FEMTOSECOND LASER INTERNAL STRUCTURING OF MATERIALS USING A SPATIAL LIGHT MODULATOR Paper (P152)

Size: px
Start display at page:

Download "FEMTOSECOND LASER INTERNAL STRUCTURING OF MATERIALS USING A SPATIAL LIGHT MODULATOR Paper (P152)"

Transcription

1 FEMTOSECOND LASER INTERNAL STRUCTURING OF MATERIALS USING A SPATIAL LIGHT MODULATOR Paper (P152) Dun Liu 1, Zheng Kuang 1, Walter Perrie 1 *, Patricia. J. Scully 2, Alexandra Baum 2, Shijie Liang 2, Anca Taranu 2, S. P. Edwardson 1, E. Fearon 1, G. Dearden 1, and K. G. Watkins 1 1 Laser Group, Department of Engineering, University of Liverpool, L69 3GQ, UK 2 Photon Science Institute, University of Manchester, M13 9PL, UK wpfemto1@liverpool.ac.uk Abstract Femtosecond laser pulses are of particular interest for internal modification of transperent materials as they enable nonlinear absorption due to the extremly high intensity in the focal volume. Since output from commercial laser sources currently exceeds single beam process requirements, parallel processing with multiple beams could provide a route to up-scaling processing speed and establish cost-effectiveness. The use of spatial light modulators, driven by fast computer-generated holograms for splitting a parent laser beam into a number of beamlets and digitally manipulate their positions and the laser intensity is demonstrated. With successful blocking of the zero order beam and subsequent focusing of the diffracted beams inside transperant materials, high throughput dynamic 2D/3D refractive index modification of polymer and glass substrates with a gain factor G > 20 has been achieved. Fundamental IR (775nm) femtosecond laser pulses were employed to produce optical components. For example, thick volume gratings written with more than 20 beams have 1st order diffraction efficiency η > 60%, indicating a refractive index change Δn Characterization by microscopic examination and light coupling tests revealed the extent of resolution, process quality and assisted quantification of the process speed gain. The benefits and current limitations of this technique are discussed in detail. Introduction Multi-photon induced refractive index (RI) change Δn of optical materials has been suggested as a route to the creation of complex 3D integrated optical circuits [1, 2]. Use of pulse durations < 100 fs in the NIR shows clear advantages for generating highest Δn in, for example, fused silica and polymethyl methacrylate (PMMA) [3]. While for pulse durations > 160 fs, where optical breakdown is increasingly more likely, second harmonic UV refractive index modification of PMMA overcomes this limitation by reducing the order of non-linear absorption from three- to two-photon [4]. Laser repetition rates from khz to MHz have been used for Δn structuring and this parameter is also important in determining the sign of refractive index change [5], while integrated fluence exposure still needs to be comparable. For example, at 1kHz, a NIR single pulse energy E p < 1 µj is typically tightly focussed inside an optical substrate while E p > 1 mj is generally available, a light utilisation factor of < 0.1%. At 1 khz, Δn in PMMA (and fused silica) has been clearly shown to be positive, essential for single mode waveguides [4]. Phase gratings, optical waveguides, and couplers have previously been created with single point femtosecond processing in a wide range of materials [6-8]; however, the extension to complex 3D optical circuits may be significantly hampered, particularly as modification depths reach ~ 10 µm where a high numerical aperture (NA) objective would be required. A Spatial Light Modulator (SLM) is a remarkable dynamic device of diffractive optical elements able to create a desired optical landscape through sophisticated control of the phase of an incident high intensity laser beam. Since parallel processing with arbitrary multiple-beam patterns using an SLM was first demonstrated by Hayasaki et al. [9], The approach has attracted increasing attention in many research areas, such as, dynamic high throughput laser parallel surface processing using SLMs with scanning galvanometers [10-12], 3D data storage in biological tissues [13], writing waveguides in glass with dynamic wavefront correction [14, 15]. In the work reported here, highly parallel refractive index structuring inside optical materials by combining a khz femtosecond laser system with an SLM and thus producing a number of low fluence diffracted beams through applying CGHs is demonstrated. Consequently, the time for the fabrication of RI based optical engineering devices is reduced from hours to minutes, opening up new possibilities in optical circuit manufacturing processes.

