OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/14 Spring 2015

Size: px
Start display at page:

Download "OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/14 Spring 2015"

Transcription

1 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 1/14 Spring 2015 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be removed. A spare ratrace sheet is also attached. Use the back sides if reqired. Assme thin lenses in air if not specified. As sal, onl the magnitde of a magnification or magnifing power ma be given. If a method of soltion is specified in the problem, that method mst be sed. Ratraces mst be done on the ratrace form. Be sre to indicate the initial conditions for or ras. Yo mst show or work and/or method of soltion in order to receive credit or partial credit for or answer. Provide or answers in a neat and orderl fashion. Onl a basic scientific calclator ma be sed. This calclator mst not have programming or graphing capabilities. An acceptable example is the TI-30 calclator. Each stdent is responsible for obtaining their own calclator. Note: On some qantities, onl the magnitde of the qantit is provided. The proper sign convention mst be applied. 1) (10 points) A 200 mm focal length achromatic doblet is to be constrcted ot of the following two glasses: Glass 1: Glass 2: Provide the two reqired focal lengths. f 1 = mm f 1 = mm

2 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 2/14 Spring ) (15 points) A doble telecentric sstem is constrcted ot of two thin lenses in air. It has a magnification of 1/5. The focal length of the first lens of the sstem is 200 mm. Provide a laot of the sstem showing the second lens, spacings and the stop. An object is located 400 mm to the left of the first lens in the sstem. Where is the image plane (location relative to the second lens element)? f 1 = 200 mm Focal length of the second lens = mm Object at 400 mm: Image is mm to the of the second lens

3 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 3/14 Spring ) (15 points) Design an object-space telecentric sstem consisting of a thin lens and a stop. The focal length of the lens is 100 mm, and the sstem operates at 1:1 conjgates. The sstem covers a field of view of ±10 mm, and it operates at a working f-nmber of 4 (f/# W = 4 or NA = 0.125). The sstem is nvignetted over this field of view. Sketch the sstem and provide the reqired spacings, the diameter of the lens and the stop diameter. The method of soltion is not specified. Contines

4 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 4/14 Spring 2015 D Stop = mm D Lens = mm Stop Location: mm to the of the lens

5 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 5/14 Spring ) (5 points) A field lens is added at the intermediate image plane of a Keplerian telescope. What is the effect of the field lens on each of the following? a) MP b) Ee Relief c) Exit Ppil Diameter d) Field of View e) Telescope Length f) Image Orientation

6 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 6/14 Spring ) (10 points) A moving train is being photographed b a fixed camera. The camera does not move dring the exposre. The train is at a distance of 100 m, and the focal length of the camera lens is 50 mm. The speed of the train is 10 m/s and the train motion is perpendiclar to the optical axis of the camera. Using reasonable approximations, what is the slowest shtter speed that can be sed so that the motion blr on the detector is 5 m? Note that this problem does NOT involve depth of focs/field or hperfocal distance. Shtter speed = sec

7 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 7/14 Spring ) (10 points) An optical sstem is comprised of two thin lenses in air. The first lens has a focal length of 100 mm and the second lens has a focal length of 200 mm. The two lenses are separated b 75 mm. An object is located 200 mm to the left of the first lens. Determine the image location relative to the second lens and the image magnification. Gassian redction and Gassian imaging mst be sed. Image is located mm to the of the lens. Magnification =

8 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 8/14 Spring ) (35 points) An f/4 reverse telephoto objective is comprised of two thin lenses in air. The sstem stop is located between the two lenses. The sstem is now to be sed with a finite conjgate object that is located 150 mm to the left of the first lens. The maximm image size is +/- 20 mm. f 1 = -50 mm Stop f 2 = 40 mm Image Plane (+/- 20 mm) 15 mm 15 mm Determine the following: - Sstem focal length and back focal distance. - Stop size; Entrance ppil and exit ppil locations and sizes. - Image location. - Object size corresponding to the image size. - Reqired diameters for the two lenses for the sstem to be nvignetted over the specified maximm image size and conjgate location. NOTE: This problem is to be worked sing ratrace methods onl. All answers mst be determined directl from the ras o trace; for example, the object FOV mst be determined from the chief ra. Ratraces mst be done on the ratrace form. Be sre to clearl label or ras on the ratrace form. Gassian imaging methods ma not be sed for an portion of this problem. Yor answers mst be entered below. Be sre to provide details on the pages that follow to indicate or method of soltion (how did o get or answer; which ra was sed, analsis of ra data, etc.). A few things written next to the ratrace sheet is not sfficient information. Sstem Focal Length = mm Back Focal Distance = mm Entrance Ppil: mm to the of the first lens. Exit Ppil: mm to the of the second lens. D EP = mm D XP = mm D STOP = mm Object Size = +/- mm Image Location: mm to the of the second lens. Lens 1 Diameter = mm Lens 2 Diameter = mm Contines with a ratrace form on the next page

