Sample Routers and Switches. High Capacity Router Cisco CRS-1 up to 46 Tb/s thruput. Routers in a Network. Router Design

Size: px
Start display at page:

Download "Sample Routers and Switches. High Capacity Router Cisco CRS-1 up to 46 Tb/s thruput. Routers in a Network. Router Design"

Transcription

1 outer Design outers in a Network Overview of Generic outer Architecture Input-d Switches (outers) IP Look-up Algorithms Packet Classification Algorithms Sample outers and Switches Cisco 46 outer up to 60 Gb/s throughput up to 0 Gb/s ports Juniper Networks T640 outer up to 60 Gb/s throughput up to 0 Gb/s ports High Capacity outer Cisco CS- up to 46 Tb/s thruput two rack types 640 Gb/s thruput up to 6 line cards up to 40 Gb/s each up to 7 racks 3Com port gigabit Ethernet switch 3 4

2 Components of a Basic outer Input/Output Interfaces (II, OI) convert between optical signals and electronic signals extract timing from received signals encode (decode) data for transmission Input Port Processor (IPP) synchronize signals determine required OI or OIs from routing table Output Port Processor (OPP) queue outgoing cells shared bus interconnects IPPs and OPPs II routing table IPP CP OPP OI output queue Control Processor (CP)» configures routing tables» coordinates end-to-end channel setup together with neighboring routers Data Hdr Data Hdr Generic outer Architecture IP Header IP Header IP Header N times line rate Data Hdr N N Packet N times line rate Packet Packet 5 6 Point-to-Point Switch (3 rd Generation) Placement: Output Port Queuing Switched Backplane Line Card CPU Card Line Card Local outing Local Typically < 50Gbps aggregate capacity Fwding MAC Fwding MAC ing when the aggregate arrival rate exceeds the output line speed must operate at very high speed 7 8

3 Data Hdr Switching Speed-up Needed IP Header Packet Simple model of output queued switch Data Hdr IP Header Data Hdr N N IP Header N times line rate N times line rate Packet Packet Link, ingress Link rate, Link, ingress Link 3, ingress Link 4, ingress Link, egress Link rate, Link, egress Link 3, egress Link 4, egress 9 0 Characteristics of an output queued (OQ) switch arriving packets immediately written into output queue, without intermediate buffering flow of packets to one output does not affect flow to another output OQ switch is work conserving: output line always busy when there is a packet in switch for it OQ switch has highest throughput, lowest average delay Placement: Input Port Queuing Fabric slower than input ports combined So, queuing may occur at input queues Head-of-the-Line (HOL) blocking d packet at the front of the queue prevents others in queue from moving forward

4 Simple model of input queued switch Link Link Link 3 Link 4 Link, ingress Link, ingress Link 3, ingress Link 4, ingress Link, egress Link, egress Link 3, egress Link 4, egress Head-of-line Blocking Packet at the head of an input queue cannot be transferred, thus blocking the following packets (or cells packets of fixed size) Cannot be transferred because is blocked by red packet Input Input Input 3 Cannot be transferred because output buffer full Output Output Output Characteristics of an input queued (IQ) switch Placement: Design Trade-offs arriving packets written into input queue only one packet can be sent to output link at a time head-of-line blocking IQ switch cannot keep output links fully utilized Output queues Pro: work-conserving, so maximizes throughput Con: memory must operate at speed N* Input queues Pro: memory can operate at speed Con: head-of-line blocking for access to output Work-conserving: output line is always busy when there is a packet in the switch for it Head-of-line blocking: head packet in a FIFO cannot be transmitted, forcing others to wait 5 6

