The Arbitration Problem

Size: px
Start display at page:

Download "The Arbitration Problem"

Transcription

1 HighPerform Switchingand TelecomCenterWorkshop:Sep outing ance t4, 97. EE84Y: Packet Switch Architectures Part II Load-balanced Switches ick McKeown Professor of Electrical Engineering and Computer Science, Stanford University The Arbitration Problem A packet switch fabric is reconfigured for every packet transfer. For example, at 60Gb/s, a new IP packet can arrive every ns. The configuration is picked to maximize throughput and not waste capacity. Known algorithms are probably too slow.

2 Approach We know that a crossbar with VOQs, and uniform Bernoulli i.i.d. arrivals, gives 00% throughput for the following scheduling algorithms: Pick a permutation uar from all permutations. Pick a permutation uar from the set of size in which each inputoutput pair (i,j) are connected exactly once in the set. From the same set as above, repeatedly cycle through a fixed sequence of different permutations. Can we make non-uniform, bursty traffic uniform enough for the above to hold? Design Example Stanford Optics in outers project Some challenging numbers: 00Tb/s 60Gb/s linecards 640 linecards Goals Scale to High Linecard Speeds (60Gb/s) o Centralized Scheduler Optical Switch Fabric Low Packet-Processing Complexity Scale to High umber of Linecards (640) Provide Performance Guarantees 00% Throughput Guarantee o Packet eordering 4

3 line Basic idea of load-balancing Packet mis-sequencing An optical switch fabric Scaling number of linecards 5 00% Throughput in a Mesh Fabric????????? Switch capacity = outer capacity = 6

4 If Traffic Is Uniform λ / µ = / / / / 7 / / / eal Traffic is ot Uniform / / /? / / / 8 4

5 Load-Balanced Switch Load-balancing stage Forwarding stage 00% throughput for weakly mixing traffic (Valiant, C.-S. Chang) 9 Load-Balanced Switch 0 5

6 Load-Balanced Switch tuition: 00% Throughput a b C Arrivals to second mesh: b = U a, where U = Capacity of second mesh: C = U Second mesh: arrival rate < service rate b -C = ( U a U ) < 0 [C.-S. Chang] 6

7 Another way of thinking about it External puts ternal puts External puts Load Balancing Load-balancing cyclic shift Switching cyclic shift First stage load-balances incoming packets Second stage is a cyclic shift Load-Balanced Switch External puts ternal puts External puts Load-balancing cyclic shift Switching cyclic shift 4 7

8 Main esult [Chang et al.]:. Consider a periodic sequence of permutation matrices: tˆ P( t) = P, where P is a one-cycle permutation matrix (for example, a TDM sequence), and tˆ = t mod.. If st stage is scheduled by a sequence of permutation matrices: P( t) = P( t + φ ), where φ is a random starting phase, and. The nd stage is scheduled by a sequence of permutation matrices: P ( t) = P( t + φ ), 4. Then the switch gives 00% throughput for a very broad range of traffic types. Observation: and breaks up burstiness. st stage makes non-uniform traffic uniform, 5 line of Chang s Proof. Let a( t) be the matrix of arrivals at time t, where a ( t) indicates an arrival at i for j. ij b( t) = P ( t) a( t). Let be the input traffic to the second stage.. Let q( t) be the queue length matrix: q( t ) = max q( t) + b( t + ) P ( t + ), 0, expands to + [ ] t 0 s t τ = s+ ( τ ) ( τ ) q( t) = max b P. Theorem: If no output is oversubscribed, q( t) converges to steady state q( ). Proof: E [ b( t) ] = E[ P ( t) a( t) ] = E [ P ( t) ] E[ a( t) ] = eλ. t lim b( s) P ( s) = eλ e 0. t t s= Holds under some mild conditions on a( t) (weakly mixing arrival processes). 6 8

9 line Basic idea of load-balancing Packet mis-sequencing An optical switch fabric Scaling number of linecards 7 Packet eordering 8 9

10 Bounding Delay Difference Between Middle Ports cells 9 UFS (Uniform Frame Spreading) = 0 0 0

11 FOFF (Full Ordered Frames First) FOFF (Full Ordered Frames First) 4 put Algorithm FIFO queues corresponding to the output flows Spread each flow uniformly: if last packet was sent to middle port k, send next to k+. Every time-slots, pick a flow: - If full frame exists, pick it and spread like UFS - Else if all frames are partial, pick one in round-robin order and send it