2 Experimental Fig. 1 shows a schematic of the experimental setup for internal structuring. The output from a Clark-MXR 2010 femtosecond laser system (775 nm, 160 fs, 1 khz) was passed through a pick off (Autocorrelator) and 50/50 ultrafast beam splitter to turning mirror M1 then attenuated and expanded onto a Hamamatsu X SLM. A 4f optical system consisting of two plano-convex lenses L1 and L2 (f1= f2 = 300 mm) re-imaged the surface of the SLM (Plain A) to the back focal plain (plain D) of a microscope objective (Nikon, 0.15 NA). From the desired intensity distribution at focal plane of the objective, the corresponding CGH was calculated and applied to the SLM and the resulting phase pattern (8-bit greyscales) observed on a separate monitor elucidating phase distribution on the SLM. The zero order beam was blocked accordingly at plain P using a small target. Transparent substrates were scanned either transversely or longitudinally, as shown in Fig. 2. Fig. 1: Schematic of experimental system. Both Hamamatsu X and Holoeye LC-R2500 used in the experiments were equipped with metallic coated mirrors, which cover a wide range of wavelength from visible to NIR, but offer relatively low light utilisation efficiency of about 75%. These two devices have different Liquid Crystal (LC) types. Applying a voltage to the X , which is a parallel-aligned nematic crystal device, results in the LC molecules aligning horizontally along the optical axis, hence leading to a phase change to the light polarised along the molecular axis, but leaving the light polarised perpendicular to the molecular axis completely unaffected. In comparison, the LC-R2500 has a 45 twisted nematic LC layer in which the LC molecules are arranged in a twisted array from the front to the back. This type of SLM can not only modulate the phase of light, but also rotate the plane of polarisation. Previous work has demonstrated that the degree of symmetry of multiple-beam can greatly affect the intensity distribution across all beams [16]. Fig. 3(a) shows a common multiple-beam pattern with perfect symmetry for parallel processing. However, the symmetric multiple-beam suffers from low intensity uniformity even when using iterative algorithms like Gerchberg Saxton (GS) (~ 60%) [17]. An approach to solve this problem is to introduce a small amount of random displacement to the multiple-beam pattern, since for most algorithms such as GS, Grating & Lens algorithm and Generalized Adaptive Additive algorithm, spatial randomization can significantly reduce the collective intensity variation [16]. Thus, in our experiments, the random displacement was applied to the Y-axis of the spots, while the separation Λ in the Z direction was fixed, as shown in Fig. 3(b), in order to optimize energy distribution across the multiple-beam. Holograms based on GS algorithm were calculated within a LabVIEW environment [18]. Other binary grating holograms were also employed. Fig. 3: Schematics of (a) a symmetric and (b) an asymmetric multiple-beam pattern for parallel processing. Fig. 2: Schematics showing (a) transverse and (b) longitudinal geometry for direct writing in transparent materials.

3 Results and discussion Static CGH multiple-beam 2D parallel direct writing The result of parallel RI modification in PMMA with 12 nearly uniform beams having a period Λ of 35 µm is shown in the optical micrograph of Fig. 4. The pulse energy in this case was 0.6 µj/beam. Transverse scan speed was 1 mm/s and each modified region was scanned once only. Clear RI modification without optical breakdown was obtained. (c) Fig. 5: The result of ten (2 5) diffracted beams performing 3D direct writing in a PMMA sample, (a) front view of the top layer, (b) front view of the bottom layer and (c) cross section of two layers. The laser beams propagate along the +X direction. Fig. 4: 12 beams direct writing in a PMMA sample. Static CGH multiple-beam 3D parallel direct writing By recalculating the CGHs to offset the focal planes of particular spots, simultaneous parallel 3D writing inside PMMA at different depths using 10 (2 5) diffracted beams in a double layer was demonstrated, as shown in Fig. 5. The writing parameters were the same as that used in Fig beams (0 and ±1st order) with pulse energy of 5 µj/beam produced by a binary grating hologram were used to fabricate cylindrical structures inside a fused silica sample (Fig. 6), which was translated in a helical motion at 10 µm/s towards the +X direction. The X-axis was parallel to the optical axis. The cylindrical structures produced, which were 1 mm in length and 200 µm in diameter, showed no sign of optical breakdown. Fig. 6: Three beams direct fabrication of cylindrical structures in fused silica. Dynamic CGHs multiple-beam 3D direct writing The dynamic modification of fused silica with 5 beams (0, ±1st and ±2nd order), which were also generated by a binary grating, was demonstrated as shown in Fig. 7. The helical structures were produced by synchronising rotation of 5 beams through real-time display of 120 pre-calculated CGHs at a frequency of 20 Hz and a rotational interval of 3, with linear translation of the stage along the +X direction at 0.5 mm/s. The laser beams with pulse energies of 1.5 µj/beam propagated along the +X axis.

4 Direct writing of volume gratings Fig. 7: A result of five beams, including 0, ±1st and ±2nd order, performing dynamic structuring of fused silica in a longitudinal writing geometry. (a) Schematic. The blue arrows indicate the rotation direction of the beams. (b) Micrograph of the modified region. As shown in Fig. 8, a series of 5 mm 5 mm 1 mm gratings with 19 µm period were written in PMMA. 21 diffracted beams with small randomisation (Fig. 9) were used for the parallel processing, hence greatly increasing the fabrication speed. Each of the gratings was completed within 10 minutes. The maximum diffraction efficiency of approximate 68% at the Bragg angle indicated that Δn was ~ , according to Kogelnik s coupled wave theory [19]. The gain in writing speed meant that it was possible to increase the laser repetition rate by a gain factor G > 20, but without the drawbacks of higher laser frequencies, such as increased thermal accumulation effects and the necessity of increased translation speeds of the substrate, which would ultimately reach inertial limits of the motion control stages. Conclusions Fig. 8: A series of volume gratings written inside a PMMA sample and a magnified optical micrograph The work in this paper has demonstrated successful multiple-beam parallel ultrashort pulse laser internal structuring of PMMA and fused silica using SLMs. The desired diffracted beam patterns were modulated by CGHs, which were pre-calculated by appropriate algorithms. By focusing these diffracted beams using an objective into transparent materials, static and dynamic 2D/3D direct writing of different structures was achieved. The results revealed rapid precision microprocessing with high efficiency, signifying a potential route to fabricating a wide range of optical components inside optical meterials at unprecedented speeds. The key limitations are the relatively low light utilisation efficiency and the low power handling capability of the SLMs here due to their metallic coated mirrors. However, other devices equipped with dielectric coated mirrors may solve these issues. Acknowledgments The authors gratefully acknowledge the support of the UK North West Development Agency under grant N , the Technology Strategy Board (TSB) under the project PARALASE (Prog. No.: TP11/LLd/6/I/AF063B), and kind help from Prof. Miles Padgett and Dr. Jonathan Leach in the Department of Physics and Astronomy at the University of Glasgow, Scotland. References [1] Gattass R. R., & Mazur E., Femtosecond laser micromachining in transparent materials, Nat. Photonics, (2008) Fig. 9: Schematic showing the diffractive pattern with 21 diffracted beams. The volume grating was fabricated at a scanning speed of 1 mm/s. [2] Valle G. D., Osellame R & Laporta P, Micromachining of photonic devices by femtosecond laser pulses, J. Opt. A: Pure Appl. Opt. 11 (2009)