5 What is capacity of IQ: Model [optional: Karol et al Globecom 86] Large input-queued switch with single FIFO at each input packet destinations iid (independently, identically distributed), uniform across outputs HoL blocked packets not flushed throughput analysis saturated switch (ie, always arrival at each input queue) focus on one output port O X t - number of packets that did not get to O at end of slot t D t - number balls removed from inputs port at the end of t D t is switch thruput 7 Model (cont d) A t+ - no of new HOL packets in input ports with destination O X t+ = (X t -) + + A t+ D = / N k t k Dt k where ( ) ( ) ( ) P A t+ k = / N E(D t ) = ρn where ρ is output throughput for large N, binomial distribution can be approximated by Poisson distribution, k ρ ρ P( A t = k) e k! 8 EX = Model (cont d) E( A ) + EA ( EA) ( EA) A outer with Input s Head of Line Blocking where EA = ρ, E(A ) = ρ + ρ therefore ρ ρ EX = ( ρ ) Delay EX =, therefore = and ρ =- 586% ρ ρ ( ρ) 0% 0% 40% 60% 80% 00% Load 58% 9 0

6 Solution to Avoid Head-of-line Blocking Virtual Output ing How to improve capacity without increasing switching fabric speed? Maintain at each input N virtual queues, ie, one per output use non-fifo scheduler, matching input/output Input Input Input 3 Output Output Output 3 assume fixed length packets each input manages separate queue per output at each time, matching scheduler finds best possible packets from inputs to said to outputs maximum-weight matching N matching scheduler N Matching L ij (t): no of packets at input i for output j at t bipartite graph (V V,E), E V V V,V inputs, outputs (i,j) E iff L ij (t) > 0 matching: subset of E such that input no two edges are adjacent output Scheduling Algorithms Practical Maximal Matchings Max Size Matching Max Wt Matching Not stable Not stable Stable 3 4

7 Maximal matching Not stable Switch Algorithms Max Size Matching Max Wt Matching Not stable Stable, low backlogs Better performance Better Matching Algorithms Need simple algorithms that perform well efficient packet processing packets at line speeds high throughput low latencies/backlogs andomized algorithms with linear complexity available Tassiulas andomized Algorithm LAUA SEENA Use both randomization, history, problem structure and arrival information Easier to implement 5 6 Combined Input-Output d (CIOQ) outers Both input and output interfaces store packets Advantages Easy to built Utilization can be achieved with limited input/output speedup (<= ) Disadvantages Harder to design algorithms Two congestion points Need to design flow control input interface Backplane output interface O C OQ Emulation Each input and output maintains a preference list Input preference list: list of cells at that input ordered in the inverse order of their arrival Output preference list: list of all input cells to be forwarded to that output ordered by the times they would be served in an Output ing schedule Use Gale Shapely Algorithm (GSA) to match inputs to outputs Outputs initiate the matching Can emulate all work-conserving schedulers 7 8

8 Output Emulation using CIOQ (with Speed-up) Stable Matching -- Gale Shapely Algorithm (GSA) While there are unmatched output that are not rejected by all input do Each unmatched output requests its most preferred packet from an input that has not rejected it yet Each input grants the request to the output with the most preferred cell A stable matching exists for every set of preference lists Complexity: worst-case O(N ) 9 Example 30

Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai

Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai Routers.. A router consists - A set of input interfaces at which packets arrive - A set of output interfaces from which

More information

EE 122: Router Design

EE 122: Router Design Routers EE 22: Router Design Kevin Lai September 25, 2002.. A router consists - A set of input interfaces at which packets arrive - A set of output interfaces from which packets depart - Some form of interconnect

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary TOC Switching Why? Direct vs. Switched Networks: n links Single link Direct Network

More information

Lecture 16: Router Design

Lecture 16: Router Design Lecture 16: Router Design CSE 123: Computer Networks Alex C. Snoeren Eample courtesy Mike Freedman Lecture 16 Overview End-to-end lookup and forwarding example Router internals Buffering Scheduling 2 Example:

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 8: IP Router Design Many portions courtesy Nick McKeown Overview Router basics Interconnection architecture Input Queuing Output Queuing Virtual output Queuing

More information

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4 CSCD 330 Network Superhighway Network Programming Winter 2015 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary Why? Direct vs. Switched Networks: Single link Switches Direct Network Limitations:

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1,

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1, Topics for Today Network Layer Introduction Addressing Address Resolution Readings Sections 5.1, 5.6.1-5.6.2 1 Network Layer: Introduction A network-wide concern! Transport layer Between two end hosts

