking with Proposal Selection. Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France Online Object Tracking with Proposal Selection Yang Hua Karteek Alahari Cordelia Schmid Inria Grenoble Rhône-Alpes, France Outline 2 Background Our approach Experimental results Summary Background 3 Tracking-by-detection

More information

Localizing Objects While Learning Their Appearance

Localizing Objects While Learning Their Appearance Localizing Objects While Learning Their Appearance Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland {deselaers,bogdan,ferrari}@vision.ee.ethz.ch

More information

Big and Tall: Large Margin Learning with High Order Losses

Big and Tall: Large Margin Learning with High Order Losses Big and Tall: Large Margin Learning with High Order Losses Daniel Tarlow University of Toronto dtarlow@cs.toronto.edu Richard Zemel University of Toronto zemel@cs.toronto.edu Abstract Graphical models

More information

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Johnson Hsieh (johnsonhsieh@gmail.com), Alexander Chia (alexchia@stanford.edu) Abstract -- Object occlusion presents a major

More information

Learning Object Representations for Visual Object Class Recognition

Learning Object Representations for Visual Object Class Recognition Learning Object Representations for Visual Object Class Recognition Marcin Marszalek, Cordelia Schmid, Hedi Harzallah, Joost Van de Weijer To cite this version: Marcin Marszalek, Cordelia Schmid, Hedi

More information

arxiv: v1 [cs.cv] 2 May 2017

arxiv: v1 [cs.cv] 2 May 2017 SHI,SIVA,XIANG: TRANSFER LEARNING BY RANKING 1 arxiv:1705.00873v1 [cs.cv] 2 May 2017 Transfer Learning by Ranking for Weakly Supervised Object Annotation Zhiyuan Shi zhiyuan.shi@eecs.qmul.ac.uk Parthipan

More information

c 2011 by Pedro Moises Crisostomo Romero. All rights reserved.

c 2011 by Pedro Moises Crisostomo Romero. All rights reserved. c 2011 by Pedro Moises Crisostomo Romero. All rights reserved. HAND DETECTION ON IMAGES BASED ON DEFORMABLE PART MODELS AND ADDITIONAL FEATURES BY PEDRO MOISES CRISOSTOMO ROMERO THESIS Submitted in partial

More information

Segmentation as Selective Search for Object Recognition in ILSVRC2011

Segmentation as Selective Search for Object Recognition in ILSVRC2011 Segmentation as Selective Search for Object Recognition in ILSVRC2011 Koen van de Sande Jasper Uijlings Arnold Smeulders Theo Gevers Nicu Sebe Cees Snoek University of Amsterdam, University of Trento ILSVRC2011

More information

Vocabulary tree. Vocabulary tree supports very efficient retrieval. It only cares about the distance between a query feature and each node.

Vocabulary tree. Vocabulary tree supports very efficient retrieval. It only cares about the distance between a query feature and each node. Vocabulary tree Vocabulary tree Recogni1on can scale to very large databases using the Vocabulary Tree indexing approach [Nistér and Stewénius, CVPR 2006]. Vocabulary Tree performs instance object recogni1on.

More information

Category-level Localization

Category-level Localization Category-level Localization Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb,

More information

Layered Object Detection for Multi-Class Segmentation

Layered Object Detection for Multi-Class Segmentation Layered Object Detection for Multi-Class Segmentation Yi Yang Sam Hallman Deva Ramanan Charless Fowlkes Dept. of Computer Science, University of California, Irvine {yangyi,shallman,dramanan,fowlkes}@ics.uci.edu

More information

TA Section: Problem Set 4

TA Section: Problem Set 4 TA Section: Problem Set 4 Outline Discriminative vs. Generative Classifiers Image representation and recognition models Bag of Words Model Part-based Model Constellation Model Pictorial Structures Model

More information

Real-time Stereo and Flow-based Video Segmentation with Superpixels

Real-time Stereo and Flow-based Video Segmentation with Superpixels Real-time Stereo and Flow-based Video Segmentation with Superpixels Michael Van den Bergh 1 1 ET HZurich Zurich, Switzerland vamichae@vision.ee.ethz.ch Luc Van Gool 1,2 2 KULeuven Leuven, Belgium vangool@esat.kuleuven.be