5 [3] Baum A., Scully P. J., Perrie W., Jones D., Issac R., & Jaroszynski D. A., Pulse duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate), Opt. Lett. 33, (2008) [4] Baum A., Scully P. J., Basanta M., Paul Thomas C. L., Fielden P. R., Goddard N. J., Perrie W., & Chalker P. R., Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation, Opt. Lett. 32, (2007) [5] Zoubir A., Lopez C., Richardson M. & Richardson K., Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate), Opt. Lett. 29, (2004) [6] Scully P. J., Jones D. & Jaroszynski D. A., Femtosecond laser irradiation of polymethyl methacrylate for refractive index gratings, J. Opt. A, 5, (2003) S92-S96. [7] Davis K. M., Miura K., Sugimoto N. & Hirao K., Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, (1996) [8] Homoelle D., Wielandy S., Gaeta A. L., Borrelli N. F. & Smith C., Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses, Opt. Lett. 24, (1999) [14] Mauclair C., Mermillod-Blondin A., Huot N., Audouard E., & Stoian R., "Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction," Opt. Express 16, (2008) [15] Mauclair C., Cheng G., Huot N., Audouard E., Rosenfeld A., Hertel I. V., & Stoian R., Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials, Opt. Express 17, (2009) [16] Curtis J. E., Schmitz C. H. J. & Spatz J. P., Symmetry dependence of holograms for optical trapping, Opt. Lett. 30, (2005) [17] Leonardo R. D., Ianni F. & Ruocco G., Computer generation of optimal holograms for optical trap arrays, Opt. Express 15, (2007) [18] Leach J., Wulff K., Sinclair G., Jordan P., Courtial J., Thomson L., Gibson G., Karunwi K., Cooper J., Laczik Z. J. & Padgett M., Interactive approach to optical tweezers control, Appl. Optics 45, (2006) [19] Kogelnik H., Coupled Wave Theory for Thick Hologram Gratings, Bell Syst. Tech. J. 48, (1969) [9] Hayasaki Y., Sugimoto T., Takita A. & Nishida N., Variable holographic femtosecond laser processing by use of a spatial light modulator, Appl. Phys. Lett. 87, (2005) [10] Kuang Z., Perrie W., Liu D., Edwardson S. P., Cheng J., Dearden G., & Watkins K. G., Diffractive multi-beam surface microprocessing using 10 ps laser pulses, Appl. Surf. Sci. 255 (2009) [11] Liu D., Kuang Z., Shang S., Perrie W., Karnakis D., Kearsley A., Knowles M., Edwardson S., Dearden G., & Watkins K. G., Ultrafast parallel laser processing of materials for high throughput manufacturing, Proceedings of LAMP the 5th International Congress on Laser Advanced Materials Processing, 2009, Kobe, Japan. [12] Kuang Z., Liu D., Perrie W., Cheng J., Shang S., Edwardson S. P., Fearon E., Dearden G., & Watkins K. G. Diffractive Multi-beam Ultra-fast Laser Microprocessing Using a Spatial Light Modulator (Invited Paper). Chinese Journal of Lasers, 36 (12): (2009) [13] Hayasaki Y., Holographic femtosecond laser processing and three-dimensional recording in biological tissues, Progress In Electromagnetics Research Letters, 2, (2008)

Applied Surface Science

Applied Surface Science Applied Surface Science 255 (2008) 2284 2289 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc High throughput diffractive multi-beam femtosecond

More information

Holographic shaping of femtosecond pulses for advanced laser material processing

Holographic shaping of femtosecond pulses for advanced laser material processing Holographic shaping of femtosecond pulses for advanced laser material processing Satoshi Hasegawa 1, a and Yoshio Hayasaki 1,b 1 Center for Optical Research and Education (CORE), Utsunomiya University,

More information

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Progress In Electromagnetics Research Letters, Vol. 2, 115 123, 2008 HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Y. Hayasaki Department of Optical Science

More information

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu Available online at www.sciencedirect.com Physics Procedia 22 (2011) 493 497 2011 International Conference on Physics Science and Technology (ICPST 2011) Optical Tweezers Array System Based on 2D Photonic