12 Bounding eordering FOFF put 4 put properties FIFO queues corresponding to the middle ports Buffer size less than packets If there are packets, one of the head-of-line packets is in order 4

13 FOFF Properties Property : FOFF maintains packet order. Property : FOFF has O() complexity. Property : Congestion buffers operate independently. Property 4: FOFF maintains an average packet delay within constant from ideal output-queued router. Corollary: FOFF has 00% throughput for any adversarial traffic. 5 put-queued outer????????? 6

14 line Basic idea of load-balancing Packet mis-sequencing An optical switch fabric Scaling number of linecards 7 From Two Meshes to One Mesh One linecard 8 4

15 From Two Meshes to One Mesh One linecard First mesh Second mesh 9 From Two Meshes to One Mesh Combined mesh 0 5

16 Many Fabric Options One linecard channels each at rate C, C,, C C C Options C Any spreading device Space: Full uniform mesh Time: ound-robin crossbar Wavelength: Static WDM C AWG (Arrayed Waveguide Grating outer) A Passive Optical Component Linecard λ, λ λ λ Linecard Linecard x AWG λ Linecard Linecard λ Linecard Wavelength i on input port j goes to output port (i+j-) mod Can shuffle information from different inputs 6

17 Static WDM Switching: Packaging A A, A, A, A A, B, C, D B B, B, B, B A, B, C, D AWG C D C, C, C, C A, B, C, D D, D, D, D A, B, C, D Passive and Almost Zero Power WDM channels, each at rate line Basic idea of load-balancing Packet mis-sequencing An optical switch fabric Scaling number of linecards 4 7

18 Scaling Problem For < 64, an AWG is a good solution. We want = 640. eed to decompose. 5 A Different epresentation of the Mesh Mesh 6 8

19 A Different epresentation of the Mesh 7 Example: =8 /

20 When is Too Large Decompose into groups (or racks) 4 4/ When is Too Large Decompose into groups (or racks) Group/ack Group/ack L L L/G L/G L L Group/ack G L L L/G L/G Group/ack G L L 40 0

21 line Basic idea of load-balancing Packet mis-sequencing An optical switch fabric Scaling number of linecards 4

Scaling routers: Where do we go from here?

Scaling routers: Where do we go from here? Scaling routers: Where do we go from here? HPSR, Kobe, Japan May 28 th, 2002 Nick McKeown Professor of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu www.stanford.edu/~nickm

More information

Scaling Internet Routers Using Optics Producing a 100TB/s Router. Ashley Green and Brad Rosen February 16, 2004

Scaling Internet Routers Using Optics Producing a 100TB/s Router. Ashley Green and Brad Rosen February 16, 2004 Scaling Internet Routers Using Optics Producing a 100TB/s Router Ashley Green and Brad Rosen February 16, 2004 Presentation Outline Motivation Avi s Black Box Black Box: Load Balance Switch Conclusion

More information

THE LOAD-BALANCED ROUTER

THE LOAD-BALANCED ROUTER THE LOAD-BALACED ROUTER a dissertation submitted to the department of electrical engineering and the committee on graduate studies of stanford university in partial fulfillment of the requirements for

More information

Parallelism in Network Systems

Parallelism in Network Systems High Performance Switching Telecom Center Workshop: and outing Sept 4, 997. Parallelism in Network Systems Joint work with Sundar Iyer HP Labs, 0 th September, 00 Nick McKeown Professor of Electrical Engineering

More information

The Concurrent Matching Switch Architecture

The Concurrent Matching Switch Architecture The Concurrent Matching Switch Architecture Bill Lin Isaac Keslassy University of California, San Diego, La Jolla, CA 9093 0407. Email: billlin@ece.ucsd.edu Technion Israel Institute of Technology, Haifa

More information

Scaling Internet Routers Using Optics (Extended Version)

Scaling Internet Routers Using Optics (Extended Version) STAFOD HPG TECHICAL EPOT T0-HPG-0800 Scaling Internet outers Using Optics (Extended Version) Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David iller, ark Horowitz, Olav Solgaard, ick ckeown Stanford