9 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 9/14 Spring 2015 Srface f t Contines

10 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 10/14 Spring 2015 Provide Method of Soltion: Contines

11 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 11/14 Spring 2015 Contines

12 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 12/14 Spring 2015

13 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 13/14 Spring 2015 Spare Ratrace Sheet: Srface f t

14 OPTI-202R Geometrical and Instrmental Optics John E. Greivenkamp Final Exam Page 14/14 Spring 2015 Spare Ratrace Sheets: Srface C t n t/n n n Srface f t

15 OPTI-202 Eqation Sheet OPL nl n sin n sin n1 dt t n (n n)c n n z z f 1 f f R n n F E z/n m z/n f f m f f n m m n m N F2 2 R1 1 n n 2 z/n mm z/n PN PNf f F 1 2 R t n n d n 1 d n 2 BFD d f R FFD d f F n n t f/# f E NA n sin U n DEP 1 1 f/# W 1 mf/# 2NA 2n I HЖ n n tan( 1/2) 10in 250mm MP f f MP 1 m MP mrmpk mv mobjmpeye

16 a Un a and a Half a and a Fll n d n d2 DOF Bf /# W P P L H fd LH L B NEAR 2 D2.44 f /# D f /# in m sin MIN / 2 n sin / 2 1 n S C sin n R Sag 2 2R f 1 f nd 1 n n F C TA CH rp n n d C P n F n C n1 P dc fcd P f

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/15 Fall, 2012

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/15 Fall, 2012 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/15 Fall, 2012 Name Closed book; closed notes. Time limit: 2 hors. An eqation sheet is attached and can be removed.

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 9 Fall, 2018

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 9 Fall, 2018 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Assigned: 10/31/18 Lectre 21 De: 11/7/18 Lectre 23 Note that in man 502 homework and exam problems (as in the real world!!), onl the magnitde

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 7 Fall, 2018

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 7 Fall, 2018 Assigned: 10/10/18 Lectre 15 De: 10/17/18 Lectre 17 Midterm Exam: Wednesda October 24 (Lectre 19) The eqation sheet for the exam has been posted on the corse website. This eqation sheet will be inclded

More information

OPTI-202R Homework John E. Greivenkamp Spring ) An air-spaced triplet objective is comprised of three thin lenses in air:

OPTI-202R Homework John E. Greivenkamp Spring ) An air-spaced triplet objective is comprised of three thin lenses in air: Set #5 Assigned: De: 2/7/18 (Wed) 2/14/18 (Wed) MIDTERM I: Frida March 16 8:00-8:50 5-1) An air-spaced triplet objective is comprised of three thin lenses in air: Focal Length Spacing Lens 1 100 mm 25

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 11 Fall, 2018

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 11 Fall, 2018 Assigned: 11/14/18 Lectre 24 De: 11/21/18 Lectre 26 11-1) A 200 mm x 300 mm monochrome monitor is to be viewed b an observer at a distance of 0.5 m. The desired image qalit is to be excellent as determined

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2017

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2017 Final Exam In Class Page / Fall, 07 Name SOLUTIONS Closed book; closed notes. Time limit: 0 minutes. An equation sheet is attached and can be removed. Spare raytrace sheets are attached. Use the back sides

More information

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016 Page 1/12 Fall, 2016 October 19, 2016 Lecture 17 Name SOLUTIONS Closed book; closed notes. Time limit: 75 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached.