More information

New concepts in ultra-short pulse laser ablation using digital tools

New concepts in ultra-short pulse laser ablation using digital tools 10 th CIRP Conference on Photonic Technologies [LANE 2018] Industrial Paper New concepts in ultra-short pulse laser ablation using digital tools Alexander Pernizki a, Stephan Eifel a,* a Pulsar Photonics

More information

Creating Laguerre-Gaussian Modes using a Spatial Light Modulator

Creating Laguerre-Gaussian Modes using a Spatial Light Modulator Creating Laguerre-Gaussian Modes using a Spatial Light Modulator Drew King-Smith Physics Department, The College of Wooster, Wooster, Ohio 44691, USA (Dated: December 9, 2014) Using a spatial light modulator

More information

Optical diffraction gratings embedded in BK-7 glass by low-density plasma formation using femtosecond laser

Optical diffraction gratings embedded in BK-7 glass by low-density plasma formation using femtosecond laser Optical diffraction gratings embedded in BK-7 glass by low-density plasma formation using femtosecond laser Jung-Kyu PARK 1, Sung-Hak CHO 1, Kwang-Ho KIM 2, Myung-Chang KANG 2 1. Nano Machining Laboratory,

More information

Leach, J. et al. (2006) Interactive approach to optical tweezers control. Applied Optics, 45 (5). pp ISSN

Leach, J. et al. (2006) Interactive approach to optical tweezers control. Applied Optics, 45 (5). pp ISSN Leach, J. et al. (2006) Interactive approach to optical tweezers control. Applied Optics, 45 (5). pp. 897-903. ISSN 0003-6935 http://eprints.gla.ac.uk/67211/ Deposited on: 18 th July 2012 Enlighten Research

More information

Multiple optical traps from a single laser beam using a mechanical element

Multiple optical traps from a single laser beam using a mechanical element Multiple optical traps from a single laser beam using a mechanical element J.A. Dharmadhikari, A.K. Dharmadhikari, and D. Mathur * Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400

More information

Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1, 2, c

Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1, 2, c Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1,, c, Masahiro Ueda Yoshinori Ogawa 1,, d 1,, 3, e, and Kazuo

More information

Introduction Introduction Introduction Introduction Introduction use damage for processing! Outline Outline Processing with fs pulses Role of focusing Low-energy processing Processing with fs pulses 10

More information

Laser microengineering of photonic devices in glass

Laser microengineering of photonic devices in glass Laser microengineering of photonic devices in glass Kazuyoshi ITOH * * Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

More information

Applications of adaptive optics in femtosecond laser material processing

Applications of adaptive optics in femtosecond laser material processing Applications of adaptive optics in femtosecond laser material processing STFC / Photonics KTN - Laser Applications of Adaptive Optics Professor Derryck T. Reid Ultrafast Optics Group School of Engineering

More information

Optics for nonlinear microscopy

Optics for nonlinear microscopy Optics for nonlinear microscopy Nonlinear microscopy Dispersion management Compact housing In-line input/output apertures High throughput Robust mechanical design Latest generations of Dispersive Mirrors

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction.

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction. Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z direction. Supplementary Figure 2: The nanorod functions as a half-wave plate. The fast axis of the waveplate is parallel to

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

Optimization of modified volume Fresnel zone plates

Optimization of modified volume Fresnel zone plates Birck Nanotechnology Center Birck and NCN Publications Purdue Libraries Year 2009 Optimization of modified volume Fresnel zone plates Pornsak Srisungsitthisunti Okan Ersoy Xianfan Xu Purdue University,

More information

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 3, 2015 ISSN 1223-7027 NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS Bogdan Stefaniţă CALIN 1, Liliana PREDA 2 We have successfully designed a

More information

Recent Advances in Ultrafast Laser Subtractive and Additive Manufacturing

Recent Advances in Ultrafast Laser Subtractive and Additive Manufacturing Industrial Affiliates Symposium March 16-18, 2017 Recent Advances in Ultrafast Laser Subtractive and Additive Manufacturing Xiaoming Yu Assistant Professor Ultrafast Laser Processing Group CREOL, The College

More information

Enhanced optical absorptance of metals using interferometric femtosecond ablation

Enhanced optical absorptance of metals using interferometric femtosecond ablation Enhanced optical absorptance of metals using interferometric femtosecond ablation K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen and T. Jaaskelainen Department of Physics and Mathematics, University of

More information

Feasibility of Laser Induced Plasma Micro-machining (LIP-MM)

Feasibility of Laser Induced Plasma Micro-machining (LIP-MM) Feasibility of Laser Induced Plasma Micro-machining (LIP-MM) Kumar Pallav 1, Kornel F. Ehmann 1 Department of Mechanical Engineering Northwestern University Evanston, IL 60208, USA {kumarpallav2008@u.northwestern.edu,

More information

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation HOLOEYE Photonics Products and services in the field of diffractive micro-optics Spatial Light Modulator (SLM) for the industrial research R&D in the field of diffractive optics Micro-display technologies

More information

On completion of this chapter you will be able to understand. The types of optical fibres

On completion of this chapter you will be able to understand. The types of optical fibres Introduction (Attention Grabber) Learning Objectives On completion of this chapter you will be able to understand. The types of optical fibres 1. Mode of propagation 2. Advantages and disadvantages of

More information

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time By Allen M. Cary, Jeffrey L. Guttman, Razvan Chirita, Derrick W. Peterman, Photon Inc A new instrument design allows the M

More information

MICROMACHINING OF OPTICAL FIBRES WITH A NANOSECOND LASER FOR OPTICAL COMMUNICATION AND SENSOR APPLICATIONS

MICROMACHINING OF OPTICAL FIBRES WITH A NANOSECOND LASER FOR OPTICAL COMMUNICATION AND SENSOR APPLICATIONS 58 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.102(3) September 2011 MICROMACHINING OF OPTICAL FIBRES WITH A NANOSECOND LASER FOR OPTICAL COMMUNICATION AND SENSOR APPLICATIONS D. Schmieder, R.