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Network Superhighway Spring 2018 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Routers: Forwarding EECS 122: Lecture 13 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Router Architecture Overview Two key router functions: run routing algorithms/protocol

More information

LS Example 5 3 C 5 A 1 D

LS Example 5 3 C 5 A 1 D Lecture 10 LS Example 5 2 B 3 C 5 1 A 1 D 2 3 1 1 E 2 F G Itrn M B Path C Path D Path E Path F Path G Path 1 {A} 2 A-B 5 A-C 1 A-D Inf. Inf. 1 A-G 2 {A,D} 2 A-B 4 A-D-C 1 A-D 2 A-D-E Inf. 1 A-G 3 {A,D,G}

More information

048866: Packet Switch Architectures

048866: Packet Switch Architectures 048866: Packet Switch Architectures Output-Queued Switches Deterministic Queueing Analysis Fairness and Delay Guarantees Dr. Isaac Keslassy Electrical Engineering, Technion isaac@ee.technion.ac.il http://comnet.technion.ac.il/~isaac/

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

Lecture 17: Router Design

Lecture 17: Router Design Lecture 17: Router Design CSE 123: Computer Networks Alex C. Snoeren Eample courtesy Mike Freedman Lecture 17 Overview Finish up BGP relationships Router internals Buffering Scheduling 2 Peer-to-Peer Relationship

More information

Routing, Routers, Switching Fabrics

Routing, Routers, Switching Fabrics Routing, Routers, Switching Fabrics Outline Link state routing Link weights Router Design / Switching Fabrics CS 640 1 Link State Routing Summary One of the oldest algorithm for routing Finds SP by developing

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides are adapted

More information

ECE 697J Advanced Topics in Computer Networks

ECE 697J Advanced Topics in Computer Networks ECE 697J Advanced Topics in Computer Networks Switching Fabrics 10/02/03 Tilman Wolf 1 Router Data Path Last class: Single CPU is not fast enough for processing packets Multiple advanced processors in

More information

CSE 3214: Computer Network Protocols and Applications Network Layer

CSE 3214: Computer Network Protocols and Applications Network Layer CSE 314: Computer Network Protocols and Applications Network Layer Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 101C Lassonde

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Network Layer 4-1 Chapter 4: Network Layer Chapter

More information

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off Crossbar Crossbar - example Simple space-division switch Crosspoints can be turned on or off i n p u t s sessions: (,) (,) (,) (,) outputs Crossbar Advantages: simple to implement simple control flexible

More information

Packet Switch Architectures Part 2

Packet Switch Architectures Part 2 Packet Switch Architectures Part Adopted from: Sigcomm 99 Tutorial, by Nick McKeown and Balaji Prabhakar, Stanford University Slides used with permission from authors. 999-000. All rights reserved by authors.

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 1 Midterm exam Midterm this Thursday Close book but one-side 8.5"x11" note is allowed (must

More information

Key Network-Layer Functions

Key Network-Layer Functions Network Layer: Routing & Forwarding Instructor: Anirban Mahanti Office: ICT 745 Email: mahanti@cpsc.ucalgary.ca Class Location: ICT 121 Lectures: MWF 12:00 12:50 hours Notes derived from Computer Networking:

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Input Port Functions Routers: Forwarding EECS 22: Lecture 3 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Physical layer: bit-level reception ata link layer:

More information

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach Topic 4a Router Operation and Scheduling Ch4: Network Layer: The Data Plane Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 4-1 Chapter 4:

More information

Scalable Schedulers for High-Performance Switches

Scalable Schedulers for High-Performance Switches Scalable Schedulers for High-Performance Switches Chuanjun Li and S Q Zheng Mei Yang Department of Computer Science Department of Computer Science University of Texas at Dallas Columbus State University

More information

Professor Yashar Ganjali Department of Computer Science University of Toronto.