More information

Scaling Internet Routers Using Optics

Scaling Internet Routers Using Optics Scaling Internet outers Using Optics Isaac Keslassy Shang-Tse Chuang Kyoungsik Yu David iller ark Horowitz Olav Solgaard ick ckeown Stanford University ABSTACT outers built around a single-stage crossbar

More information

THE LOAD-BALANCED ROUTER

THE LOAD-BALANCED ROUTER THE LOAD-BALACED ROUTER a dissertation submitted to the department of electrical engineering and the committee on graduate studies of stanford university in partial fulfillment of the requirements for

More information

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology Themes The Network 1 Low Power Computing David Andersen Carnegie Mellon University Last two classes: Saving power by running more slowly and sleeping more. This time: Network intro; saving power by architecting

More information

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Neda Beheshti, Nick Mckeown Stanford University Abstract In all internet routers buffers are needed to hold packets during times of congestion.

More information

EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches

EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches High Performance Switching and Routing Telecom Center Workshop: Sept 4, 997. EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches Nick McKeown Professor of Electrical Engineering and Computer

More information

048866: Packet Switch Architectures

048866: Packet Switch Architectures 048866: Packet Switch Architectures Output-Queued Switches Deterministic Queueing Analysis Fairness and Delay Guarantees Dr. Isaac Keslassy Electrical Engineering, Technion isaac@ee.technion.ac.il http://comnet.technion.ac.il/~isaac/

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information

Switch Datapath in the Stanford Phictious Optical Router (SPOR)

Switch Datapath in the Stanford Phictious Optical Router (SPOR) Switch Datapath in the Stanford Phictious Optical Router (SPOR) H. Volkan Demir, Micah Yairi, Vijit Sabnis Arpan Shah, Azita Emami, Hossein Kakavand, Kyoungsik Yu, Paulina Kuo, Uma Srinivasan Optics and

More information

A Split-Central-Buffered Load-Balancing Clos-Network Switch with In-Order Forwarding

A Split-Central-Buffered Load-Balancing Clos-Network Switch with In-Order Forwarding A Split-Central-Buffered Load-Balancing Clos-Network Switch with In-Order Forwarding Oladele Theophilus Sule, Roberto Rojas-Cessa, Ziqian Dong, Chuan-Bi Lin, arxiv:8265v [csni] 3 Dec 28 Abstract We propose

More information

Packet Switch Architectures Part 2

Packet Switch Architectures Part 2 Packet Switch Architectures Part Adopted from: Sigcomm 99 Tutorial, by Nick McKeown and Balaji Prabhakar, Stanford University Slides used with permission from authors. 999-000. All rights reserved by authors.

More information

Optical Packet Switching

Optical Packet Switching Optical Packet Switching DEISNet Gruppo Reti di Telecomunicazioni http://deisnet.deis.unibo.it WDM Optical Network Legacy Networks Edge Systems WDM Links λ 1 λ 2 λ 3 λ 4 Core Nodes 2 1 Wavelength Routing

More information

Basic Switch Organization

Basic Switch Organization NOC Routing 1 Basic Switch Organization 2 Basic Switch Organization Link Controller Used for coordinating the flow of messages across the physical link of two adjacent switches 3 Basic Switch Organization

More information

Sample Routers and Switches. High Capacity Router Cisco CRS-1 up to 46 Tb/s thruput. Routers in a Network. Router Design

Sample Routers and Switches. High Capacity Router Cisco CRS-1 up to 46 Tb/s thruput. Routers in a Network. Router Design outer Design outers in a Network Overview of Generic outer Architecture Input-d Switches (outers) IP Look-up Algorithms Packet Classification Algorithms Sample outers and Switches Cisco 46 outer up to

More information

Routing, Routers, Switching Fabrics

Routing, Routers, Switching Fabrics Routing, Routers, Switching Fabrics Outline Link state routing Link weights Router Design / Switching Fabrics CS 640 1 Link State Routing Summary One of the oldest algorithm for routing Finds SP by developing

More information

Lecture 16: Router Design

Lecture 16: Router Design Lecture 16: Router Design CSE 123: Computer Networks Alex C. Snoeren Eample courtesy Mike Freedman Lecture 16 Overview End-to-end lookup and forwarding example Router internals Buffering Scheduling 2 Example:

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 8: IP Router Design Many portions courtesy Nick McKeown Overview Router basics Interconnection architecture Input Queuing Output Queuing Virtual output Queuing

