Chapter 3: Arithmetic for Computers


 Rosanna Ross
 1 years ago
 Views:
Transcription
1 Chapter 3: Arithmetic for Computers
2 Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS
3 The Binary Numbering System A computer s internal storage techniques are different from the way humans represent information in daily lives Humans Decimal numbering system to rep real numbers Base10 Each position is a power of = 3 x x x x 10 0 Computer Architecture CS
4 Binary Representation of Numbers Information inside a digital computer is stored as a collection of binary data Binary numbering system Base2 Built from ones and zeros Each position is a power of = 1 x x x x 2 0 Digits 0,1 are called bits (binary digits) Computer Architecture CS
5 Binary Representation of Numbers 6Digit Binary Number (111001) = 1 x x x x x x 2 0 = = 57 5Digit Binary Number (10111) = 1 x x x x x 2 0 = = 23 Computer Architecture CS
6 Binary Representation of Numbers Computers use finite number of Bits for Integer Storage Size ( word ) Max Unsigned Number Allowed 16 1x x x2 1 +1x2 0 MIPS32 1x x x x2 0 Otherwise Arithmetic Overflow Computer Architecture CS
7 Number Representation MIPS word Example: 11 ten = 1 x x x x 2 0 = 1011 two Mostsignificant bit Leastsignificant bit Computer Architecture CS
8 Signed Number Representation Sign/Magnitude Notation Signed Number Examples: 49, +3, 8 Most significant Bit Stores sign 0 +ve number 1 ve number Remaining Bits represent Magnitude of number Find the decimal value for the 32bit sign/magnitude notation: Computer Architecture CS
9 Signed Number Representation Two s Complement Notation Leading 0s mean +ve Leading 1s mean ve x X x x x x x2 2 +0x2 1 +1x2 0 = 2,147,483, = 2,147,483,609 Compare with sign/magnitude representation for 49 Computer Architecture CS
10 cf: Sign Magnitude/ Two s Complement Notations Up Close Sign Magnitude Two's Complement 000 = = = = = = = = = = = = = = = = 1 Computer Architecture CS
11 MIPS 32 bit signed numbers: Two s Complement Representation Value = = = = + 2,147,483, = + 2,147,483, = 2,147,483, = 2,147,483, = 2,147,483, = = = 1 Computer Architecture CS
12 Two s Complement Operation To Negate a Two's complement number: First invert all bits then Add 1 to the inverted bits To Convert n bit numbers into numbers with more than n bits: MIPS 16 bit immediate gets converted to 32 bits for arithmetic copy the most significant bit (the sign bit) into the LHS half of the word > > Computer Architecture CS
13 Addition and Subtraction Addition (carries 1s) 0011 = = = + 5 Subtraction: use addition of negative numbers 0011 = = = + 1 Overflow (if result too large to fit in the finite computer word of the result register) e.g., adding two nbit numbers does not yield an nbit number Computer Architecture CS
14 Overflow No overflow when adding a positive and a negative number No overflow when signs are the same for subtraction Overflow occurs when the value affects the sign: overflow when adding two positives yields a negative or, adding two negatives gives a positive or, subtract a negative from a positive and get a negative or, subtract a positive from a negative and get a positive Computer Architecture CS
15 Multiplication Recall: X 1000 ten 1001 ten Multiplicand Multiplier Observations ten Product More storage required to store the product Place copy of multiplicand in proper location if multiplier is a 1 Place 0 in proper location if multiplier is 0 Product of nbit Multiplicand and mmultiplier is (n + m)bit long Number of steps (move digits to LHS) is n 1; where n rep the number of digits (1,0) Let's examine 2 versions of multiplication algorithm for binary numbers Computer Architecture CS
16 Multiplication Version 1 Start Multiplier0 = 1 1. Test Multiplier0 Multiplier0 = 0 Multiplicand 64 bits Shift left 1a. Add multiplicand to product and place the result in Product register 64bit ALU Multiplier Shift right 32 bits 2. Shift the Multiplicand register left 1 bit Product Write Control test 3. Shift the Multiplier register right 1 bit 64 bits Datapath Control No: < 32 repetitions 32nd repetition? Yes: 32 repetitions Done Computer Architecture CS
17 Multiplication Refined Version Start Product0 = 1 1. Test Product0 Product0 = 0 32bit ALU Multiplicand 32 bits Add multiplicand to bits 32 thru 63 in product register and place the result in bits 32 thru 63 of product register Product 64 bits Shift right Write Control test 3. Shift the Product register right 1 bit 32nd repetition? No: < 32 repetitions Yes: 32 repetitions Done Computer Architecture CS
18 Multiplication Negative Numbers Convert Multiplicand and Multiplier to Positive Numbers Run the Multiplication algorithm for 31 iterations (ignoring the sign bit) Negate product only if original signs for Multiplicand and Multiplier are different Computer Architecture CS