More information

MEMS SENSOR FOR MEMS METROLOGY

MEMS SENSOR FOR MEMS METROLOGY MEMS SENSOR FOR MEMS METROLOGY IAB Presentation Byungki Kim, H Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess 9/24/24 OUTLINE INTRODUCTION Motivation Contact/Noncontact measurement Optical interferometer

More information

Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle

Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle Hiroo UKITA and Hirotaka UEMI Ritsumeikan University, Kusatsu-shi, Shiga, 2 Japan

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT BEAM DIAGNOS TICS SPECIAL PRODUCTS OEM DETECTORS THZ DETECTORS PHOTO DETECTORS HIGH POWER SOLUTIONS POWER DETECTORS ENERGY DETECTORS MONITORS Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator

Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator Philip M. Birch, Rupert Young, David Budgett, Chris Chatwin School of Engineering, University of

More information

Measurement of Highly Parabolic Mirror using Computer Generated Hologram

Measurement of Highly Parabolic Mirror using Computer Generated Hologram Measurement of Highly Parabolic Mirror using Computer Generated Hologram Taehee Kim a, James H. Burge b, Yunwoo Lee c a Digital Media R&D Center, SAMSUNG Electronics Co., Ltd., Suwon city, Kyungki-do,

More information

Increasing laser processing efficiency using multibeam and tailored beam profiles

Increasing laser processing efficiency using multibeam and tailored beam profiles Increasing laser processing efficiency using multibeam and tailored beam profiles Ulrich Rädel TOPAG Lasertechnik GmbH, Darmstadt Overview Presentation of company Topag Increasing processing efficiency

More information

Computer-originated planar holographic optical elements

Computer-originated planar holographic optical elements Computer-originated planar holographic optical elements Silviu Reinhorn, Yaakov Amitai, and Albert A. Friesem We present novel, to our knowledge, methods for the analytical design and recording of planar

More information

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD Hiroaki Nishioka, Satoru Takahashi Kiyoshi Takamasu Department of Precision Engineering, The University of Tokyo,

More information

Chapter 6. Applications of CLC photonic crystals. Traditional liquid crystal displays use color filters to generate colors. However, only ~33% of

Chapter 6. Applications of CLC photonic crystals. Traditional liquid crystal displays use color filters to generate colors. However, only ~33% of Chapter 6. Applications of CLC photonic crystals Yun Ho Kim 1. Flexible reflective display and dynamic reflector Traditional liquid crystal displays use color filters to generate colors. However, only

More information

FEMTO OpTicsTM in us! O j rld wo T as F ra T ul in an E liv

FEMTO OpTicsTM in us! O j rld wo T as F ra T ul in an E liv FEMTO optics TM We live in an ultrafast world TM join us! 2011 1 FEMTO optics TM 2011 1 A new brand is born We at FEMTOLASERS believe in taking great care of our customers through long-term relationships

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

Four-zone reflective polarization conversion plate

Four-zone reflective polarization conversion plate Four-zone reflective polarization conversion plate A.G. Nalimov a,b, S.S. Stafeev* a,b, L, O Faolain c, V.V. Kotlyar a,b a Image Processing Systems Institute of the RAS, 151 Molodogvardeyskaya st., Samara,

More information

Supporting information for: A highly directional room-temperature single. photon device

Supporting information for: A highly directional room-temperature single. photon device Supporting information for: A highly directional room-temperature single photon device Nitzan Livneh,, Moshe G. Harats,, Daniel Istrati, Hagai S. Eisenberg, and Ronen Rapaport,, Applied Physics Department,

More information

Liquid Crystal Displays

Liquid Crystal Displays Liquid Crystal Displays Irma Alejandra Nicholls College of Optical Sciences University of Arizona, Tucson, Arizona U.S.A. 85721 iramirez@email.arizona.edu Abstract This document is a brief discussion of

More information

PGx01 series. High Peak Power. Available models

PGx01 series. High Peak Power. Available models Picosecond Lasers Nanosecond Lasers Nanosecond Tunable Lasers High Energy Lasers Ultrafast Fiber Lasers Other Ekspla Products PGx1 PGx3 PGx11 PT2 Travelling Wave Optical Parametric Generators (TWOPG) are

More information

Company Pioneer in Ytterbium ultrafast lasers High quality manufacturing Intense and active R&D Located in Bordeaux and Paris US offices in Boston and

Company Pioneer in Ytterbium ultrafast lasers High quality manufacturing Intense and active R&D Located in Bordeaux and Paris US offices in Boston and High power ultrafast lasers Eric Mottay High Brightness Laser sources Burgdorf, November 26, 2009 Company Pioneer in Ytterbium ultrafast lasers High quality manufacturing Intense and active R&D Located

