A Variant of Pascal s Triangle Dennis Van Hise Stetson University

Size: px
Start display at page:

Download "A Variant of Pascal s Triangle Dennis Van Hise Stetson University"

Transcription

1 A Vrit of Pscl s Trigle eis V Hise tetso Uiversity I. Itroductio d Nottio It is the purpose of this pper to explore vrit of Pscl s trigle. This vrit hs the rule tht every etry, deoted s,, where,, is clculted i wy such tht, i +. This mes tht whe these umbers re put ito trigulr formtio, every umber is the sum of ll the umbers bove it i its two digols. The begiig of the trigle loos lie the followig: For exmple, The rows of the trigle will begi t d wor dow the trigle i icremets of. The colums of the trigle poit southwest (60 o from horizotl) d will begi t, d proceed i icremets of. For exmple, we would sy tht the leftmost umber would be i row 5 d i colum. The ticolums re the colums of the trigle poitig southest tht begi t, d proceed i icremets of movig digolly from right to left. o, for exmple, the rightmost umber would be i row 5 d i ticolum. Filly, hllow digols poit southwest (0 o from horizotl). For exmple, the third shllow digol cosists of the elemets, d,.

2 II. Bsic Lemms & Theorems ome iterestig discoveries foud withi this trigle will ow be discussed, d proved, lot of which is doe through iductio. We begi with perhps the most obvious result. The trigle is symmetricl (i.e.:, +, ). Proof: (By Iductio) For d,,,+,. Now ssume tht,, + for some. The we c write i + i + i, + + by + defiitio. Further, + i - i + +, + + i +, i + + +, by the iductio hypothesis. This is the sme s + + i i, i + i + +, which mes +, +, +. Hece, by iductio, we coclude tht the trigle is symmetricl. We ow develop some recursive d explicit formuls for clcultig etries i the first three colums of the trigle. The first formul clcultes the etries i the first colum. Lemm:,, for. Proof: By defiitio,,, defiitio. Hece,,, for. +, +,, sice, by

3 A explicit formul for etries i the first colum is ow give., for. Proof: ice,,, the the theory of differece equtios implies, C. olvig for C whe 4, 4. We get C ½, which mes, for. The followig lemm is give to clculte the etries i the secod colum, d the ext theorem is the correspodig explicit formul. Lemm: +,, + for. Proof: We ow +,, i +, by defiitio. Further,,, + d i, +,. Thus, +,, +, + +. But,,. o, +, by defiitio, which implies +,, +,. Therefore, by Theorem, +,, + for., (+) 4 for 4. Proof: The theory of differece equtios implies, (A + B)( 4 ). olvig for A d B whe, d 4, 5, we get AB. o,, (+) 4. Note: A differet proof c be foud i the ppedix.

4 Filly, recursive formul d correspodig explicit formul is give to clculte the etries i the third colum, fter which there does ot pper to be simple formul for clcultig etries. Lemm:,, +, +, for 4. Proof: By defiitio,, i +, +, +, +, +, +, +, +, +, +, +, +. But,, i +, +, + by defiitio. Thus,,, +, +, +,, +, +, for 4., ( ) 7 for 4. Proof: The theory of differece equtios implies, C( 7 ) + ( 7 ) + E ( 7 ). olvig for C,, d E whe 4, 5, 5, 4, d 6, 7, we get C -4, 7, d E, which gives, ( ) 7. Note: A differet proof c be foud i the ppedix. 4

5 III. Other Lemms & Theorems These lemms d theorems expli the behvior i the rows d shllow digols of the vrit. Let deote the sum of the etries i the th row, d etries i the th shllow digol. deote the sum of the Lemm: for. Proof: Choose rbitrry elemet r,. Cosider the th row, where > r. The r, will pper i the formul for fidig, becuse it is i the sme colum. Further, r, will pper i the formul for fidig, + r becuse of the fct tht r, is i its ticolum. Hece, the rbitrry elemet, is summed exctly twice i the row for r -. Ad so, the sum of r the elemets i row would be equl to twice the sum of the elemets i ll previous rows. Therefore, we c write for. Lemm: for. Proof: It c be show tht +, d sice This mes. The ext theorem provides explicit formul for clcultig the sum of the etries i y give row. 5