More information

Last lecture: finishing up Chapter 22

Last lecture: finishing up Chapter 22 Last lectre: finishing p Chapter 22 Hygens principle consider each point on a wavefront to be sorce of secondary spherical wavelets that propagate at the speed of the wave at a later time t, new wavefront

More information

OPTI 201R Homework 9 Solutions

OPTI 201R Homework 9 Solutions OPTI 20R Homework 9 Solutions. Unknown thick lens system measured with reciprocal magnification technique. At the first position where the object is sharply focused on the image plane m = 2. The lens needs

More information

a) Design a thin-lens peephole that covers a total field of 90 and has a total length of 25 mm (it has to fit within the thickness of the door).

a) Design a thin-lens peephole that covers a total field of 90 and has a total length of 25 mm (it has to fit within the thickness of the door). Peephole The goal of this problem is to design a door peephole to view your visitors (you see them, but they don t see you). The eye should be included as part of the design, and for this problem we will

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Section 10. Stops and Pupils

Section 10. Stops and Pupils 10-1 Section 10 Stops and Pupils Stops and Pupils The aperture stop is the aperture in the system that limits the bundle of light that propagates through the system from the axial object point. The stop

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Instruction sheet 06/18 ALF Laser Optics Demonstration Set Laser Optics Supplement Set Page 1 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

Section 2. Mirror and Prism Systems

Section 2. Mirror and Prism Systems 2-1 Section 2 Mirror and Prism Systems Plane Mirrors Plane mirrors are used to: Produce a deviation Fold the optical path Change the image parity Each ray from the object point obeys the law of reflection

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Image Restoration Image Degradation and Restoration

Image Restoration Image Degradation and Restoration Image Degradation and Restoration hxy Image Degradation Model: Spatial domain representation can be modeled by: g x y h x y f x y x y Freqency domain representation can be modeled by: G F N Prepared By:

More information

Given are two refracting media separated by a spherical surface. From the point O an arbitrary ray OM is emitted (Fig 1). This ray is refracted at

Given are two refracting media separated by a spherical surface. From the point O an arbitrary ray OM is emitted (Fig 1). This ray is refracted at This lecture is based on a Leon Magiera s paper and on a very extended exchange of emails between him and the presenter who produced the final presentation assisted by many comments of Leon. All graphics

More information

The Lens. Refraction and The Lens. Figure 1a:

The Lens. Refraction and The Lens. Figure 1a: Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-27 Herbert Gross Summer term 205 www.iap.uni-jena.de 2 Preliminary Schedule 3.04. Basics 2 20.04. Properties of optical systems I 3 27.05.

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Physics Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: Signature:

Physics Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: Signature: Physics 431 - Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: SID: Signature: CLOSED BOOK. ONE 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) The minimum path principle n(x,y,z) Γ Γ has the minimum optical path length, compared to the alternative paths. nxyzdl (,, ) Γ Thelaw of reflection

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27 Field Guide to Lens Design Julie Bentley Craig Olson SPIE Field Guides Volume FG27 John E. Greivenkamp, Series Editor SPIE PRESS Bellingham,Washington USA vii Glossary of Symbols and Acronyms xi Fundamentals

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Use Trigonometry with Right Triangles

Use Trigonometry with Right Triangles . a., a.4, 2A.2.A; G.5.D TEKS Use Trigonometr with Right Triangles Before Yo sed the Pthagorean theorem to find lengths. Now Yo will se trigonometric fnctions to find lengths. Wh? So o can measre distances

More information

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus USER S GUIDE 1 NO. OF EXP. Table of contents TITLE OF EXPERIMENT SET TO USE Introduction Tables of the set elements E1 Reflection

More information

Machine Vision Systems

Machine Vision Systems Overview Function Image types The optical path of the lens is defined by its construction. For spherical lenses the solid angle depends on the focal length, focus adjustment and aperture; all rays run

More information

Thin Lenses. Lecture 23. Chapter 34. Ray Optics. Physics II. Course website:

Thin Lenses. Lecture 23. Chapter 34. Ray Optics. Physics II. Course website: Lecture 23 Chapter 34 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.5-6 Thin Lenses There