Professor Yashar Ganjali Department of Computer Science University of Toronto. Professor Yashar Ganjali Department of Computer Science University of Toronto yganjali@cs.toronto.edu http://www.cs.toronto.edu/~yganjali Today Outline What this course is about Logistics Course structure,

More information

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t Announcements Network Performance: Queuing Additional reading for today s lecture: Peterson & Davie 3.4 EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson As: Dilip

More information

Lecture 17: Router Design

Lecture 17: Router Design Lecture 17: Router Design CSE 123: Computer Networks Alex C. Snoeren HW 3 due WEDNESDAY Eample courtesy Mike Freedman Lecture 17 Overview BGP relationships Router internals Buffering Scheduling 2 Business

More information

Providing Flow Based Performance Guarantees for Buffered Crossbar Switches

Providing Flow Based Performance Guarantees for Buffered Crossbar Switches Providing Flow Based Performance Guarantees for Buffered Crossbar Switches Deng Pan Dept. of Electrical & Computer Engineering Florida International University Miami, Florida 33174, USA pand@fiu.edu Yuanyuan

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding Walrand Lecture TO: Switching & Forwarding Lecture Switching & Forwarding EES University of alifornia Berkeley Why? Switching Techniques Switch haracteristics Switch Examples Switch rchitectures Summary

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

Router Architecture Overview

Router Architecture Overview Router Architecture Overview What s inside a router? Philipp S. Tiesel philipp@inet.tu-berlin.de Slides credits to James Kempf & Anja Feldmann What does a Router Look Like? Ericsson SSR 8020 BNG/BRAS/PGW

More information

FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues

FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues FIRM: A Class of Distributed Scheduling Algorithms for High-speed ATM Switches with Multiple Input Queues D.N. Serpanos and P.I. Antoniadis Department of Computer Science University of Crete Knossos Avenue

More information

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Abstract -- Most high performance routers today use combined input and output queueing (CIOQ). The CIOQ router is also

More information

Router Architectures

Router Architectures Router Architectures Venkat Padmanabhan Microsoft Research 13 April 2001 Venkat Padmanabhan 1 Outline Router architecture overview 50 Gbps multi-gigabit router (Partridge et al.) Technology trends Venkat

More information

Lecture 5: Router Architecture. CS 598: Advanced Internetworking Matthew Caesar February 8, 2011

Lecture 5: Router Architecture. CS 598: Advanced Internetworking Matthew Caesar February 8, 2011 Lecture 5: Router Architecture CS 598: Advanced Internetworking Matthew Caesar February 8, 2011 1 IP Router... A router consists A set of input interfaces at which packets arrive A se of output interfaces

More information

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie INF5050 Protocols and Routing in Internet (Friday 9.2.2018) Subject: IP-router architecture Presented by Tor Skeie High Performance Switching and Routing Telecom Center Workshop: Sept 4, 1997. This presentation

More information

Routers Technologies & Evolution for High-Speed Networks

Routers Technologies & Evolution for High-Speed Networks Routers Technologies & Evolution for High-Speed Networks C. Pham Université de Pau et des Pays de l Adour http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Router Evolution slides from Nick McKeown,

More information

Switching Hardware. Spring 2015 CS 438 Staff, University of Illinois 1

Switching Hardware. Spring 2015 CS 438 Staff, University of Illinois 1 Switching Hardware Spring 205 CS 438 Staff, University of Illinois Where are we? Understand Different ways to move through a network (forwarding) Read signs at each switch (datagram) Follow a known path

More information

A Four-Terabit Single-Stage Packet Switch with Large. Round-Trip Time Support. F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I.

A Four-Terabit Single-Stage Packet Switch with Large. Round-Trip Time Support. F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. A Four-Terabit Single-Stage Packet Switch with Large Round-Trip Time Support F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Iliadis IBM Research, Zurich Research Laboratory, CH-8803 Ruschlikon, Switzerland

More information

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Neda Beheshti, Nick Mckeown Stanford University Abstract In all internet routers buffers are needed to hold packets during times of congestion.