6 (/9) for where d. Proof: From the theory of differece equtios d lemm 4, C +. ice d 6, solvig for C d, we get C 0 d (/9). Thus, (/9) Note: A differet proof c be foud i the ppedix.. The followig theorem c be used to clculte y give etry i the trigle, d is used to prove the ext couple theorems.,, +,, for. Proof: We ow, i +, i + ; d, i +,, d,, + i +, + i -, - i. o, ; + i, i + ;, +. o,,, +. Therefore,, -, + i,,, +, + -, i -. i Further,, -,, + -,, - i -. o,,, + -,, - i -. Also, +,,, +, -,. Hece,,, +, -,. With the ext two theorems, we re ble to clculte the sum of the etries i shllow digols. 6

7 + - for 5. Proof: We ow,, +, -, for. If we let be i,, the, is i ;, is i ; d, is i. Cosider r,, rbitrry elemet i. If we let r +-, the / / + / - / +,,, +,. It is importt to ote tht i some of the summtios there my exist terms i the form r, 0 or r, r+. These terms re ctully equl to zero d hece do ot ffect the sum. Thus, for 4. Proof: (By Iductio) For 4, Now ssume + for some. Also, recll + -. o, by the iductio hypothesis. Thus, + +. Hece, by iductio, we coclude +. 7

8 IV. The Trigle Mod d After exmiig the properties of the vrit, we decided to explore the trigle mod d, sice Pscl s Trigle cotied some iterestig properties i its trigle mod d. While Pscl s Trigle mod displys frctl structure, our vrit does ot, but it does disply some itriguig ptters mod. A picture of the trigle mod, s well s the metioed frctl ptters c be see i the colored trigle mod o the ext two pges. The followig theorem tells us tht the trigle mod does ot disply y frctl structure. The oly odd umbers i the trigle re, d etries of the form, d, +. These re cosecutive umbers i the middle of every eve umbered row. Proof: (By iductio o rows) Cosider row 4. We see tht row hs oly eve etries. Also, 4, d 4, 4 re composed of , which is eve. Further, 4, d 4, re composed of ++ 5, which is odd. o, 4, d 4, re the oly odd etries i row 4, d re i the ceter of the trigle. Thus, the hypothesis is true for row d row 4. Now ssume for some row r tht ll rows before d icludig it behve i the hypothesized fshio. Cosider rows r+ d r+. Recll tht,, +,,. o,, will be eve if, 0 (mod ). Thus, for row r+, r, + r, + r, r,. But r, is eve for ll etries i row r- by the iductio hypothesis, therefore r, (mod ). Hece, ll etries i row r+ re eve. For row r+ we ow tht r, will be eve except for the two cosecutive etries i the middle of the row. This mes tht ll etries i row r+ will be eve except for 8

9 9

10 0

11 the two cosecutive etries i the middle, which will be cogruet to (mod ), which implies tht they re odd. Thus, we coclude tht the iductio hypothesis is true. The remiig results llow us to uderstd the structure of the trigle mod, d how it behves., (mod ) if is eve d, (mod ) if is odd. Proof: (By iductio) We ow, - for >. o, for,, (mod ) d for 4, 4, (mod ). Now ssume, (mod ) if is eve d, (mod ) if is odd. The cosider +,,. If, (mod ), the +, (mod ); d if, (mod ), the +, (mod ). Thus, by iductio, we coclude tht if is eve,, (mod ) d if is odd,, (mod ). From the followig two lemms, we re ble to determie the structure of the etire trigle mod. Lemm: If,, + (mod ), the +, +, (mod ). Proof: Let, 0 d, + 0 (mod ). We ow +, +, +, + -,. o, +, + (0) + (0) 0 (mod ) which mes +, + 0 (mod ). Let, (mod ) d, + (mod ). The we c write +, + () + () 0 (mod ), which mes +, + (mod ). Filly, let, d, + (mod ). The this mes, +, + () +() 0 (mod ). Hece, +, + (mod ).