More information

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off Crossbar Crossbar - example Simple space-division switch Crosspoints can be turned on or off i n p u t s sessions: (,) (,) (,) (,) outputs Crossbar Advantages: simple to implement simple control flexible

More information

Internet Routers Past, Present and Future

Internet Routers Past, Present and Future Internet Routers Past, Present and Future Nick McKeown Stanford University British Computer Society June 2006 Outline What is an Internet router? What limits performance: Memory access time The early days:

More information

CS 552 Computer Networks

CS 552 Computer Networks CS 55 Computer Networks IP forwarding Fall 00 Rich Martin (Slides from D. Culler and N. McKeown) Position Paper Goals: Practice writing to convince others Research an interesting topic related to networking.

More information

Router/switch architectures. The Internet is a mesh of routers. The Internet is a mesh of routers. Pag. 1

Router/switch architectures. The Internet is a mesh of routers. The Internet is a mesh of routers. Pag. 1 Router/switch architectures Andrea Bianco Telecommunication etwork Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer etworks Design and Management - The Internet is a mesh of

More information

Router s Queue Management

Router s Queue Management Router s Queue Management Manages sharing of (i) buffer space (ii) bandwidth Q1: Which packet to drop when queue is full? Q2: Which packet to send next? FIFO + Drop Tail Keep a single queue Answer to Q1:

More information

Dynamic Scheduling Algorithm for input-queued crossbar switches

Dynamic Scheduling Algorithm for input-queued crossbar switches Dynamic Scheduling Algorithm for input-queued crossbar switches Mihir V. Shah, Mehul C. Patel, Dinesh J. Sharma, Ajay I. Trivedi Abstract Crossbars are main components of communication switches used to

More information

Crosstalk limiting schedulers in AWG-based optical switches

Crosstalk limiting schedulers in AWG-based optical switches Crosstalk limiting schedulers in AWG-based optical switches A. Bianco, D. Cuda, G. Gavilanes Castillo, F. Neri, M. Rodelgo Lacruz, F. J. González Castaño, C. López Bravo, M. Salvat Dip. di Elettronica,

More information

Router architectures: OQ and IQ switching

Router architectures: OQ and IQ switching Routers/switches architectures Andrea Bianco Telecommunication etwork Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer etwork Design - The Internet is a mesh of routers core

More information

Switching Hardware. Spring 2015 CS 438 Staff, University of Illinois 1

Switching Hardware. Spring 2015 CS 438 Staff, University of Illinois 1 Switching Hardware Spring 205 CS 438 Staff, University of Illinois Where are we? Understand Different ways to move through a network (forwarding) Read signs at each switch (datagram) Follow a known path

More information

Adaptive Linear Prediction of Queues for Reduced Rate Scheduling in Optical Routers

Adaptive Linear Prediction of Queues for Reduced Rate Scheduling in Optical Routers Adaptive Linear Prediction of Queues for Reduced Rate Scheduling in Optical Routers Yang Jiao and Ritesh Madan EE 384Y Final Project Stanford University Abstract This paper describes a switching scheme

More information

Routers with a Single Stage of Buffering *

Routers with a Single Stage of Buffering * Routers with a Single Stage of Buffering * Sundar Iyer, Rui Zhang, Nick McKeown Computer Systems Laboratory, Stanford University, Ph: (650)-725 9077, Fax: (650)-725 6949 Stanford, CA 94305-9030 {sundaes,

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

Efficient Multicast Support in Buffered Crossbars using Networks on Chip

Efficient Multicast Support in Buffered Crossbars using Networks on Chip Efficient Multicast Support in Buffered Crossbars using etworks on Chip Iria Varela Senin Lotfi Mhamdi Kees Goossens, Computer Engineering, Delft University of Technology, Delft, The etherlands XP Semiconductors,

More information

15-744: Computer Networking. Routers

15-744: Computer Networking. Routers 15-744: Computer Networking outers Forwarding and outers Forwarding IP lookup High-speed router architecture eadings [McK97] A Fast Switched Backplane for a Gigabit Switched outer Optional [D+97] Small

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

Scalable Schedulers for High-Performance Switches

Scalable Schedulers for High-Performance Switches Scalable Schedulers for High-Performance Switches Chuanjun Li and S Q Zheng Mei Yang Department of Computer Science Department of Computer Science University of Texas at Dallas Columbus State University