More information

MML-PL25HR. 4-M3 (For Securing Lens) M3 Hexagonal Socket Set Screw (4 Screws Enclosed) ø ø19

MML-PL25HR. 4-M3 (For Securing Lens) M3 Hexagonal Socket Set Screw (4 Screws Enclosed) ø ø19 44 Prism Adapters Prism adapters make it possible to bend the optical axis at a right angle of, and to perform a mark recognition for microscopic objects by modifying the pitch between 2 MML lenses to

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Section 14. Relays and Microscopes

Section 14. Relays and Microscopes 14-1 Section 14 Relays and Microscopes Image Erection The image produced by a Keplerian telescope is inverted and reverted. For many applications, such as terrestrial telescopes and binoculars, it is important

More information

EE119 Homework 3. Due Monday, February 16, 2009

EE119 Homework 3. Due Monday, February 16, 2009 EE9 Homework 3 Professor: Jeff Bokor GSI: Julia Zaks Due Monday, February 6, 2009. In class we have discussed that the behavior of an optical system changes when immersed in a liquid. Show that the longitudinal

More information

Mechanical Design Technology

Mechanical Design Technology Mechanical Design Technology rof. Tamots Mrakami Assignment #2: Tool ath and NC Code Generation Make a program that generates a tool path for milling a ezier srface sing a ball end mill shos the tool path

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Section 20. Thin Prisms

Section 20. Thin Prisms OPTI-0/0 Geometrical an Instrumental Optics opyright 08 John E. Greivenkamp 0- Section 0 Thin Prisms Thin Prism Deviation Thin prisms introuce small angular beam eviations an are useful as alignment evices.

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

MA FINAL EXAM INSTRUCTIONS VERSION 01 DECEMBER 9, Section # and recitation time

MA FINAL EXAM INSTRUCTIONS VERSION 01 DECEMBER 9, Section # and recitation time MA 6500 FINAL EXAM INSTRUCTIONS VERSION 0 DECEMBER 9, 03 Your name Student ID # Your TA s name Section # and recitation time. You must use a # pencil on the scantron sheet (answer sheet).. Check that the

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 2015 Images Lectures 24-25 Chapter 34 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 3 Chapter 34 Images One of the most important uses of the basic laws governing light

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 3: Properties of optical sstems II 04-04-8 Herbert Gross Sommer term 04 www.iap.uni-jena.de Preliminar Schedule.04. Introduction 8.04. Properties of optical sstems I 3

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Properties of optical sstems II 0-0-30 Herbert Gross Winter term 0 www.iap.uni-jena.de Properties of Optical Sstems II Preliminar time schedule 6.0. Introduction Introduction,

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

10.2 Solving Quadratic Equations by Completing the Square

10.2 Solving Quadratic Equations by Completing the Square . Solving Qadratic Eqations b Completing the Sqare Consider the eqation We can see clearl that the soltions are However, What if the eqation was given to s in standard form, that is 6 How wold we go abot

More information

Solutions PHYS1252 Exam #1, Spring 2017, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q.

Solutions PHYS1252 Exam #1, Spring 2017, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q. Problem I: Multiple Choice Questions, 20P total = 5P(Q1) + 5P(Q2) + 5P(Q3) + 5P(Q4) Exam Version: 1A 1B 1C 1D 1E 1F Q1 [5P] B B C D C B Q2 [5P] D D C E A B Q3 [5P] A C C B B D Q4 [5P] D D E E A E Detailed

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab 7 Refraction, Ray Tracing, and Snell s Law Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

More information

EELE 482 Lab #3. Lab #3. Diffraction. 1. Pre-Lab Activity Introduction Diffraction Grating Measure the Width of Your Hair 5

EELE 482 Lab #3. Lab #3. Diffraction. 1. Pre-Lab Activity Introduction Diffraction Grating Measure the Width of Your Hair 5 Lab #3 Diffraction Contents: 1. Pre-Lab Activit 2 2. Introduction 2 3. Diffraction Grating 4 4. Measure the Width of Your Hair 5 5. Focusing with a lens 6 6. Fresnel Lens 7 Diffraction Page 1 (last changed

More information

PART I: Adding Instructions to the Datapath. (2 nd Edition):