More information

The IP Data Plane: Packets and Routers

The IP Data Plane: Packets and Routers The IP Data Plane: Packets and Routers EE 122, Fall 2013 Sylvia Ratnasamy http://inst.eecs.berkeley.edu/~ee122/ Material thanks to Ion Stoica, Scott Shenker, Jennifer Rexford, Nick McKeown, and many other

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

4. Time-Space Switching and the family of Input Queueing Architectures

4. Time-Space Switching and the family of Input Queueing Architectures 4. Time-Space Switching and the family of Input Queueing Architectures 4.1 Intro: Time-Space Sw.; Input Q ing w/o VOQ s 4.2 Input Queueing with VOQ s: Crossbar Scheduling 4.3 Adv.Topics: Pipelined, Packet,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a packet-switched network, packets are buffered when they cannot be processed or transmitted at the rate they arrive. There are three main reasons that a router, with generic

More information

Switch Fabric. Switch Fabric Overview

Switch Fabric. Switch Fabric Overview This chapter describes the Cisco CRS Carrier Routing System 16-Slot Line Card Chassis switch fabric. It includes the following sections: Overview, on page 1 Operation, on page 2 Card Description, on page

More information

Routers with a Single Stage of Buffering *

Routers with a Single Stage of Buffering * Routers with a Single Stage of Buffering * Sundar Iyer, Rui Zhang, Nick McKeown Computer Systems Laboratory, Stanford University, Ph: (650)-725 9077, Fax: (650)-725 6949 Stanford, CA 94305-9030 {sundaes,

More information

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology Themes The Network 1 Low Power Computing David Andersen Carnegie Mellon University Last two classes: Saving power by running more slowly and sleeping more. This time: Network intro; saving power by architecting

More information

The Arbitration Problem

The Arbitration Problem HighPerform Switchingand TelecomCenterWorkshop:Sep outing ance t4, 97. EE84Y: Packet Switch Architectures Part II Load-balanced Switches ick McKeown Professor of Electrical Engineering and Computer Science,

More information

Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13

Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13 Router Design: Table Lookups and Packet Scheduling EECS 122: Lecture 13 Department of Electrical Engineering and Computer Sciences University of California Berkeley Review: Switch Architectures Input Queued

More information

Introduction to Routers and LAN Switches

Introduction to Routers and LAN Switches Introduction to Routers and LAN Switches Session 3048_05_2001_c1 2001, Cisco Systems, Inc. All rights reserved. 3 Prerequisites OSI Model Networking Fundamentals 3048_05_2001_c1 2001, Cisco Systems, Inc.

More information

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS THE UNIVERSITY OF NAIROBI DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING FINAL YEAR PROJECT. PROJECT NO. 60 PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS OMARI JAPHETH N. F17/2157/2004 SUPERVISOR:

More information

Parallelism in Network Systems

Parallelism in Network Systems High Performance Switching Telecom Center Workshop: and outing Sept 4, 997. Parallelism in Network Systems Joint work with Sundar Iyer HP Labs, 0 th September, 00 Nick McKeown Professor of Electrical Engineering

More information

Router architectures: OQ and IQ switching

Router architectures: OQ and IQ switching Routers/switches architectures Andrea Bianco Telecommunication etwork Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer etwork Design - The Internet is a mesh of routers core

More information

CSE398: Network Systems Design

CSE398: Network Systems Design CSE398: Network Systems Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University March 14, 2005 Outline Classification

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24 EE 586 Communication and Switching Networks (Fall 2010) Lecture 24 October 25, 2010 1-1 Announcements Midterm 1: Mean = 92.2 Stdev = 8 Still grading your programs (sorry about the delay) Network Layer

More information

Cisco Series Internet Router Architecture: Packet Switching

Cisco Series Internet Router Architecture: Packet Switching Cisco 12000 Series Internet Router Architecture: Packet Switching Document ID: 47320 Contents Introduction Prerequisites Requirements Components Used Conventions Background Information Packet Switching:

More information

Packet Switching Queuing Architecture: A Study

Packet Switching Queuing Architecture: A Study Packet Switching Queuing Architecture: A Study Shikhar Bahl 1, Rishabh Rai 2, Peeyush Chandra 3, Akash Garg 4 M.Tech, Department of ECE, Ajay Kumar Garg Engineering College, Ghaziabad, U.P., India 1,2,3