More information

A Novel Feedback-based Two-stage Switch Architecture

A Novel Feedback-based Two-stage Switch Architecture A Novel Feedback-based Two-stage Switch Architecture Kwan L. Yeung and N. H. Liu Dept. of Electrical and Electronic Engineering The University of Hong Kong Pokfulam, Hong Kong E-mail: kyeung@eee.hku.hk

More information

LS Example 5 3 C 5 A 1 D

LS Example 5 3 C 5 A 1 D Lecture 10 LS Example 5 2 B 3 C 5 1 A 1 D 2 3 1 1 E 2 F G Itrn M B Path C Path D Path E Path F Path G Path 1 {A} 2 A-B 5 A-C 1 A-D Inf. Inf. 1 A-G 2 {A,D} 2 A-B 4 A-D-C 1 A-D 2 A-D-E Inf. 1 A-G 3 {A,D,G}

More information

Electro-optic Switches Based on Space Switching of Multiplexed WDM Signals: Blocking vs Non-blocking Design Trade-offs

Electro-optic Switches Based on Space Switching of Multiplexed WDM Signals: Blocking vs Non-blocking Design Trade-offs 1 Electro-optic Switches Based on Space Switching of Multiplexed WDM Signals: Blocking vs Non-blocking Design Trade-offs Apostolos Siokis a,c, Konstantinos Christodoulopoulos b,c, Nikos Pleros d, Emmanouel

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS ATM SWITCHING ATM is a connection-oriented transport concept An end-to-end connection (virtual channel) established prior to transfer of cells Signaling used for connection

More information

Network Processors and their memory

Network Processors and their memory Network Processors and their memory Network Processor Workshop, Madrid 2004 Nick McKeown Departments of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm

More information

Citation Globecom - IEEE Global Telecommunications Conference, 2011

Citation Globecom - IEEE Global Telecommunications Conference, 2011 Title Achieving 100% throughput for multicast traffic in input-queued switches Author(s) Hu, B; He, C; Yeung, KL Citation Globecom - IEEE Global Telecommunications Conference, 2011 Issued Date 2011 URL

More information

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1,

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1, Topics for Today Network Layer Introduction Addressing Address Resolution Readings Sections 5.1, 5.6.1-5.6.2 1 Network Layer: Introduction A network-wide concern! Transport layer Between two end hosts

More information

Routers with a Single Stage of Buffering *

Routers with a Single Stage of Buffering * Routers with a Single Stage of Buffering * Sundar Iyer, Rui Zhang, Nick McKeown Computer Systems Laboratory, Stanford University, Ph: (650)-725 9077, Fax: (650)-725 6949 Stanford, CA 94305-9030 {sundaes,

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Input Port Functions Routers: Forwarding EECS 22: Lecture 3 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Physical layer: bit-level reception ata link layer:

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

THERE has been much interest recently in a class of. The Interleaved Matching Switch Architecture

THERE has been much interest recently in a class of. The Interleaved Matching Switch Architecture IEEE TRASACTIOS O COMMUICATIOS, VOL. 57, O., DECEMBER 009 The Interleaved Matching Switch Architecture Bill Lin, Member, IEEE, and Isaac Keslassy, Member, IEEE. Abstract Operators need routers to provide

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-8 outers Forwarding and outers Forwarding IP lookup High-speed router architecture eadings [McK97] A Fast Switched Backplane for a Gigabit Switched outer [KCY03] Scaling ternet

More information

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Abstract -- Most high performance routers today use combined input and output queueing (CIOQ). The CIOQ router is also

More information

Doubling Memory Bandwidth for Network Buffers

Doubling Memory Bandwidth for Network Buffers Doubling Memory Bandwidth for Network Buffers Youngmi Joo Nick McKeown Department of Electrical Engineering, Stanford University, Stanford, CA 9435-93 {jym,nickm}@leland.stanford.edu Abstract Memory bandwidth

More information

Routers Technologies & Evolution for High-Speed Networks

Routers Technologies & Evolution for High-Speed Networks Routers Technologies & Evolution for High-Speed Networks C. Pham Université de Pau et des Pays de l Adour http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Router Evolution slides from Nick McKeown,