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters take advantage of a phenomenon called fluorescence to extend the performance range of the Beamage beam profiling camera to ultraviolet

More information

Diffraction Gratings as Anti Reflective Coatings Noah Gilbert. University of Arizona ngilbert .arizona.edu Phone: (520)

Diffraction Gratings as Anti Reflective Coatings Noah Gilbert. University of Arizona   ngilbert .arizona.edu Phone: (520) Diffraction Gratings as Anti Reflective Coatings Noah Gilbert University of Arizona Email: ngilbertemail.arizona.edu Phone: (520)304 4864 Abstract: Diffraction gratings with sub wavelength spatial frequencies

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

S-WAVEPLATE RADIAL/AZIMUTH POLARIZATION CONVERTER

S-WAVEPLATE RADIAL/AZIMUTH POLARIZATION CONVERTER S-WAVEPLATE RADIAL/AZIMUTH POLARIZATION CONVERTER Operation manual Konstitucijos ave. 23 LT-08105 Vilnius, Lithuania Konstitucijos ave. 23C LT-08105 Vilnius, Lithuania tel. +370 5 272 57 38 fax +370 5

More information

Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display

Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display Invited Paper Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display Yi-Pai Huang* b, Chih-Wei Chen a, Yi-Ching Huang a a Department of Photonics & Institute of Electro-Optical Engineering,

More information

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers By Jeffrey L. Guttman, Ph.D., Director of Engineering, Ophir-Spiricon Abstract: The Mode-Field Diameter (MFD) and spot

More information

Micropatterned Alignment of Liquid Crystals

Micropatterned Alignment of Liquid Crystals Micropatterned Alignment of Liquid Crystals Nathan Smith* Paul Gass* Martin Tillin* Catherine Raptis* Daniel Burbridge* Abstract Micropatterned alignment is a novel method for aligning liquid crystals

More information

CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM. Target Object

CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM. Target Object CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM 2.1 Theory and Construction Target Object Laser Projector CCD Camera Host Computer / Image Processor Figure 2.1 Block Diagram of 3D Areal Mapper

More information

SPIE Paper Number: SPIE Optics and Photonics August 2012 San Diego, California, USA 1. INTRODUCTION ABSTRACT

SPIE Paper Number: SPIE Optics and Photonics August 2012 San Diego, California, USA 1. INTRODUCTION ABSTRACT SPIE Paper Number: 8519-21 SPIE Optics and Photonics 12-16 August 2012 San Diego, California, USA Femtosecond fiber laser based micro- and nano-processing (Invited talk) Huan Huang*, Lih-Mei Yang and Jian

More information

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry Optical Sectioning Bo Huang Pharmaceutical Chemistry Approaches to 3D imaging Physical cutting Technical difficulty Highest resolution Highest sensitivity Optical sectioning Simple sample prep. No physical

More information

Application of Photopolymer Holographic Gratings

Application of Photopolymer Holographic Gratings Dublin Institute of Technology ARROW@DIT Conference Papers Centre for Industrial and Engineering Optics 2004-2 Application of Photopolymer Holographic Gratings Emilia Mihaylova Dublin Institute of Technology,

More information

Single Polarizer Liquid Crystal Display Mode with Fast Response

Single Polarizer Liquid Crystal Display Mode with Fast Response Mol. Cryst. Liq. Cryst., Vol. 543: pp. 101=[867] 106=[872], 2011 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421406.2011.568342 Single Polarizer Liquid

More information

Null test for a highly paraboloidal mirror

Null test for a highly paraboloidal mirror Null test for a highly paraboloidal mirror Taehee Kim, James H. Burge, Yunwoo Lee, and Sungsik Kim A circular null computer-generated hologram CGH was used to test a highly paraboloidal mirror diameter,

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1853 TITLE: Effect of Grating Detuning on Volume Holographic Memory Using Photopolymer Storage Media: Reflection Holograms

More information

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1752 Optical method for measurement of radius of curvature of large diameter mirrors A. K. Srivastava, K.C. Sati,

More information

Holographic Elements in Solar Concentrator and Collection Systems

Holographic Elements in Solar Concentrator and Collection Systems Holographic Elements in Solar Concentrator and Collection Systems Raymond K. Kostuk,2, Jose Castro, Brian Myer 2, Deming Zhang and Glenn Rosenberg 3 Electrical and Computer Engineering, Department University

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

9. Polarizers. Index of. Coefficient of Material Wavelength ( ) Brewster angle refraction (n)

9. Polarizers. Index of. Coefficient of Material Wavelength ( ) Brewster angle refraction (n) 9. Polarizers All polarized light is to some degree elliptical in nature. Basic states of polarization like linear and circular are actually special cases of elliptically polarized light which is defined

More information

OptiXplorer Optics experiments with an addressable Spatial Light Modulator (SLM) Dr. Andreas Hermerschmidt HOLOEYE Photonics AG

OptiXplorer Optics experiments with an addressable Spatial Light Modulator (SLM) Dr. Andreas Hermerschmidt HOLOEYE Photonics AG OptiXplorer Optics experiments with an addressable Spatial Light Modulator (SLM) Dr. Andreas Hermerschmidt HOLOEYE Photonics AG Introduction Components based on optical technologies are used in more and