PART I: Adding Instructions to the Datapath. (2 nd Edition): EE57 Instrctor: G. Pvvada ===================================================================== Homework #5b De: check on the blackboard =====================================================================

More information

Aplanatic and Telescopic Lens with a Radial Gradient of Refraction Index

Aplanatic and Telescopic Lens with a Radial Gradient of Refraction Index Optics and Photonics Journal, 03, 3, 35-359 Published Online ovember 03 (http://www.scirp.org/journal/opj) http://dx.doi.org/0.436/opj.03.37055 Aplanatic and Telescopic Lens with a Radial Gradient of Refraction

More information

Physics 1202: Lecture 18 Today s Agenda

Physics 1202: Lecture 18 Today s Agenda Physics 1202: Lecture 18 Today s Agenda Announcements: Team problems today Team 10: Alisha Kumar, Adam Saxton, Alanna Forsberg Team 11: Riley Burns, Deanne Edwards, Shauna Bolton Team 12: Kervell Baird,

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Section 19. Thin Prisms

Section 19. Thin Prisms Section 9 Thin Prisms 9- OPTI-50 Optical Design an Instrumentation I opyright 08 John E. Greivenkamp Thin Prism Deviation Thin prisms introuce small angular beam eviations an are useful as alignment evices.

More information

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle.

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle. Physics 1230 Light and Color Fall 2012 M. Goldman Practice Exam #1 Tuesday, Sept 25, 2012 This exam will be worth 100 points. There are 10 multiple choice questions worth 4 points each and 3 problems worth

More information

Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade

Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade Name: Jonathan Smartt Title: Thin Lenses Investigation Date of Lesson: Week 2, Day 2 Technology Lesson: Yes Length: 75 minutes Course: Physics Grade Level: 11 th or 12 th Source: Some information taken

More information

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams Page 1 Camera Simulation Eect Cause Field o view Depth o ield Motion blur Exposure Film size, stops and pupils Aperture, ocal length Shutter Film speed, aperture, shutter Reerences Photography, B. London

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

SIMG Solution Set #6

SIMG Solution Set #6 SIMG-0-200 Solution Set #6. An optical system consists of thin lenses L (f 00mm)andL 2 (f 2 200mm) separated by d 800mm. Locate and describe the image of an object that is 50 mm high located 50 mm in front

More information

How to Request Space through the Call for Programs Students. Center for Student Involvement Northeastern University

How to Request Space through the Call for Programs Students. Center for Student Involvement Northeastern University How to Reqest Space throgh the Call for Programs Stdents Center for Stdent Involvement Northeastern University 2018-2019 BEFORE YOU BEGIN Check to make sre that yo can access NUSSO via MyNortheastern Only

More information

Mathematician Helaman Ferguson combines science

Mathematician Helaman Ferguson combines science L A B 19 MATHEMATICAL SCULPTURES Parametric Srfaces Mathematician Helaman Fergson combines science and art with his niqe mathematical sclptres. Fergson s sclptres are the concrete embodiments of mathematical

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

MultiView: Improving Trust in Group Video Conferencing Through Spatial Faithfulness David T. Nguyen, John F. Canny

MultiView: Improving Trust in Group Video Conferencing Through Spatial Faithfulness David T. Nguyen, John F. Canny MltiView: Improving Trst in Grop Video Conferencing Throgh Spatial Faithflness David T. Ngyen, John F. Canny CHI 2007, April 28 May 3, 2007, San Jose, California, USA Presented by: Stefan Stojanoski 1529445

More information

Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

More information

MATH 200 EXAM 2 SPRING April 27, 2011

MATH 200 EXAM 2 SPRING April 27, 2011 MATH 00 EXAM SPRING 00-0 April 7, 0 Name: Section: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless eplicitly stated otherwise.