12 Lemm: If,, + (mod ), the, +, +, + (mod ). Proof: Cosider, (mod ) d, + (mod ). We ow +, +, +, + -,. o, +, + () + ()- 0 (mod ). Thus, +, + 0 (mod ). Now cosider, (mod ) d, + 0 (mod ). The +, + () + (0)- 0 (mod ). Hece, +, + (mod ). Filly, cosider, 0 (mod ) d, + (mod ). This mes +, + (0) + ()- 0 (mod ). Thus, +, + (mod ). I dditio, we hve two cojectures: Cojecture: I the trigle mod, trigulr formtios composed of zeroes will begi to te form if d oly if the row umber is multiple of 9. Cojecture: I the trigle mod where row 4 is ow cosidered row, there will be oly oe trigulr formtio composed of zeroes if d oly if the row umber c be writte s for.

13 V. ummry d Future Reserch To coclude, the followig re the properties tht hve bee foud: The trigle is symmetricl (i.e.:, +, ). Lemm:,,, for. for. Lemm: +,, + for., (+) 4 for 4. Lemm:,, +, +, for 4., ( ) 7 for 4. Lemm: Lemm: for. for. (/9),, for where d. +,, + - for 5. + for 4. The oly odd umbers i the trigle re, d etries of the form, d, +. These re cosecutive umbers i the middle of every eve umbered row.

14 , Lemm: If Lemm: If (mod ) if is eve d, (mod ) if is odd.,, + (mod ), the +, +, (mod ).,, + (mod ), the, +, +, + (mod ). Cojecture: I the trigle mod, trigulr formtios composed of zeroes will begi to te form if d oly if the row umber is multiple of 9. Cojecture: I the trigle mod where row 4 is ow cosidered row, there will be oly oe trigulr formtio composed of zeroes if d oly if the row umber c be writte s for. A good veue to te i cotiuig this reserch would be to ) prove the cojectures, ) serch for wys i which the trigle my be useful i vrious fields of mthemtics, s Pscl s trigle is, d ) cotiue drwig prllels betwee Pscl s trigle d the vrit. I do ot ecessrily ow wht these my etil, but they seem lie logicl ext step. 4

15 VI. Appedix ome results were prove iitilly by iductio d the more cocise proof ws discovered t lter time. The followig ltertive proofs re the oes tht were discovered first durig the reserch., (+) 4 for 4. Proof: (By Iductio) Whe 4, 4, () + (+) 4 is true for some. ice +,, + (+) 0 5 (4+), d we coclude by iductio tht, (+) 0. Now ssume tht, we hve +, ((+) 4 for 4. 4 ) +, ( ) 7 for 4. Proof: (By Iductio) First, for 5, 5, 4, +, +, (5) (-4 + 7(5) + 5 ) -. Now ssume tht, ( ) 7 is true for some. Proceedig iductively, +,, +, +, +, ( ) , [( ) + + ] 6 [(/) + (9/8) + ( /8)] ( ) 6, d we coclude by iductio tht, ( ) 7 for 4. (/9) for where d. Proof: (By Iductio) First, for, () 6 (/9). Now ssume tht (/9) for some. o, + (/9) + (/9) +. Thus, by iductio, + (/9) + for. 5

CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that:

CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that: CS80 HW Solutio Set Sprig00 Solutios by: Shddi Doghmi -) -) 4 * 4 4 4 ) 4 b-) ) ) ) * ) ) ) 0 ) c-) ) ) ) ) ) ow we eed to get rid of the term. We ow tht: ) ) ) ) substitute ito the recursive epressio:

More information

Section 3.2: Arithmetic Sequences and Series

Section 3.2: Arithmetic Sequences and Series Sectio 3.: Arithmetic Sequeces Series Arithmetic Sequeces Let s strt out with efiitio: rithmetic sequece: sequece i which the ext term is fou by ig costt (the commo ifferece ) to the previous term Here