More information

3. Scanning BRILLOUIN microscopy

3. Scanning BRILLOUIN microscopy 3. Scanning BRILLOUIN microscopy 3.1. Principles of scanning BRILLOUIN microscopy versus ultrasonic pulse-echo techniques Acoustic microscopy spatially resolves the variation of acoustic properties of

More information

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction , pp.41-45 http://dx.doi.org/10.14257/astl.2016.140.08 A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction Seung Dae Lee 1 1* Dept. of Electronic Engineering, Namseoul

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School BL19LXU Yoshihito Tanaka, Oct. 2013 Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School Abstract The pulsed time structure of synchrotron radiation

More information

Dielectric Optical-Controllable Magnifying Lens. by Nonlinear Negative Refraction

Dielectric Optical-Controllable Magnifying Lens. by Nonlinear Negative Refraction Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction Jianjun Cao 1, Ce Shang 2, Yuanlin Zheng 1,Yaming Feng, Xianfeng Chen 1,3, Xiaogan Liang 4 and Wenjie Wan 1,2,3* 1 Key Laboratory

More information

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields EPJ Web of Conferences 6, 6 10007 (2010) DOI:10.1051/epjconf/20100610007 Owned by the authors, published by EDP Sciences, 2010 Hyperspectral interferometry for single-shot absolute measurement of 3-D shape

More information

ksa MOS Ultra-Scan Performance Test Data

ksa MOS Ultra-Scan Performance Test Data ksa MOS Ultra-Scan Performance Test Data Introduction: ksa MOS Ultra Scan 200mm Patterned Silicon Wafers The ksa MOS Ultra Scan is a flexible, highresolution scanning curvature and tilt-measurement system.

More information

Development of automated ultraviolet laser beam profiling system using fluorometric technique

Development of automated ultraviolet laser beam profiling system using fluorometric technique Development of automated ultraviolet laser beam profiling system using fluorometric technique BB Shrivastava*, NS Benerji, P Bhatnagar, HS Vora a and U Nundy Chemical and Excimer Laser Section a Laser

More information

Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing

Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing PRAMANA c Indian Academy of Sciences Vol. 75, No. 6 journal of December 2010 physics pp. 1241 1247 Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing V

More information

Demonstration of inscription and ablation of phase masks for the production of 1 st, 2 nd and 3 rd order FBG gratings using a femtosecond laser

Demonstration of inscription and ablation of phase masks for the production of 1 st, 2 nd and 3 rd order FBG gratings using a femtosecond laser Demonstration of inscription and ablation of phase masks for the production of 1 st, nd and 3 rd order FBG gratings using a femtosecond laser Graham N. Smith* a, Kyriacos Kalli b, Ian Bennion a, Kate Sugden

More information

Miniature Optics Optics Fiber Optics Borescopes Lasers Hologram

Miniature Optics Optics Fiber Optics Borescopes Lasers Hologram Miniature Optics Optics Fiber Optics Borescopes Lasers Hologram Western Photonics Technology 2005 Orange Street, #D, Alhambra CA USA 91803 Tel. 626 289 1686 Fax: 626 289 1048 Website: www.wptec.com Western

More information

To determine the wavelength of laser light using single slit diffraction

To determine the wavelength of laser light using single slit diffraction 9 To determine the wavelength of laser light using single slit diffraction pattern 91 Apparatus: Helium-Neon laser or diode laser, a single slit with adjustable aperture width, optical detector and power

More information

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Real-world applications of intense light matter interaction beyond the scope of classical micromachining. Dr. Lukas Krainer lk@onefive.com CEO Real-world applications of intense light matter interaction beyond the scope of classical micromachining. 1 Management & Company Company Based in Zürich, Switzerland

More information

OPTICS MIRRORS AND LENSES

OPTICS MIRRORS AND LENSES Downloaded from OPTICS MIRRORS AND LENSES 1. An object AB is kept in front of a concave mirror as shown in the figure. (i)complete the ray diagram showing the image formation of the object. (ii) How will

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Secondary grating formation by readout at Bragg-null incidence

Secondary grating formation by readout at Bragg-null incidence Secondary grating formation by readout at Bragg-null incidence Ali Adibi, Jose Mumbru, Kelvin Wagner, and Demetri Psaltis We show that when a dynamic hologram is read out by illumination at the Bragg nulls

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1. Galvo-dithered direct laser writing (GD-DLW) method In order to rectify the asymmetry of the fabrication voxel of the direct laser writing (DLW) method, we have developed

More information

Analysis of Slanted Gratings for Lightguide Coupling

Analysis of Slanted Gratings for Lightguide Coupling Analysis of Slanted Gratings for Lightguide Coupling Abstract Slanted gratings are commonly used for coupling light into optical lightguides due to their high efficiency in a certain diffraction order.

More information

Plano-Convex Lenses. Read further. Catalog Items BK7 Plano-Convex Lenses. Description. Standard specifications. Features.