More information

Analyzing CIOQ Routers with Localized Memories

Analyzing CIOQ Routers with Localized Memories Chapter 4: Analyzing CIOQ Routers with Localized Memories Feb 2008, Bombay, India Contents 4.1 Introduction... 89 4.1.1 A Note to the Reader... 92 4.1.2 Methodology... 92 4.2 Architecture of a Crossbar-based

More information

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks X. Yuan, R. Melhem and R. Gupta Department of Computer Science University of Pittsburgh Pittsburgh, PA 156 fxyuan,

More information

Router/switch architectures. The Internet is a mesh of routers. The Internet is a mesh of routers. Pag. 1

Router/switch architectures. The Internet is a mesh of routers. The Internet is a mesh of routers. Pag. 1 Router/switch architectures Andrea Bianco Telecommunication etwork Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer etworks Design and Management - The Internet is a mesh of

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Introduction to ATM Technology

Introduction to ATM Technology Introduction to ATM Technology ATM Switch Design Switching network (N x N) Switching network (N x N) SP CP SP CP Presentation Outline Generic Switch Architecture Specific examples Shared Buffer Switch

More information

Multicast Traffic in Input-Queued Switches: Optimal Scheduling and Maximum Throughput

Multicast Traffic in Input-Queued Switches: Optimal Scheduling and Maximum Throughput IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 11, NO 3, JUNE 2003 465 Multicast Traffic in Input-Queued Switches: Optimal Scheduling and Maximum Throughput Marco Ajmone Marsan, Fellow, IEEE, Andrea Bianco,

More information

CS-534 Packet Switch Architecture

CS-534 Packet Switch Architecture CS-534 Packet Switch Architecture The Hardware Architect s Perspective on High-Speed Networking and Interconnects Manolis Katevenis University of Crete and FORTH, Greece http://archvlsi.ics.forth.gr/~kateveni/534

More information

Scheduling. Scheduling algorithms. Scheduling. Output buffered architecture. QoS scheduling algorithms. QoS-capable router

Scheduling. Scheduling algorithms. Scheduling. Output buffered architecture. QoS scheduling algorithms. QoS-capable router Scheduling algorithms Scheduling Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Scheduling: choose a packet to transmit over a link among all

More information

Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch

Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch Long Round-Trip Time Support with Shared-Memory Crosspoint Buffered Packet Switch Ziqian Dong and Roberto Rojas-Cessa Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

CS 552 Computer Networks

CS 552 Computer Networks CS 55 Computer Networks IP forwarding Fall 00 Rich Martin (Slides from D. Culler and N. McKeown) Position Paper Goals: Practice writing to convince others Research an interesting topic related to networking.

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

EP2210 Scheduling. Lecture material:

EP2210 Scheduling. Lecture material: EP2210 Scheduling Lecture material: Bertsekas, Gallager, 6.1.2. MIT OpenCourseWare, 6.829 A. Parekh, R. Gallager, A generalized Processor Sharing Approach to Flow Control - The Single Node Case, IEEE Infocom

More information

Introduction: Two motivating examples for the analytical approach

Introduction: Two motivating examples for the analytical approach Introduction: Two motivating examples for the analytical approach Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. D. Manjunath Outline

More information

H3C S9500 QoS Technology White Paper

H3C S9500 QoS Technology White Paper H3C Key words: QoS, quality of service Abstract: The Ethernet technology is widely applied currently. At present, Ethernet is the leading technology in various independent local area networks (LANs), and

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information

CS-534 Packet Switch Architecture

CS-534 Packet Switch Architecture CS-534 Packet Switch rchitecture The Hardware rchitect s Perspective on High-Speed etworking and Interconnects Manolis Katevenis University of Crete and FORTH, Greece http://archvlsi.ics.forth.gr/~kateveni/534.