More information

From Routing to Traffic Engineering

From Routing to Traffic Engineering 1 From Routing to Traffic Engineering Robert Soulé Advanced Networking Fall 2016 2 In the beginning B Goal: pair-wise connectivity (get packets from A to B) Approach: configure static rules in routers

More information

Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13

Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13 Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13 Department of Electrical Engineering and Computer Sciences University of California Berkeley Review: Switch Architectures Input Queued

More information

Using Traffic Models in Switch Scheduling

Using Traffic Models in Switch Scheduling I. Background Using Traffic Models in Switch Scheduling Hammad M. Saleem, Imran Q. Sayed {hsaleem, iqsayed}@stanford.edu Conventional scheduling algorithms use only the current virtual output queue (VOQ)

More information

FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues

FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues D.N. Serpanos and P.I. Antoniadis Department of Computer Science University of Crete Knossos Avenue

More information

Matching Schemes with Captured-Frame Eligibility for Input-Queued Packet Switches

Matching Schemes with Captured-Frame Eligibility for Input-Queued Packet Switches Matching Schemes with Captured-Frame Eligibility for -Queued Packet Switches Roberto Rojas-Cessa and Chuan-bi Lin Abstract Virtual output queues (VOQs) are widely used by input-queued (IQ) switches to

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Routers: Forwarding EECS 122: Lecture 13 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Router Architecture Overview Two key router functions: run routing algorithms/protocol

More information

Optical Communications and Networking 朱祖勍. Nov. 27, 2017

Optical Communications and Networking 朱祖勍. Nov. 27, 2017 Optical Communications and Networking Nov. 27, 2017 1 What is a Core Network? A core network is the central part of a telecommunication network that provides services to customers who are connected by

More information

CFSB: A Load Balanced Switch Architecture with O (1) Complexity

CFSB: A Load Balanced Switch Architecture with O (1) Complexity 200 3rd International Conference on Computer and Electrical Engineering (ICCEE 200) IPCSIT vol. 53 (202) (202) IACSIT Press, Singapore DOI: 0.7763/IPCSIT.202.V53.No..02 CFSB: A Load Balanced Switch Architecture

More information

Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch

Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch Ziqian Dong and Roberto Rojas-Cessa Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Edge versus Host Pacing of TCP Traffic in Small Buffer Networks

Edge versus Host Pacing of TCP Traffic in Small Buffer Networks Edge versus Host Pacing of TCP Traffic in Small Buffer Networks Hassan Habibi Gharakheili 1, Arun Vishwanath 2, Vijay Sivaraman 1 1 University of New South Wales (UNSW), Australia 2 University of Melbourne,

More information

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services Shared-Memory Combined -Crosspoint Buffered Packet Switch for Differentiated Services Ziqian Dong and Roberto Rojas-Cessa Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie INF5050 Protocols and Routing in Internet (Friday 9.2.2018) Subject: IP-router architecture Presented by Tor Skeie High Performance Switching and Routing Telecom Center Workshop: Sept 4, 1997. This presentation

More information

Computer Simulations of a Modified MiMa-algorithm for a Crossbar Packet Switch

Computer Simulations of a Modified MiMa-algorithm for a Crossbar Packet Switch INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE Computer Simulations of a Modified MiMa-algorithm for a Crossbar Packet Switch Tasho Tashev, Vladimir Monov {ttashev,vmonov}@iit.bas.bg

More information

Randomized Scheduling Algorithms for High-Aggregate Bandwidth Switches

Randomized Scheduling Algorithms for High-Aggregate Bandwidth Switches 546 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003 Randomized Scheduling Algorithms for High-Aggregate Bandwidth Switches Paolo Giaccone, Member, IEEE, Balaji Prabhakar, Member,

More information

Switching Using Parallel Input Output Queued Switches With No Speedup

Switching Using Parallel Input Output Queued Switches With No Speedup IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002 653 Switching Using Parallel Input Output Queued Switches With No Speedup Saad Mneimneh, Vishal Sharma, Senior Member, IEEE, and Kai-Yeung

More information

On Scheduling Unicast and Multicast Traffic in High Speed Routers

On Scheduling Unicast and Multicast Traffic in High Speed Routers On Scheduling Unicast and Multicast Traffic in High Speed Routers Kwan-Wu Chin School of Electrical, Computer and Telecommunications Engineering University of Wollongong kwanwu@uow.edu.au Abstract Researchers