More information

Gauss-Seidel Method. An iterative method. Basic Procedure:

Gauss-Seidel Method. An iterative method. Basic Procedure: Guss-Siedel Method Guss-Seidel Method A itertive method. Bsic Procedure: -Algebriclly solve ech lier equtio for i -Assume iitil guess solutio rry -Solve for ech i d repet -Use bsolute reltive pproimte

More information

Counting unlabeled full binary rooted plane trees

Counting unlabeled full binary rooted plane trees Coutig uleled full iry rooted ple trees How my wys re there to plce - pirs of pretheses i the product i such wy tht the order of multiplictio is completely specified? = = Coutig uleled full iry rooted

More information

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n Nme: 453 Dte: SEQUENCES ALGEBRA WITH TRIGONOMETRY Sequeces, or ordered list of umbers, re extremely importt i mthemtics, both theoreticl d pplied A sequece is formlly defied s fuctio tht hs s its domi

More information

Using Gaussian Elimination for Determination of Structure Index in Euler Deconvolution

Using Gaussian Elimination for Determination of Structure Index in Euler Deconvolution Austrli Jourl of Bsic d Applied Scieces, 4(1): 6390-6396, 010 ISSN 1991-8178 Usig Gussi Elimitio for Determitio of Structure Idex i Euler Decovolutio 1 Rez.toushmli d M.ghbri 1 Islmic zd uiversity,hmed

More information

Primitive Pythagorean triples and generalized Fibonacci sequences

Primitive Pythagorean triples and generalized Fibonacci sequences Notes o Number Theory d Discrete Mthemtics Prit ISSN 30 53, Olie ISSN 37 875 Vol 3, 07, No, 5 Primitive Pythgore triples d geerlized ibocci sequeces J V Leyedekkers d A G Sho, 3 culty of Sciece, The Uiversity

More information

Hamiltonian-T*- Laceability in Jump Graphs Of Diameter Two

Hamiltonian-T*- Laceability in Jump Graphs Of Diameter Two IOSR Jourl of Mthemtics IOSR-JM e-issn 78-78 p-issn9-76x. Volume Issue Ver. III My-Ju. PP -6 www.iosrjourls.org Hmiltoi-T*- Lcebility i Jump Grphs Of Dimeter Two Mjuth.G Murli.R Deprtmet of MthemticsGopl

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

EE 477 Digital Signal Processing. 8a IIR Systems

EE 477 Digital Signal Processing. 8a IIR Systems EE 477 Digitl Sigl Processig 8 IIR Systems Geerl Differece Equtio FIR: output depeds o curret d pst iputs oly IIR: output depeds o curret d pst iputs d pst outputs y M [] b x[ ] + y[ l] l N l EE 477 DSP

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Sectio 3.: Sequeces d Series Sequeces Let s strt out with the defiitio of sequece: sequece: ordered list of umbers, ofte with defiite ptter Recll tht i set, order does t mtter so this is oe wy tht sequece

More information

3n

3n Prctice Set 6 Sequeces d Series Clcultor Required Objectives Alyze ptters i sequeces to determie subsequet terms. Fid the first four terms of sequece give equtio for. Fid expressio for give sequece. Expd

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

New Results on Energy of Graphs of Small Order

New Results on Energy of Graphs of Small Order Global Joural of Pure ad Applied Mathematics. ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 2837-2848 Research Idia Publicatios http://www.ripublicatio.com New Results o Eergy of Graphs of Small Order

More information

Logic Spring Final Review

Logic Spring Final Review Idirect Argumet: Cotrdictios d Cotrpositio. Prove the followig by cotrdictio d by cotrpositio. Give two seprte proofs. The egtive of y irrtiol umber is irrtiol. b. For ll iteger, if ² is odd the is odd.

