A Proposal for a High Speed Multicast Switch Fabric Design

Size: px
Start display at page:

Download "A Proposal for a High Speed Multicast Switch Fabric Design"

Transcription

1 A Proposal for a High Speed Multicast Switch Fabric Design Cheng Li, R.Venkatesan and H.M.Heys Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NF, Canada AB X {licheng, venky, ABSTRACT Multicasting is the ability to provide point-to-multipoint connections. Driven by the Internet and its applications, multicasting is becoming an important feature for any switching networks designed to support broadband integrated service digital networks (B-ISDN). High-speed packet switches (also known as broadband packet switches) are the core network components for transporting and switching users traffic in B-ISDN. In this paper, we discuss the feasibility of building a broadband multicast packet switch based on the packet switch category. Two different ways to build a multicast switch based on a multistage interconnection network (MIN) design are studied and compared. Design proposals to turn a high-performance unicast packet switch based on the Balanced Gamma network into a multicast switch are provided. Some design features like a distributed routing and cell splitting algorithm and a dynamic-length backpressure algorithm are discussed and analyzed in detail. Key words: Broadband packet switch, Multicasting, Copy network, Routing network, Multistage Interconnection Network. INTRODUCTION Multicasting is the ability to provide point-to-multipoint connections. Driven by the Internet and its applications, such as video on demand (VOD), music on demand (MOD), teleconferencing, videoconferencing and distributed data processing, more and more communication services and applications will require that information from a source be delivered to multiple destinations. Multicasting will become an important feature for any switching network designed to support broadband integrated service digital networks (B-ISDN). Generally speaking, packet switch architectures can be divided into three major categories []: the shared memory packet switch, the shared medium packet switch and the space division packet switch. Theoretically, each of these three architecture types can be modified to support multicast. However, in shared memory and shared medium architectures, there is a scalability problem as the need for a high-speed memory or bus greatly limits their use when the switch size grows large. Space division based switch architectures can usually be built using small building blocks known as switch elements (SEs). Interconnection of these small SEs will form a larger switch. Space division architectures can be further divided into two sub-classes: single stage interconnection network (SIN) and multistage interconnection network (MIN). Scalability is easier to achieve using this kind of design. The benefits of easy system design and simple hardware fabrication make the space division switch architecture a strong candidate for the B-ISDN switch fabric design. In this paper, we focus on the design of a multicast switch fabric based on a MIN architecture called the Balanced Gamma network. The remaining paper is organized as follows. In Section, we will briefly discuss and compare the two common approaches to turn an existing unicast switch fabric into a multicast switch. Section will present a design proposal for a Balanced Gamma multicast switch fabric. In particular, we will concentrate on the cell routing and splitting algorithm and dynamic-length backpressure algorithm when discussing the design. Finally, we summarize the paper in Section.. MULTICAST SWITCH FABRIC BASED ON MIN DESIGN We can build a multicast switch fabric using MIN design by either placing a copy network at the front of the routing network or integrating the cell replication function into the switch element. The intuitively obvious approach is to employ a copy network in tandem with a point-to-point routing network [,,,,]. The copy network replicates the incoming cell according to the fanout number specified in the header. The routing network uses the output of the copy network as its input and routes each of the copies to its destination. Many of proposed multicast networks follow this approach, including Lee s multicast switch [] and Turner s broadcast packet switch []. Lee s multicast switch is the most commonly referred to design in this