More information

Object Recognition by Integrating Multiple Image Segmentations

Object Recognition by Integrating Multiple Image Segmentations Object Recognition by Integrating Multiple Image Segmentations Caroline Pantofaru 1, Cordelia Schmid 2, and Martial Hebert 1 1 The Robotics Institute, Carnegie Mellon University, USA 2 INRIA Grenoble,

More information

Hierarchical Image-Region Labeling via Structured Learning

Hierarchical Image-Region Labeling via Structured Learning Hierarchical Image-Region Labeling via Structured Learning Julian McAuley, Teo de Campos, Gabriela Csurka, Florent Perronin XRCE September 14, 2009 McAuley et al (XRCE) Hierarchical Image-Region Labeling

More information

Machine Learning Crash Course: Part I

Machine Learning Crash Course: Part I Machine Learning Crash Course: Part I Ariel Kleiner August 21, 2012 Machine learning exists at the intersec

More information

Object recognition (part 2)

Object recognition (part 2) Object recognition (part 2) CSE P 576 Larry Zitnick (larryz@microsoft.com) 1 2 3 Support Vector Machines Modified from the slides by Dr. Andrew W. Moore http://www.cs.cmu.edu/~awm/tutorials Linear Classifiers

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Exploiting Depth from Single Monocular Images for Object Detection and Semantic Segmentation

Exploiting Depth from Single Monocular Images for Object Detection and Semantic Segmentation APPEARING IN IEEE TRANSACTIONS ON IMAGE PROCESSING, OCTOBER 2016 1 Exploiting Depth from Single Monocular Images for Object Detection and Semantic Segmentation Yuanzhouhan Cao, Chunhua Shen, Heng Tao Shen

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Learning a Dictionary of Shape Epitomes with Applications to Image Labeling

Learning a Dictionary of Shape Epitomes with Applications to Image Labeling Learning a Dictionary of Shape Epitomes with Applications to Image Labeling Liang-Chieh Chen 1, George Papandreou 2, and Alan L. Yuille 1,2 Departments of Computer Science 1 and Statistics 2, UCLA lcchen@cs.ucla.edu,

More information

Deep condolence to Professor Mark Everingham

Deep condolence to Professor Mark Everingham Deep condolence to Professor Mark Everingham Towards VOC2012 Object Classification Challenge Generalized Hierarchical Matching for Sub-category Aware Object Classification National University of Singapore

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

Ranking Figure-Ground Hypotheses for Object Segmentation

Ranking Figure-Ground Hypotheses for Object Segmentation Ranking Figure-Ground Hypotheses for Object Segmentation João Carreira, Fuxin Li, Cristian Sminchisescu Faculty of Mathematics and Natural Science, INS, University of Bonn http://sminchisescu.ins.uni-bonn.de/

More information

Object Category Detection: Sliding Windows

Object Category Detection: Sliding Windows 04/10/12 Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical

More information

An Latent Feature Model for

An Latent Feature Model for An Addi@ve Latent Feature Model for Mario Fritz UC Berkeley Michael Black Brown University Gary Bradski Willow Garage Sergey Karayev UC Berkeley Trevor Darrell UC Berkeley Mo@va@on Transparent objects

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

Discriminative Clustering for Image Co-Segmentation

Discriminative Clustering for Image Co-Segmentation Discriminative Clustering for Image Co-Segmentation Joulin, A.; Bach, F.; Ponce, J. (CVPR. 2010) Iretiayo Akinola Josh Tennefoss Outline Why Co-segmentation? Previous Work Problem Formulation Experimental

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

Self-Paced Learning for Semisupervised Image Classification

Self-Paced Learning for Semisupervised Image Classification Self-Paced Learning for Semisupervised Image Classification Kevin Miller Stanford University Palo Alto, CA kjmiller@stanford.edu Abstract In this project, we apply three variants of self-paced learning

More information

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Sudheendra Vijayanarasimhan Kristen Grauman Department of Computer Science University of Texas at Austin Austin,

More information

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Michael Van den Bergh 1 1 ETH Zurich Zurich, Switzerland vamichae@vision.ee.ethz.ch Daniel Carton 2 2 TU München Munich, Germany carton@lsr.ei.tum.de