More information

c-dominating Sets for Families of Graphs

c-dominating Sets for Families of Graphs c-domiatig Sets for Families of Graphs Kelsie Syder Mathematics Uiversity of Mary Washigto April 6, 011 1 Abstract The topic of domiatio i graphs has a rich history, begiig with chess ethusiasts i the

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

Randomized Algorithms

Randomized Algorithms // Copyright he McGrw-Hill Compies, Ic. Permissio required for reproductio or disply. Rdomized Algorithms Copyright he McGrw-Hill Compies, Ic. Permissio required for reproductio or disply. Copyright he

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

The Chromatic Covering of a Graph: Ratios, Domination, Areas and Farey Sequences.

The Chromatic Covering of a Graph: Ratios, Domination, Areas and Farey Sequences. The Chromtic Coverig of Grph: Rtios Domitio res d Frey eueces. Pul ugust Witer mthemtics UKZN Durb outh fric emil: witerp@ukz.c.z bstrct The study of the chromtic umber d vertex coverigs of grphs hs opeed

More information

CIS 121. Introduction to Trees

CIS 121. Introduction to Trees CIS 121 Itroductio to Trees 1 Tree ADT Tree defiitio q A tree is a set of odes which may be empty q If ot empty, the there is a distiguished ode r, called root ad zero or more o-empty subtrees T 1, T 2,

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other.

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other. Plaar graphs Defiitio. A graph is plaar if it ca be draw o the plae i such a way that o two edges cross each other. Example: Face 1 Face 2 Exercise: Which of the followig graphs are plaar? K, P, C, K,m,

More information

Def : A radical is an expression consisting of a radical sign (radical symbol), a radicand, and an index.

Def : A radical is an expression consisting of a radical sign (radical symbol), a radicand, and an index. Mth 0 Uit : Roots & Powers Red Buildig O, Big Ides, d New Vocbulry, p. 0 tet.. Estitig Roots ( clss) Red Lesso Focus p. tet. Outcoes Ch. Notes. Defie d give eple of rdicl. pp. 0, 9. Idetify the ide d the

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction /8/05 5.3 Recursive defiitios ad structural iductio CSE03 Discrete Computatioal Structures Lecture 6 A recursively defied picture Recursive defiitios e sequece of powers of is give by a = for =0,,, Ca

More information

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle:

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle: Recursio Recursio Jordi Cortadella Departmet of Computer Sciece Priciple: Reduce a complex problem ito a simpler istace of the same problem Recursio Itroductio to Programmig Dept. CS, UPC 2 Mathematical

More information

EX 1 Find the length of each side EX 2 Find the value of a, b, c, d. if the perimeter is 20.

EX 1 Find the length of each side EX 2 Find the value of a, b, c, d. if the perimeter is 20. HOW DOES THIS APPLY? EX Fid the legth of eh side EX 2 Fid the vlue of, b,, d. if the perieter is 20. To solve or ot to solve? C you solve usig properties of isoseles trigles disovered? If so, write the

More information

Some cycle and path related strongly -graphs

Some cycle and path related strongly -graphs Some cycle ad path related strogly -graphs I. I. Jadav, G. V. Ghodasara Research Scholar, R. K. Uiversity, Rajkot, Idia. H. & H. B. Kotak Istitute of Sciece,Rajkot, Idia. jadaviram@gmail.com gaurag ejoy@yahoo.co.i

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

Σ P(i) ( depth T (K i ) + 1),

Σ P(i) ( depth T (K i ) + 1), EECS 3101 York Uiversity Istructor: Ady Mirzaia DYNAMIC PROGRAMMING: OPIMAL SAIC BINARY SEARCH REES his lecture ote describes a applicatio of the dyamic programmig paradigm o computig the optimal static

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

2 X = 2 X. The number of all permutations of a set X with n elements is. n! = n (n 1) (n 2) nn e n

2 X = 2 X. The number of all permutations of a set X with n elements is. n! = n (n 1) (n 2) nn e n 1 Discrete Mathematics revisited. Facts to remember Give set X, the umber of subsets of X is give by X = X. The umber of all permutatios of a set X with elemets is! = ( 1) ( )... 1 e π. The umber ( ) k

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Gauss-Siedel Method. Major: All Engineering Majors. Authors: Autar Kaw