More information

Link-State Routing OSPF

Link-State Routing OSPF CE Computer Networks Link-State Routing OSPF Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer

More information

15-744: Computer Networking. Routers

15-744: Computer Networking. Routers 15-744: Computer Networking outers Forwarding and outers Forwarding IP lookup High-speed router architecture eadings [McK97] A Fast Switched Backplane for a Gigabit Switched outer Optional [D+97] Small

More information

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET GUARANTEED END-TO-END LATENCY THROUGH ETHERNET Øyvind Holmeide, OnTime Networks AS, Oslo, Norway oeyvind@ontimenet.com Markus Schmitz, OnTime Networks LLC, Texas, USA markus@ontimenet.com Abstract: Latency

More information

Quality of Service. Understanding Quality of Service

Quality of Service. Understanding Quality of Service The following sections describe support for features on the Cisco ASR 920 Series Router. Understanding, page 1 Configuring, page 2 Global QoS Limitations, page 2 Classification, page 3 Marking, page 6

More information

Routers with a Single Stage of Buffering *

Routers with a Single Stage of Buffering * Routers with a Single Stage of Buffering * Sundar Iyer, Rui Zhang, Nick McKeown Computer Systems Laboratory, Stanford University, Ph: (650)-725 9077, Fax: (650)-725 6949 Stanford, CA 94305-9030 {sundaes,

More information

1 Architectures of Internet Switches and Routers

1 Architectures of Internet Switches and Routers 1 Architectures of Internet Switches and Routers Xin Li, Lotfi Mhamdi, Jing Liu, Konghong Pun, and Mounir Hamdi The Hong-Kong University of Science & Technology. {lixin,lotfi,liujing, konghong,hamdi}@cs.ust.hk

More information

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services

Shared-Memory Combined Input-Crosspoint Buffered Packet Switch for Differentiated Services Shared-Memory Combined -Crosspoint Buffered Packet Switch for Differentiated Services Ziqian Dong and Roberto Rojas-Cessa Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today: Link Layer (cont.) Framing Reliability Error correction Sliding window Medium

More information

Cisco IOS Switching Paths Overview

Cisco IOS Switching Paths Overview This chapter describes switching paths that can be configured on Cisco IOS devices. It contains the following sections: Basic Router Platform Architecture and Processes Basic Switching Paths Features That

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer II Dmitri Loguinov Texas A&M University April 3, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter 4:

More information

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov.

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. Lecture 21 Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. 7 http://money.cnn.com/2011/11/07/technology/juniper_internet_outage/

More information

Network Layer: Router Architecture, IP Addressing

Network Layer: Router Architecture, IP Addressing Network Layer: Router Architecture, IP Addressing UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Router Architecture

More information

The router architecture consists of two major components: Routing Engine. 100-Mbps link. Packet Forwarding Engine

The router architecture consists of two major components: Routing Engine. 100-Mbps link. Packet Forwarding Engine Chapter 4 The router architecture consists of two major components: Packet Forwarding Engine Performs Layer 2 and Layer 3 packet switching, route lookups, and packet forwarding. Routing Engine Provides

More information

The Network Layer. Antonio Carzaniga. April 22, Faculty of Informatics University of Lugano Antonio Carzaniga

The Network Layer. Antonio Carzaniga. April 22, Faculty of Informatics University of Lugano Antonio Carzaniga The Network Layer Antonio Carzaniga Faculty of Informatics University of Lugano April 22, 2010 Basic network-layer architecture of a datagram network Outline Introduction to forwarding Introduction to

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

A survey on core switch designs and algorithms

A survey on core switch designs and algorithms A survey on core switch designs and algorithms Dinil Mon Divakaran, Sébastien Soudan, Pascale Primet, Eitan Altman To cite this version: Dinil Mon Divakaran, Sébastien Soudan, Pascale Primet, Eitan Altman.

More information

Multi-gigabit Switching and Routing

Multi-gigabit Switching and Routing Multi-gigabit Switching and Routing Gignet 97 Europe: June 12, 1997. Nick McKeown Assistant Professor of Electrical Engineering and Computer Science nickm@ee.stanford.edu http://ee.stanford.edu/~nickm

More information

Matching Schemes with Captured-Frame Eligibility for Input-Queued Packet Switches

Matching Schemes with Captured-Frame Eligibility for Input-Queued Packet Switches Matching Schemes with Captured-Frame Eligibility for -Queued Packet Switches Roberto Rojas-Cessa and Chuan-bi Lin Abstract Virtual output queues (VOQs) are widely used by input-queued (IQ) switches to

More information