More information

How to Request Space through the Call for Programs Students. Center for Student Involvement Northeastern University

How to Request Space through the Call for Programs Students. Center for Student Involvement Northeastern University How to Reqest Space throgh the Call for Programs Stdents Center for Stdent Involvement Northeastern University 2017-2018 BEFORE YOU BEGIN Check to make sre that yo can access NUSSO via MyNEU Only the President,

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK ONE MARK QUESTIONS 1. What is lateral shift? 2. What should be the angle of incidence to have maximum lateral shift? 3. For what angle, lateral shift is minimum? 4. What is Normal shift? 5. What is total

More information

Image Enhancement in the Frequency Domain Periodicity and the need for Padding:

Image Enhancement in the Frequency Domain Periodicity and the need for Padding: Prepared B: Dr. Hasan Demirel PhD Image Enhancement in the Freqenc Domain Periodicit and the need for Padding: Periodicit propert of the DFT: The discrete Forier Transform and the inverse Forier transforms

More information

Ma Lesson 18 Section 1.7

Ma Lesson 18 Section 1.7 Ma 15200 Lesson 18 Section 1.7 I Representing an Ineqality There are 3 ways to represent an ineqality. (1) Using the ineqality symbol (sometime within set-bilder notation), (2) sing interval notation,

More information

Solved with COMSOL Multiphysics 4.3a

Solved with COMSOL Multiphysics 4.3a Magnetic Lens Introduction Scanning electron microscopes image samples by scanning with a high-energy beam of electrons. The subsequent electron interactions produce signals such as secondary and back-scattered

More information

Feature extraction: Corners Harris Corners Pkwy, Charlotte, NC

Feature extraction: Corners Harris Corners Pkwy, Charlotte, NC Featre etraction: Corners 9300 Harris Corners Pkw Charlotte NC Wh etract featres? Motiation: panorama stitching We hae two images how do we combine them? Wh etract featres? Motiation: panorama stitching

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 3 Answer ALL questions in the spaces provided on the

More information

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term Lens Design I Lecture 4: Properties of optical systems III 018-05-03 Herbert Gross Summer term 018 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 018 1 1.04. Basics 19.04. Properties of optical

More information

Willis High School Physics Workbook Unit 7 Waves and Optics

Willis High School Physics Workbook Unit 7 Waves and Optics Willis High School Physics Workbook Unit 7 Waves and Optics This workbook belongs to Period Waves and Optics Pacing Guide DAY DATE TEXTBOOK PREREADING CLASSWORK HOMEWORK ASSESSMENT M 2/25 T 2/26 W 2/27

More information

LEICA SUMMARIT-M 75 mm f/2.4

LEICA SUMMARIT-M 75 mm f/2.4 Technical Data. Illustration : Lens Leica Summarit-M 75 mm f/.4 Order number Black anodized: 6 Silver anodized: 6 Angle of view (diagonal, horizontal, vertical) For 5 mm (4 x 6 mm): /7 / ; for M ( x 7

More information

Experiment 7 Geometric Optics

Experiment 7 Geometric Optics Physics 263 Experiment 7 Geometric Optics In this laboratory, we will perform several experiments on geometric optics. A pictorial diagram of the various components to be used is shown in Figure 5. 1 Refraction

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 9: Field flattening 04--6 Herbert Gross Winter term 04 www.iap.uni-ena.de Preliminary Schedule.0. Basics Paraxial optics, imaging, Zemax handling 8.0. Optical systems Optical

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NORTHEASTERN UNIVERSITY ECEU646/ECEG105 OPTICS FOR ENGINEERS FALL 2008.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NORTHEASTERN UNIVERSITY ECEU646/ECEG105 OPTICS FOR ENGINEERS FALL 2008. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NORTHEASTERN UNIVERSITY ECEU646/ECEG105 OPTICS FOR ENGINEERS FALL 2008 Solutions This homework set includes problems for both ECEU646 and ECEG105. Problems

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Lecture 10. Diffraction. incident

Lecture 10. Diffraction. incident 1 Introdction Lectre 1 Diffraction It is qite often the case that no line-of-sight path exists between a cell phone and a basestation. In other words there are no basestations that the cstomer can see

More information

INFINITY-CORRECTED TUBE LENSES

INFINITY-CORRECTED TUBE LENSES INFINITY-CORRECTED TUBE LENSES For use with Infinity-Corrected Objectives Available in Focal Lengths Used by Thorlabs, Nikon, Leica, Olympus, and Zeiss Designs for Widefield and Laser Scanning Applications

More information