Gauss-Siedel Method. Major: All Engineering Majors. Authors: Autar Kaw Guss-Siedel Method Mjor: All Egieerig Mjors Authors: Autr Kw http://umericlmethods.eg.usf.edu Trsformig Numericl Methods Eductio for STEM Udergrdutes 4//06 http://umericlmethods.eg.usf.edu Guss-Seidel

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

Matrix representation of a solution of a combinatorial problem of the group theory

Matrix representation of a solution of a combinatorial problem of the group theory Matrix represetatio of a solutio of a combiatorial problem of the group theory Krasimir Yordzhev, Lilyaa Totia Faculty of Mathematics ad Natural Scieces South-West Uiversity 66 Iva Mihailov Str, 2700 Blagoevgrad,

More information

A Comparative Study of Positive and Negative Factorials

A Comparative Study of Positive and Negative Factorials A Comparative Study of Positive ad Negative Factorials A. M. Ibrahim, A. E. Ezugwu, M. Isa Departmet of Mathematics, Ahmadu Bello Uiversity, Zaria Abstract. This paper preset a comparative study of the

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

CMSC 430, Practice Problems 1 (Solutions)

CMSC 430, Practice Problems 1 (Solutions) CMC 430, Prtie Problems 1 olutios) 1. Cosider the followig grmmr: d or ) true flse. Compute First sets for eh produtio d otermil FIRTtrue) = { true } FIRTflse) = { flse } FIRT ) ) = { } FIRT d ) = FIRT

More information

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 2 (2013), No. 1, 5-22 INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES NENAD U. STOJANOVIĆ Abstract. If above each side of a regular polygo

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Combination Labelings Of Graphs

Combination Labelings Of Graphs Applied Mathematics E-Notes, (0), - c ISSN 0-0 Available free at mirror sites of http://wwwmaththuedutw/ame/ Combiatio Labeligs Of Graphs Pak Chig Li y Received February 0 Abstract Suppose G = (V; E) is

More information

MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS

MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS Fura Uiversity Electroic Joural of Udergraduate Matheatics Volue 00, 1996 6-16 MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS DAVID SITTON Abstract. How ay edges ca there be i a axiu atchig i a coplete

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

CS 683: Advanced Design and Analysis of Algorithms

CS 683: Advanced Design and Analysis of Algorithms CS 683: Advaced Desig ad Aalysis of Algorithms Lecture 6, February 1, 2008 Lecturer: Joh Hopcroft Scribes: Shaomei Wu, Etha Feldma February 7, 2008 1 Threshold for k CNF Satisfiability I the previous lecture,

More information

INTERSECTION CORDIAL LABELING OF GRAPHS

INTERSECTION CORDIAL LABELING OF GRAPHS INTERSECTION CORDIAL LABELING OF GRAPHS G Meea, K Nagaraja Departmet of Mathematics, PSR Egieerig College, Sivakasi- 66 4, Virudhuagar(Dist) Tamil Nadu, INDIA meeag9@yahoocoi Departmet of Mathematics,

More information

Algorithm Design Techniques. Divide and conquer Problem

Algorithm Design Techniques. Divide and conquer Problem Algorithm Desig Techiques Divide ad coquer Problem Divide ad Coquer Algorithms Divide ad Coquer algorithm desig works o the priciple of dividig the give problem ito smaller sub problems which are similar

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Xiaozhou (Steve) Li, Atri Rudra, Ram Swaminathan. HP Laboratories HPL Keyword(s): graph coloring; hardness of approximation

Xiaozhou (Steve) Li, Atri Rudra, Ram Swaminathan. HP Laboratories HPL Keyword(s): graph coloring; hardness of approximation Flexible Colorig Xiaozhou (Steve) Li, Atri Rudra, Ram Swamiatha HP Laboratories HPL-2010-177 Keyword(s): graph colorig; hardess of approximatio Abstract: Motivated b y reliability cosideratios i data deduplicatio