19 Floating Point (Overview) Binary Representation Floats Provide representation for: Decimal numbers, e.g., Fractions, very small numbers, e.g.,.1 First Convert number to scientific notation: +MxB +E M ~ mantissa; B ~ base (2) of exponent E ~ exponent Computer Architecture CS
20 Floats Binary Representation: Example has binary value = ½ + ¼ = = 0.11 (binary value) 5.75 = x 2 0 (scientific notation) Normalize number: 5.75 = x 2 3 (i.e., 1/2 + 1/8 + 1/16 + 1/32) Computer Architecture CS
21 Floating Point MIPS Sign Magnitude Representation = x Mostsignificant bit Show that: General Sign Magnitude Representation (1) s xfx2 E Leastsignificant bit Min value of numbers is 2x1038 Max value of numbers is 2x10 38 How do you increase the precision? Computer Architecture CS
22 MIPS Representation Overflow/Underflow/Double Precision Exponent is too large Overflow Exponent too small Underflow MIPS solution: Double Precision representation Combine two MIPS word = x Computer Architecture CS
23 Floating Point IEEE 754 Representation Observations so far: We can increase the precision by making leading 1 bit of the normalized number implicit Logically 24 bits (instead of 23) for the fractional part In our representation, the exponent of 21 Looks like a large binary number On the other hand the exponent 2 +1 looks like a smaller binary number Let s make the most negative exponent 000 and most positive Hence introduce a transformation (Bias) Single Precision (7 bits) subtract 127 from exponent why 7 bits? Double Precision (10 bits) subtract 1023 from exponent why 10 bits? IEEE 754 Binary Representation: (1) s x(1 + F)x2 (E Bias) Computer Architecture CS
24 Floating Point IEEE 754 Binary Representation Show the IEEE 754 Single Precision Binary Representation of = x21 Hence, normalized notation: x (a) cf (a) with generalized form: (1) s x(1 + F)x2 (E Bias) Then (a) becomes: (1) 1 x ( ) x 2 ( ) Computer Architecture CS
25 Floating Point IEEE 754 Binary Representation Show the IEEE 754 Double Precision Binary Representation of = x21 Hence, normalized notation: x (a) cf (a) with generalized form: (1) s x(1 + F)x2 (E Bias) Then (a) becomes: (1) 1 x ( ) x 2 ( ) Computer Architecture CS
Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University
Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point
More informationSigned Multiplication Multiply the positives Negate result if signs of operand are different
Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result
More informationChapter Three. Arithmetic
Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing
More informationDivide: Paper & Pencil
Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or
More informationModule 2: Computer Arithmetic
Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N
More informationFloating Point Arithmetic
Floating Point Arithmetic CS 365 FloatingPoint What can be represented in N bits? Unsigned 0 to 2 N 2s Complement 2 N1 to 2 N11 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678
More informationCOMP2611: Computer Organization. Data Representation
COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How
More informationChapter 5 : Computer Arithmetic
Chapter 5 Computer Arithmetic Integer Representation: (Fixedpoint representation): An eight bit word can be represented the numbers from zero to 255 including = 1 = 1 11111111 = 255 In general if an nbit
More informationIntroduction to Computers and Programming. Numeric Values
Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 4771 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000
More informationChapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers
Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers
More informationNumber Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column
1's column 10's column 100's column 1000's column 1's column 2's column 4's column 8's column Number Systems Decimal numbers 5374 10 = Binary numbers 1101 2 = Chapter 1 1's column 10's column 100's
More informationFloating Point. The World is Not Just Integers. Programming languages support numbers with fraction
1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floatingpoint numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in
More informationCHW 261: Logic Design
CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER
More informationCS101 Lecture 04: Binary Arithmetic
CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary
More informationECE260: Fundamentals of Computer Engineering
Arithmetic for Computers James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Arithmetic for
More informationOrganisasi Sistem Komputer
LOGO Organisasi Sistem Komputer OSK 8 Aritmatika Komputer 1 1 PT. Elektronika FT UNY Does the calculations Arithmetic & Logic Unit Everything else in the computer is there to service this unit Handles
More informationThe ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.
CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in signmagnitude
More informationCO212 Lecture 10: Arithmetic & Logical Unit
CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For
More informationNUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah
NUMBER OPERATIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 3810: Computer Organization Overview Homework 4 is due tonight Verify your uploaded file before the
More informationCS 101: Computer Programming and Utilization
CS 101: Computer Programming and Utilization JulNov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.
More informationCS/COE0447: Computer Organization
CS/COE0447: Computer Organization and Assembly Language Chapter 3 Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower I am like a pack of file folders I am like a conveyor
More informationCS/COE0447: Computer Organization
Five classic components CS/COE0447: Computer Organization and Assembly Language I am like a control tower I am like a pack of file folders Chapter 3 I am like a conveyor belt + service stations I exchange
More informationECE 30 Introduction to Computer Engineering
ECE 30 Introduction to Computer Engineering Study Problems, Set #6 Spring 2015 1. With x = 1111 1111 1111 1111 1011 0011 0101 0011 2 and y = 0000 0000 0000 0000 0000 0010 1101 0111 2 representing two s
More informationNumber Systems and Computer Arithmetic
Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction Rformat Iformat... integer data number text
More informationCPS 104 Computer Organization and Programming
CPS 104 Computer Organization and Programming Lecture 9: Integer Arithmetic. Robert Wagner CPS104 IMD.1 RW Fall 2000 Overview of Today s Lecture: Integer Multiplication and Division. Read Appendix B CPS104
More informationComputer Architecture Set Four. Arithmetic
Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What
More informationCOMP 303 Computer Architecture Lecture 6
COMP 303 Computer Architecture Lecture 6 MULTIPLY (unsigned) Paper and pencil example (unsigned): Multiplicand 1000 = 8 Multiplier x 1001 = 9 1000 0000 0000 1000 Product 01001000 = 72 n bits x n bits =
More informationLecture 8: Addition, Multiplication & Division
Lecture 8: Addition, Multiplication & Division Today s topics: Signed/Unsigned Addition Multiplication Division 1 Signed / Unsigned The hardware recognizes two formats: unsigned (corresponding to the C
More informationECE232: Hardware Organization and Design
ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format
More informationNumber System. Introduction. Decimal Numbers
Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26
More informationChapter 10 Binary Arithmetics
27..27 Chapter Binary Arithmetics Dr.Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: KarnaughVeitchMaps Chapter 4: Combinational
More informationCOSC 243. Data Representation 3. Lecture 3  Data Representation 3 1. COSC 243 (Computer Architecture)
COSC 243 Data Representation 3 Lecture 3  Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you
More informationComputer Organisation CS303
Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(AB + C * (D * EF))/G + H*K a. Using a general register computer with
More informationCOMPUTER ORGANIZATION AND. Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers
ARM D COMPUTER ORGANIZATION AND Edition The Hardware/Software Interface Chapter 3 Arithmetic for Computers Modified and extended by R.J. Leduc  2016 In this chapter, we will investigate: How integer arithmetic
More informationCMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts
CMPSCI 145 MIDTERM #1 Solution Key NAME SPRING 2017 March 3, 2017 PROBLEM SCORE POINTS 1 10 2 10 3 15 4 15 5 20 6 12 7 8 8 10 TOTAL 100 10 Points Examine the following diagram of two systems, one involving
More informationChapter 3 Arithmetic for Computers (Part 2)
Department of Electr rical Eng ineering, Chapter 3 Arithmetic for Computers (Part 2) 王振傑 (ChenChieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Eng ineering, FengChia Unive
More informationChapter 4. Operations on Data
Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations
More informationSigned Binary Numbers
Signed Binary Numbers Unsigned Binary Numbers We write numbers with as many digits as we need: 0, 99, 65536, 15000, 1979, However, memory locations and CPU registers always hold a constant, fixed number
More informationFloating Point Numbers. Lecture 9 CAP
Floating Point Numbers Lecture 9 CAP 3103 06162014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:
More informationCOMP Overview of Tutorial #2
COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,
More informationFLOATING POINT NUMBERS
Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 102 12,340.0 x 101 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3
More informationA complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation
Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers
More informationCOMPUTER ARITHMETIC (Part 1)
Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture COMPUTER ARITHMETIC (Part 1) Introduction The two principal concerns for computer arithmetic
More informationNumber Systems. Both numbers are positive
Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of
More informationChapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude
Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the
More informationComputer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK
Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,
More informationMIPS Integer ALU Requirements
MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set
More informationECE331: Hardware Organization and Design
ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32bit registers
More informationNumeric Encodings Prof. James L. Frankel Harvard University
Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12Sep2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and
More informationChapter 3 Arithmetic for Computers
Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation
More informationChapter 2 Bits, Data Types, and Operations
Chapter Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize two
More informationCHAPTER V NUMBER SYSTEMS AND ARITHMETIC
CHAPTER V1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V2 NUMBER SYSTEMS RADIXR REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(
More informationComputer Arithmetic Ch 8
Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic FloatingPoint Representation FloatingPoint Arithmetic 1 Arithmetic Logical Unit (ALU) (2) (aritmeettislooginen yksikkö) Does all
More information4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017
4/8/17 Admin! Assignment 5 BINARY David Kauchak CS 52 Spring 2017 Diving into your computer Normal computer user 1 After intro CS After 5 weeks of cs52 What now One last note on CS52 memory address binary
More informationChapter 10  Computer Arithmetic
Chapter 10  Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFETRJ L. Tarrataca Chapter 10  Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation
More informationComputer Arithmetic Ch 8
Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic FloatingPoint Representation FloatingPoint Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettislooginen
More informationChapter 2 Data Representations
Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers
More informationFloatingpoint Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.
Floatingpoint Arithmetic Reading: pp. 312328 FloatingPoint Representation Nonscientific floating point numbers: A noninteger can be represented as: 2 4 2 3 2 2 2 1 2 0.21 22 23 24 where you sum
More informationOperations On Data CHAPTER 4. (Solutions to OddNumbered Problems) Review Questions
CHAPTER 4 Operations On Data (Solutions to OddNumbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values
More informationNumber Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr
Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems
More informationNumber Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:
N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a
More informationCHAPTER 5: Representing Numerical Data
CHAPTER 5: Representing Numerical Data The Architecture of Computer Hardware and Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint
More informationChapter 2 Bits, Data Types, and Operations
Chapter 2 Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize
More information1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
CS 64 Lecture 2 Data Representation Reading: FLD 1.21.4 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 ) + (1x10 0 ) 1010 10?= 1010 2?= 1
More informationFloatingPoint Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3
FloatingPoint Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part
More informationInf2C  Computer Systems Lecture 2 Data Representation
Inf2C  Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack
More informationSigned umbers. Sign/Magnitude otation
Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,
More informationChapter 3. Arithmetic Text: P&H rev
Chapter 3 Arithmetic Text: P&H rev3.29.16 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floatingpoint real numbers Representation
More informationData Representations & Arithmetic Operations
Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative
More informationBasic Definition INTEGER DATA. Unsigned Binary and BinaryCoded Decimal. BCD: BinaryCoded Decimal
Basic Definition REPRESENTING INTEGER DATA Englander Ch. 4 An integer is a number which has no fractional part. Examples: 2022213 0 1 514 323434565232 Unsigned and Coded Decimal BCD: Coded Decimal
More information10.1. Unit 10. Signed Representation Systems Binary Arithmetic
0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system
More informationCS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.
CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and reestablish fundamental of mathematics for the computer architecture course Overview: what are bits
More informationCOMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B)
Computer Arithmetic Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition,
More informationCPE300: Digital System Architecture and Design
CPE300: Digital System Architecture and Design Fall 2011 MW 17:3018:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction
More informationDigital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand
Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary
More informationData Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8
Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted
More informationComputer Arithmetic Floating Point
Computer Arithmetic Floating Point Chapter 3.6 EEC7 FQ 25 About Floating Point Arithmetic Arithmetic basic operations on floating point numbers are: Add, Subtract, Multiply, Divide Transcendental operations
More informationCS 64 Week 1 Lecture 1. Kyle Dewey
CS 64 Week 1 Lecture 1 Kyle Dewey Overview Bitwise operation wrapup Two s complement Addition Subtraction Multiplication (if time) Bitwise Operation Wrapup Shift Left Move all the bits N positions to
More informationl l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers
198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book Computer Architecture What do computers do? Manipulate stored information
More informationData Representation 1
1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation
More informationEE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, nonrestoring
EE 260: Introduction to Digital Design Arithmetic II Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Integer multiplication n Booth s algorithm n Integer division
More informationIn this lesson you will learn: how to add and multiply positive binary integers how to work with signed binary numbers using two s complement how fixed and floating point numbers are used to represent
More informationArithmetic for Computers
MIPS Arithmetic Instructions Cptr280 Dr Curtis Nelson Arithmetic for Computers Operations on integers Addition and subtraction; Multiplication and division; Dealing with overflow; Signed vs. unsigned numbers.
More informationCSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI.
CSCI 402: Computer Architectures Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI 3.5 Today s Contents Floating point numbers: 2.5, 10.1, 100.2, etc.. How
More informationCS 61C: Great Ideas in Computer Architecture Floating Point Arithmetic
CS 61C: Great Ideas in Computer Architecture Floating Point Arithmetic Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/ NewSchool Machine Structures (It s a bit
More informationunused unused unused unused unused unused
BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications
More informationChapter 2 Bits, Data Types, and Operations
Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified by Chris Wilcox, S. Rajopadhye Colorado State University How do we represent data
More informationECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate
More informationChapter 2 Bits, Data Types, and Operations
Chapter 2 Bits, Data Types, and Operations Computer is a binary digital system. Digital system: finite number of symbols Binary (base two) system: has two states: 0 and 1 Basic unit of information is the
More informationComputer Organization and Structure. BingYu Chen National Taiwan University
Computer Organization and Structure BingYu Chen National Taiwan University Arithmetic for Computers Addition and Subtraction Gate Logic and KMap Method Constructing a Basic ALU Arithmetic Logic Unit
More informationLecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture
Points ddressed in this Lecture Lecture 6: Signed Numbers rithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.52.7, 6.16.7) (Tocci 6.16.11, 9.19.2, 9.4) Representing
More informationNumber Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example
Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,
More informationMore Programming Constructs  Introduction
More Programming Constructs  Introduction We can now examine some additional programming concepts and constructs Chapter 5 focuses on: internal data representation conversions between one data type and
More informationData Representation in Computer Memory
Data Representation in Computer Memory Data Representation in Computer Memory Digital computer stores the data in the form of binary bit sequences. Binary number system has two symbols: 0 and 1, called
More information3.5 Floating Point: Overview
3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer
More informationIT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1
IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose
More informationIntegers and Floating Point
CMPE12 More about Numbers Integers and Floating Point (Rest of Textbook Chapter 2 plus more)" Review: Unsigned Integer A string of 0s and 1s that represent a positive integer." String is X n1, X n2,
More informationInteger Multiplication. Back to Arithmetic. Integer Multiplication. Example (Fig 4.25)
Back to Arithmetic Before, we did Representation of integers Addition/Subtraction Logical ops Forecast Integer Multiplication Integer Division Floatingpoint Numbers Floatingpoint Addition/Multiplication
More informationIEEE Standard for FloatingPoint Arithmetic: 754
IEEE Standard for FloatingPoint Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for FloatingPoint Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)
More informationUNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666
UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4A FloatingPoint Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries  Representation
More information