2 approach. However, it suffers from two problems. One is overflow, i.e., the total requested number of copies exceeds the available number of output ports of the copy network. In this situation, any cell whose fanout is larger than the remaining free output ports will be dropped []. This will eventually decrease system performance and throughput. The other is the output port conflict problem in the routing network when multiple packets request the same output port concurrently. Besides these two problems, the memory size of the TNT (Trunk Number Translation) tables will increase significantly as the fan-out and the switch size increase. Though some modifications are proposed to improve the design [,], they only mitigate the situation. At the same time, they increased the design complexity. The other solution is to build a multicast switch without a dedicated copy network. For this solution, the cell replication function is integrated into the switch elements, which are performing only the routing function in an unicast switch. Therefore, the function of a switch element should be enhanced to accommodate both the routing decision and cell replicating decision. This kind of design will inherit most of the important features of the MIN design and can efficiently turn a high performance unicast packet switch, such as the Balanced Gamma network, into a multicast switch fabric.. DESIGN OF BALANCED GAMMA MULTICAST SWITCH FABRIC. BALANCED GAMMA NETWORK The Balanced Gamma (BG) network is a multi-path MIN that has a similar structure to the Kappa network [,8]. For the BG network, the to concentrator in each output port of the Kappa network is replaced by a buffer which is capable of receiving up to cells in one clock cycle. An N N BG network consists of n+ stages, where n = log N. The first stage has N SEs. Each of the following n- stages has N SEs. The last stage is the buffer stage [,8]. All previous work has proved that the performance of BG network is superior to that of other networks of the same or comparable hardware complexity [,8]. Hence, it is reasonable to think that with the integration of the multicast function into the BG network, it will achieve a good performance.. DISTRIBUTED ROUTING AND CELL SPLITTING ALGORITHM In a multicast switch, an incoming master cell may have several output port requests. Therefore, a switch element, besides the routing decision, also needs to make the cell splitting decision. Generally speaking, the optimum way to do cell duplication is to do the splitting work only when necessary, i.e., splitting the cell as far from the input port as possible. How to design an appropriate and efficient routing and splitting algorithm is a big challenge for the multicast switch design. An important reason for the unicast Balanced Gamma switch fabric to achieve high performance is its distributed space-division architecture design. When considering the design of a multicast BG network, besides the distributed self-routing, we prefer that cell splitting can be implemented in a distributed manner and can fit well with the Balanced Gamma network architecture. Moreover, it is desirable that the switch element can complete the routing and splitting simultaneously instead of performing the routing and splitting job separately. In order to do the splitting, more tag information must be included in the cell header. In our research, we found that two methods can both meet the requirement and complete the routing and splitting tasks well: the fixedlength method and the dynamic-length method. In the fixed-length routing and splitting algorithm, each SE always passes a fixed-length information of N bits, where N is the size of the switch fabric, to the SE in the following stage. The N-bit information is actually the bitmap format of the port requests of the cell. Thus this N- bit information will carry enough information for all the SEs to complete the routing and splitting tasks. The problem of this approach is its lack of efficiency and a higher hardware complexity of implementation. SEs along the path may only care about a few output ports, but it receives all the port request information. Therefore, much redundant information is included when using this approach. A better solution is to combine the routing and splitting together using a -bit tag field for each SE in the switch fabric. The -bit field can generate four different combinations. Each SE can use the tag information to make both the routing decision and splitting decision at the same time. The four combinations can be interpreted as in following table.

3 Bit Bit Routing action Splitting action idle (no action) idle (no action) down link no splitting upper-link no splitting both links splitting Table : Self-routing / Splitting Tag Information Considering the multicast environment: after cell splitting is done, each of the two copies should carry enough routing and cell splitting information for the following stages. Therefore, the tag length of the arrival cell is equal to the tag pair ( bits) for that stage plus the tag field of each of the departure copies. Using a backward approach, the tag field for the last stage is bits. Then for the last second stage, the tag length of an incoming cell will be + bits, and for the last third stage it will be + (+ ) bits and so on. The tag of an incoming cell to the first stage will have the maximum length, which is n- + n = N- (n=log N). Hence, the maximum tag length is O(N).The tag generation circuit can be made up of some simple gates. In the SEs, the scheme is very easy and can handle the routing and splitting quite well. The SEs only need part of the information that the tag carries. For efficient design, the SEs will take the tag field for the current stage out and split the tag into two and then pass each half to the SEs in the next stage. Passing on only the portion of the tag required to the next stage improves the efficiency of the system and makes SE design simple. Figure shows an example of a multicast cell from input which will be sent to output,,,. At the Input Port Controller (IPC), destination information will be translated into a routing/splitting tag. Tag pairs will be used by different stages to make the routing and cell splitting decision. At any stage, the SE will always detect the first tag pair, take its tag pair out and divide the remaining tag pairs into two groups. The first group will be used as the tag for a cell destined to the upper link and second half will be used as the tag for a cell destined to the lower link. Stage Stage Stage Output Stage (,)(,)(,) (,) (,)(,)(,)(,)(,)(,)(,) (,)(,)(,) (,) (,) Figure : Dynamic-length Routing/Splitting Algorithm for an 8 8 Switch