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

A study on Interior Domination in Graphs

A study on Interior Domination in Graphs IOSR Joural of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 219-765X. Volume 12, Issue 2 Ver. VI (Mar. - Apr. 2016), PP 55-59 www.iosrjourals.org A study o Iterior Domiatio i Graphs A. Ato Kisley 1,

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

4-Prime cordiality of some cycle related graphs

4-Prime cordiality of some cycle related graphs Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 1, Issue 1 (Jue 017), pp. 30 40 Applicatios ad Applied Mathematics: A Iteratioal Joural (AAM) 4-Prime cordiality of some cycle related

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

The Adjacency Matrix and The nth Eigenvalue

The Adjacency Matrix and The nth Eigenvalue Spectral Graph Theory Lecture 3 The Adjacecy Matrix ad The th Eigevalue Daiel A. Spielma September 5, 2012 3.1 About these otes These otes are ot ecessarily a accurate represetatio of what happeed i class.

More information

Thompson s Group F (p + 1) is not Minimally Almost Convex

Thompson s Group F (p + 1) is not Minimally Almost Convex Thompso s Group F (p + ) is ot Miimally Almost Covex Claire Wladis Thompso s Group F (p + ). A Descriptio of F (p + ) Thompso s group F (p + ) ca be defied as the group of piecewiseliear orietatio-preservig

More information

Some New Results on Prime Graphs

Some New Results on Prime Graphs Ope Joural of Discrete Mathematics, 202, 2, 99-04 http://dxdoiorg/0426/ojdm202209 Published Olie July 202 (http://wwwscirporg/joural/ojdm) Some New Results o Prime Graphs Samir Vaidya, Udaya M Prajapati

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

The Rogers-Ramanujan Identities

The Rogers-Ramanujan Identities MPRA Muih Persol RePE Arhive The Rogers-Ruj Idetities Fzlee ossi d Sbuj Ds Assistt Professor Preier Uiversity Chittgog Bgldesh Mrh Olie t https://prubui-uehede/8/ MPRA Pper No 8 posted Deeber 7 9:7 UTC

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree

Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree 1 Sum-coectivity idices of trees ad uicyclic graphs of fixed maximum degree Zhibi Du a, Bo Zhou a *, Nead Triajstić b a Departmet of Mathematics, South Chia Normal Uiversity, uagzhou 510631, Chia email:

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9 Coutig II Sometimes we will wat to choose objects from a set of objects, ad we wo t be iterested i orderig them For example, if you are leavig for vacatio ad you wat to pac your suitcase with three of

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

UNIT 1 RECURRENCE RELATIONS

UNIT 1 RECURRENCE RELATIONS UNIT RECURRENCE RELATIONS Structure Page No.. Itroductio 7. Objectives 7. Three Recurret Problems 8.3 More Recurreces.4 Defiitios 4.5 Divide ad Coquer 7.6 Summary 9.7 Solutios/Aswers. INTRODUCTION I the

More information

Counting the Number of Minimum Roman Dominating Functions of a Graph

Counting the Number of Minimum Roman Dominating Functions of a Graph Coutig the Number of Miimum Roma Domiatig Fuctios of a Graph SHI ZHENG ad KOH KHEE MENG, Natioal Uiversity of Sigapore We provide two algorithms coutig the umber of miimum Roma domiatig fuctios of a graph

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

The Eigen-Cover Ratio of a Graph: Asymptotes, Domination and Areas

The Eigen-Cover Ratio of a Graph: Asymptotes, Domination and Areas The ige-cover Ratio of a Graph: Asymptotes, Domiatio ad Areas Paul August Witer ad Carol Lye Jessop Mathematics, UKZN, Durba, outh Africa-email: witerp@ukzacza Abstract The separate study of the two cocepts

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

The Platonic solids The five regular polyhedra

The Platonic solids The five regular polyhedra The Platoic solids The five regular polyhedra Ole Witt-Hase jauary 7 www.olewitthase.dk Cotets. Polygos.... Topologically cosideratios.... Euler s polyhedro theorem.... Regular ets o a sphere.... The dihedral

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information