More information

Multicast Scheduling in WDM Switching Networks

Multicast Scheduling in WDM Switching Networks Multicast Scheduling in WDM Switching Networks Zhenghao Zhang and Yuanyuan Yang Dept. of Electrical & Computer Engineering, State University of New York, Stony Brook, NY 11794, USA Abstract Optical WDM

More information

PCRRD: A Pipeline-Based Concurrent Round-Robin Dispatching Scheme for Clos-Network Switches

PCRRD: A Pipeline-Based Concurrent Round-Robin Dispatching Scheme for Clos-Network Switches : A Pipeline-Based Concurrent Round-Robin Dispatching Scheme for Clos-Network Switches Eiji Oki, Roberto Rojas-Cessa, and H. Jonathan Chao Abstract This paper proposes a pipeline-based concurrent round-robin

More information

1 Architectures of Internet Switches and Routers

1 Architectures of Internet Switches and Routers 1 Architectures of Internet Switches and Routers Xin Li, Lotfi Mhamdi, Jing Liu, Konghong Pun, and Mounir Hamdi The Hong-Kong University of Science & Technology. {lixin,lotfi,liujing, konghong,hamdi}@cs.ust.hk

More information

Packet Switching Queuing Architecture: A Study

Packet Switching Queuing Architecture: A Study Packet Switching Queuing Architecture: A Study Shikhar Bahl 1, Rishabh Rai 2, Peeyush Chandra 3, Akash Garg 4 M.Tech, Department of ECE, Ajay Kumar Garg Engineering College, Ghaziabad, U.P., India 1,2,3

More information

Topology basics. Constraints and measures. Butterfly networks.

Topology basics. Constraints and measures. Butterfly networks. EE48: Advanced Computer Organization Lecture # Interconnection Networks Architecture and Design Stanford University Topology basics. Constraints and measures. Butterfly networks. Lecture #: Monday, 7 April

More information

Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

Packetisation in Optical Packet Switch Fabrics using adaptive timeout values Packetisation in Optical Packet Switch Fabrics using adaptive timeout values Brian B. Mortensen COM DTU Technical University of Denmark DK-28 Kgs. Lyngby Email: bbm@com.dtu.dk Abstract Hybrid electro-optical

More information

Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture

Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture Chuck Zhao 1 Hao Wang 2 Bill Lin 2 Jim Xu 1 1 Georgia Institute of Technology 2 University of California, San Diego

More information

A Partially Buffered Crossbar Packet Switching Architecture and its Scheduling

A Partially Buffered Crossbar Packet Switching Architecture and its Scheduling A Partially Buffered Crossbar Packet Switching Architecture and its Scheduling Lotfi Mhamdi Computer Engineering Laboratory TU Delft, The etherlands lotfi@ce.et.tudelft.nl Abstract The crossbar fabric

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

Lecture 17: Router Design

Lecture 17: Router Design Lecture 17: Router Design CSE 123: Computer Networks Alex C. Snoeren Eample courtesy Mike Freedman Lecture 17 Overview Finish up BGP relationships Router internals Buffering Scheduling 2 Peer-to-Peer Relationship

More information

Design and Performance Analysis of a Practical Load-Balanced Switch

Design and Performance Analysis of a Practical Load-Balanced Switch 242 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 57, NO 8, AUGUST 29 Design and Performance Analysis of a Practical Load-Balanced Switch Yanming Shen, Shivendra S Panwar, and H Jonathan Chao Abstract The load-balanced

More information

DESIGN OF EFFICIENT ROUTING ALGORITHM FOR CONGESTION CONTROL IN NOC

DESIGN OF EFFICIENT ROUTING ALGORITHM FOR CONGESTION CONTROL IN NOC DESIGN OF EFFICIENT ROUTING ALGORITHM FOR CONGESTION CONTROL IN NOC 1 Pawar Ruchira Pradeep M. E, E&TC Signal Processing, Dr. D Y Patil School of engineering, Ambi, Pune Email: 1 ruchira4391@gmail.com

More information

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services Shared-Memory Combined -Crosspoint Buffered Packet Switch for Differentiated Services Ziqian Dong and Roberto Rojas-Cessa Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF Your Name: Answers SUNet ID: root @stanford.edu In accordance with both the letter and the

More information

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t Announcements Network Performance: Queuing Additional reading for today s lecture: Peterson & Davie 3.4 EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson As: Dilip