More information

CRFs for Image Classification

CRFs for Image Classification CRFs for Image Classification Devi Parikh and Dhruv Batra Carnegie Mellon University Pittsburgh, PA 15213 {dparikh,dbatra}@ece.cmu.edu Abstract We use Conditional Random Fields (CRFs) to classify regions

More information

Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection

Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection Hyunghoon Cho and David Wu December 10, 2010 1 Introduction Given its performance in recent years' PASCAL Visual

More information

Learning to parse images of articulated bodies

Learning to parse images of articulated bodies Learning to parse images of articulated bodies Deva Ramanan Toyota Technological Institute at Chicago Chicago, IL 60637 ramanan@tti-c.org Abstract We consider the machine vision task of pose estimation

More information

Learning Collections of Part Models for Object Recognition

Learning Collections of Part Models for Object Recognition Learning Collections of Part Models for Object Recognition Ian Endres, Kevin J. Shih, Johnston Jiaa, Derek Hoiem University of Illinois at Urbana-Champaign {iendres2,kjshih2,jiaa1,dhoiem}@illinois.edu

More information

Stages of (Batch) Machine Learning

Stages of (Batch) Machine Learning Evalua&on Stages of (Batch) Machine Learning Given: labeled training data X, Y = {hx i,y i i} n i=1 Assumes each x i D(X ) with y i = f target (x i ) Train the model: model ß classifier.train(x, Y ) x

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University Tracking Hao Guan( 管皓 ) School of Computer Science Fudan University 2014-09-29 Multimedia Video Audio Use your eyes Video Tracking Use your ears Audio Tracking Tracking Video Tracking Definition Given

More information

Multi-instance Object Segmentation with Occlusion Handling

Multi-instance Object Segmentation with Occlusion Handling Multi-instance Object Segmentation with Occlusion Handling Yi-Ting Chen 1 Xiaokai Liu 1,2 Ming-Hsuan Yang 1 University of California at Merced 1 Dalian University of Technology 2 Abstract We present a

More information

The Caltech-UCSD Birds Dataset

The Caltech-UCSD Birds Dataset The Caltech-UCSD Birds-200-2011 Dataset Catherine Wah 1, Steve Branson 1, Peter Welinder 2, Pietro Perona 2, Serge Belongie 1 1 University of California, San Diego 2 California Institute of Technology

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Ameesh Makadia Google New York, NY 10011 makadia@google.com Mehmet Ersin Yumer Carnegie Mellon University Pittsburgh, PA 15213

More information

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid LEAR team, INRIA Rhône-Alpes, Grenoble, France

More information

Object Detection with Discriminatively Trained Part Based Models

Object Detection with Discriminatively Trained Part Based Models Object Detection with Discriminatively Trained Part Based Models Pedro F. Felzenszwelb, Ross B. Girshick, David McAllester and Deva Ramanan Presented by Fabricio Santolin da Silva Kaustav Basu Some slides

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

Video Object Proposals

Video Object Proposals Video Object Proposals Gilad Sharir Tinne Tuytelaars KU Leuven ESAT/PSI - IBBT Abstract In this paper, we extend a recently proposed method for generic object detection in images, category-independent

More information

1722 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 4, APRIL 2014

1722 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 4, APRIL 2014 1722 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 4, APRIL 2014 Augmented Multiple Instance Regression for Inferring Object Contours in Bounding Boxes Kuang-Jui Hsu, Yen-Yu Lin, Member, IEEE, and

More information

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field 07 5th European Signal Processing Conference (EUSIPCO) 3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field Xiao Lin Josep R.Casas Montse Pardás Abstract Traditional image segmentation

More information

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field 3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field Xiao Lin Image Processing Group Technical University of Catalonia (UPC) Barcelona, Spain Josep R.Casas Image Processing Group

More information

Mixture Component Identification and Learning for Visual Recognition

Mixture Component Identification and Learning for Visual Recognition Mixture Component Identification and Learning for Visual Recognition Omid Aghazadeh, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson Computer Vision and Active Perception laboratory (CVAP), KTH,

More information