Plano-Convex Lenses. Read further. Catalog Items BK7 Plano-Convex Lenses. Description. Standard specifications. Features. Plano-Convex Lenses (PCX) PCX positive focal length lenses have flat surface on one side and spherical surface on the other. They are used for focusing beams in telescopes, collimators or condenser systems,

More information

The Overlapping Effects of Step Exposure by Laser Interferometric. Lithography System

The Overlapping Effects of Step Exposure by Laser Interferometric. Lithography System The Overlapping Effects of Step Exposure by Laser Interferometric Lithography System Hung-Lin Hsieh 1, Cheng-Wei Chien 1, Farn-Shiun Hwu 1,, Yi-cheng Huang 3, and *Jyh-Chen Chen 1 1 Dept. of Mechanical

More information

Supporting Information: Highly tunable elastic dielectric metasurface lenses

Supporting Information: Highly tunable elastic dielectric metasurface lenses Supporting Information: Highly tunable elastic dielectric metasurface lenses Seyedeh Mahsa Kamali, Ehsan Arbabi, Amir Arbabi, u Horie, and Andrei Faraon SUPPLEMENTAR NOTE : SAMPLING FREQUENC OF THE PHASE

More information

Optical properties and characterization

Optical properties and characterization Optical properties and characterization Name Picture Description Site Responsible 1 Laser Nd:YAG MAPLE (Matrix Assisted Pulsed Laser Evaporation) system for biomaterials and polymeric thin film deposition

More information

Systematic design process for slanted graing couplers,

Systematic design process for slanted graing couplers, Brigham Young University BYU ScholarsArchive All Faculty Publications 2006-08-20 Systematic design process for slanted graing couplers, Gregory P. Nordin nordin@byu.edu J. Jiang See next page for additional

More information

Layered media and photonic crystals. Cord Arnold / Anne L Huillier

Layered media and photonic crystals. Cord Arnold / Anne L Huillier Layered media and photonic crystals Cord Arnold / Anne L Huillier Definition A photonic crystal is a periodic arrangement of a dielectric material that exhibits strong interaction with light Variation

More information

Polymer Micro-Optics for Today s Compact Photonic Devices

Polymer Micro-Optics for Today s Compact Photonic Devices Polymer Micro-Optics for Today s Compact Photonic Devices Lynn Dobosz - North America Sales & Business Development for the Opto-Electronic Systems business unit of the Optical Systems division of Jenoptik

More information

1. Polarization effects in optical spectra of photonic crystals

1. Polarization effects in optical spectra of photonic crystals Speech for JASS 05. April 2005. Samusev A. 1. Polarization effects in optical spectra of photonic crystals Good afternoon. I would like to introduce myself. My name is Anton Samusev. I m a student of Saint

More information

10.5 Polarization of Light

10.5 Polarization of Light 10.5 Polarization of Light Electromagnetic waves have electric and magnetic fields that are perpendicular to each other and to the direction of propagation. These fields can take many different directions

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

A digital holography technique for generating beams with arbitrary polarization and shape

A digital holography technique for generating beams with arbitrary polarization and shape A digital holography technique for generating beams with arbitrary polarization and shape David aluenda a, Ignasi Juvells a, Rosario artínez-herrero b, Artur Carnicer a a Departament de Física Aplicada

More information

A comprehensive software suite for optical trapping and manipulation

A comprehensive software suite for optical trapping and manipulation A comprehensive software suite for optical trapping and manipulation Daryl Preece, Richard Bowman, Graham Gibson and Miles Padgett University of Glasgow, Department of Physics & Astronomy, University of

More information

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry phase difference at a given distance constructive/destructive interference Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

More information

Measurement of period difference in grating pair based on analysis of grating phase shift

Measurement of period difference in grating pair based on analysis of grating phase shift Measurement of period difference in grating pair based on analysis of grating phase shift Chao Guo, Lijiang Zeng State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision

More information

Efficient metal processing using high average power ultrafast laser

Efficient metal processing using high average power ultrafast laser Efficient metal processing using high average power ultrafast laser Strasbourg, September 13 th, 2017 J. Lopez J. Lopez et al., Journal of Laser Micro and Nanofabrication, submitted (2017) G. Mincuzzi

More information

Internal modification in transparent hybrid germanium-silica plates using plasma formation induced by a femtosecond laser

Internal modification in transparent hybrid germanium-silica plates using plasma formation induced by a femtosecond laser Trans. Nonferrous Met. Soc. China 22(2012) s808 s812 Internal modification in transparent hybrid germanium-silica plates using plasma formation induced by a femtosecond laser Ji-Wook YOON 1, Jung-Kyu PARK

More information

Total internal reflection diffraction grating in conical mounting

Total internal reflection diffraction grating in conical mounting Optics Communications 261 (2006) 13 18 www.elsevier.com/locate/optcom Total internal reflection diffraction grating in conical mounting L. Eisen *, M.A. Golub, A.A. Friesem Department of Physics of Complex

More information

Short pulse laser milling effects on surface integrity. P V Petkov, S S Dimov, R. Minev and D T Pham

Short pulse laser milling effects on surface integrity. P V Petkov, S S Dimov, R. Minev and D T Pham Short pulse laser milling effects on surface integrity P V Petkov, S S Dimov, R. Minev and D T Pham Presentation Outline 2 Overview Process description Experiments & Results Conclusions Overview 3 Pictures

More information

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Y. Fan, N. Lafferty, A. Bourov, L. Zavyalova, B. W. Smith Rochester Institute of Technology Microelectronic

More information