More information

Scheduling Algorithms for Input-Queued Cell Switches. Nicholas William McKeown

Scheduling Algorithms for Input-Queued Cell Switches. Nicholas William McKeown Scheduling Algorithms for Input-Queued Cell Switches by Nicholas William McKeown B.Eng (University of Leeds) 1986 M.S. (University of California at Berkeley) 1992 A thesis submitted in partial satisfaction

More information

A New Integrated Unicast/Multicast Scheduler for Input-Queued Switches

A New Integrated Unicast/Multicast Scheduler for Input-Queued Switches Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 20), Brisbane, Australia A New Integrated Unicast/Multicast Scheduler for Input-Queued Switches Kwan-Wu Chin School of Electrical,

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture

Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture Design and Performance Analysis of a DRAM-based Statistics Counter Array Architecture Chuck Zhao 1 Hao Wang 2 Bill Lin 2 1 1 Georgia Tech 2 UCSD October 2nd, 2008 Broader High-Level Question What are the

More information

A Four-Terabit Single-Stage Packet Switch with Large. Round-Trip Time Support. F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I.

A Four-Terabit Single-Stage Packet Switch with Large. Round-Trip Time Support. F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. A Four-Terabit Single-Stage Packet Switch with Large Round-Trip Time Support F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Iliadis IBM Research, Zurich Research Laboratory, CH-8803 Ruschlikon, Switzerland

More information

Providing Flow Based Performance Guarantees for Buffered Crossbar Switches

Providing Flow Based Performance Guarantees for Buffered Crossbar Switches Providing Flow Based Performance Guarantees for Buffered Crossbar Switches Deng Pan Dept. of Electrical & Computer Engineering Florida International University Miami, Florida 33174, USA pand@fiu.edu Yuanyuan

More information

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yuki Koizumi. February 15th, 2006

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yuki Koizumi. February 15th, 2006 Master s Thesis Title Cross-Layer Traffic Engineering in IP over WDM Networks Supervisor Professor Masayuki Murata Author Yuki Koizumi February 15th, 2006 Graduate School of Information Science and Technology

More information

Globecom. IEEE Conference and Exhibition. Copyright IEEE.

Globecom. IEEE Conference and Exhibition. Copyright IEEE. Title FTMS: an efficient multicast scheduling algorithm for feedbackbased two-stage switch Author(s) He, C; Hu, B; Yeung, LK Citation The 2012 IEEE Global Communications Conference (GLOBECOM 2012), Anaheim,

More information

Multiconfiguration Multihop Protocols: A New Class of Protocols for Packet-Switched WDM Optical Networks

Multiconfiguration Multihop Protocols: A New Class of Protocols for Packet-Switched WDM Optical Networks Multiconfiguration Multihop Protocols: A New Class of Protocols for Packet-Switched WDM Optical Networks Jason P. Jue, Member, IEEE, and Biswanath Mukherjee, Member, IEEE Abstract Wavelength-division multiplexing

More information

Slim Fly: A Cost Effective Low-Diameter Network Topology

Slim Fly: A Cost Effective Low-Diameter Network Topology TORSTEN HOEFLER, MACIEJ BESTA Slim Fly: A Cost Effective Low-Diameter Network Topology Images belong to their creator! NETWORKS, LIMITS, AND DESIGN SPACE Networks cost 25-30% of a large supercomputer Hard

More information

EE 122: Router Design

EE 122: Router Design Routers EE 22: Router Design Kevin Lai September 25, 2002.. A router consists - A set of input interfaces at which packets arrive - A set of output interfaces from which packets depart - Some form of interconnect

More information

Efficient Queuing Architecture for a Buffered Crossbar Switch

Efficient Queuing Architecture for a Buffered Crossbar Switch Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 95 Efficient Queuing Architecture for a Buffered Crossbar Switch MICHAEL

More information

Designing Buffer Capacity of Crosspoint-Queued Switch

Designing Buffer Capacity of Crosspoint-Queued Switch Designing Buffer Capacity of Crosspoint-Queued Switch Guo Chen, Dan Pei, Youjian Zhao, Yongqian Sun To cite this version: Guo Chen, Dan Pei, Youjian Zhao, Yongqian Sun. Designing Buffer Capacity of Crosspoint-Queued

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information