4 . DYNAMIC-LENGTH BACKPRESSURE ALGORITHM In the design of a Balanced Gamma multicast switch fabric, an acknowledgement mechanism is needed to report the internal blocking and the output blocking information. Blocking information will be passed by the backpressure units located at each switch element to the IPC. The IPC will then know when copies of a cell are blocked and will keep it in the input buffer until all copies of the cell are successfully sent. In a multicast environment, the design of a backpressure mechanism will be more complex. Unlike in unicast design, the input should get the acknowledgement from perhaps several output ports to which its cell is destined before it deletes the master cell from its input buffer. Two possible candidates for a backpressure mechanism for the BG multicast switch fabric are the fixed-length algorithm and the dynamic-length algorithm. In the fixed-length backpressure algorithm, the length of information passed between stages is fixed to N, which is the size of the switch fabric. If the routing algorithm used in the switch fabric is also the fixed-length algorithm, then at any SE, simple ANDing or ORing will be enough to generate the backpressure information for each stage. This arrangement can be used for all the SEs of the switch fabric. The advantage of this method is that it is straightforward and simple to implement. However, too much redundant information will be carried all through the switch fabric. Thus the efficiency of this algorithm is relatively low. At the same time, each SE needs to know its position in the switch fabric. Therefore, some computation needs to be performed by the switch element and thus the switch fabric does not scale very well. In the dynamic-length algorithm, each stage only sends the necessary information to its previous stage. At the output stage (last stage), the only needed information is whether the cell can be placed in the output buffer or not. One bit information is enough. One stage before that, each SE will be connected to two SEs in the output stage for a particular cell in one switching cycle. Therefore, if we use the bitmap format, we need two bits to represent the output ports that this SE relates to. Thus, two bits will be used as the backpressure information for any SE of this stage. A similar approach applies to all the SEs of different stages. For the first stage (stage ), the SE will receive the acknowledgement of N/ bits from its downstream stages. It will generate the corresponding backpressure information of its stage, which is of size N, based on those messages. The N-bit bitmap information represents the blocking information of the cell across the network. It will then be sent to the IPC. The IPC will make the final decision on whether each copy of the cell can be successfully received at the output. If yes, it will remove the cell from the input buffer and try the next cell in the next switching cycle. Otherwise, it will retain and retry this cell in the next switching cycle. Using a work conserving method, for any multicast or broadcast cell, only those failed copies will be re-sent. In this algorithm, the length of backpressure information is increased as the acknowledgement moves back through network. The Balanced Gamma network architecture enabled us to achieve a more efficient and easier way to implement the dynamic-length backpressure algorithm. The backpressure functional unit inside a SE decides the backpressure information using two steps. The first step is to decide whether the cell will be blocked at this stage. If such blocking happens, the SE can make the decision right at the moment and does not need to wait for the backpressure information from the following stages. For a multicast cell, when part of the link is blocked, the control will be a bit more complex. The acknowledgement bits for the SEs in latter stages associated with the blocked link will be marked with all s. Otherwise it will wait for the backpressure information of the non-blocked copy to come back to this stage and then pass this backpressure information back to the previous stage. The second step is a processing and passing step. If the cell successfully passes this stage, then the SE only needs to wait for the blocking information from the following stages and then send this to its previous stage after some simple processing. The only thing a SE needs to know is its stage number so that it can decide the length of its backpressure information. Given an N N switch fabric, for any switch element at stage i ( i n-, n = log N), the incoming backpressure information length is n-i- bits and the outgoing backpressure information to the previous stage is of length n-i. The backpressure algorithm is used in Figure to decide the blocking information in an 8 8 switch. In this example, blocking happened at SE (,) where part of a multicast cell from input is blocked, given that the cells from input and have a higher priority. When the backpressure information arrives at the IPC at input, the IPC can easily find that copies to outlet and are received while copies to outlet and are blocked. So, it will try only the blocked copies in the next switching cycle.

5 . CONCLUSION AND FUTURE WORK Communication network applications are changing at an enormous speed. This change makes the deployment of the next generation of high-speed networks become more and more necessary and urgent. In this paper, we discuss two different ways to build a multicast switch based on MIN design. We present detailed design proposal for the multicast Balanced Gamma switch fabric with emphasis on the routing and splitting algorithm and the dynamic-length backpressure algorithm. Input ( ) Stage Stage Stage Output Stage Output Input Output Input (,,,,,, ) Output Input ( ) Output Input (,,, ) Output Input ( ) Output Input (,,, ) Output Input ( ) Output Figure : Dynamic-length Backpressure Scheme for an 8 8 Switch REFERENCES. F.A. Tobagi, Fast Packet Switch Architectures For Broadband Integrated Service Digital Networks, Proceedings of the IEEE, Vol.8, No., p.p. 9-, January, 99. M. Guo and R. Chang, Multicast ATM Switch: Survey and Performance Evaluation, ACM/SIGCOMM Computer Communication Review, p.p. 98-, April, 998. T.T. Lee, Nonblocking Copy Networks for Multicast Packet Switching, IEEE J. Select. Areas Commun., Vol., p.p. -, Dec., 988. J. Turner, Design of a Broadcast Packet Network, IEEE INFOCOM 98, p.p. -. P.U. Tagle and N.K.Sharma, Multicast Packet Switch Based on Dilated Network, IEICE Trans. Commun., Vol. E8-B, No. February 998. J. Turner, A Practical Version of Lee s Multicast Architectur, IEEE Trans. Commun., Vol., No.8, p.p.-9, August 99. Y. El-Sayed, Performance Analysis, Design and Reliability of the Balanced Gamma Network, Ph.D. Thesis, Memorial University of Newfoundland, 8. H. Sivakumar, Performance, Fault Tolerance and Reliability Networks for Broadband Packet Switch Architecture, M.Sc. Thesis, Memorial University of Newfoundland, December 99

Architecture and Performance Analysis of the Multicast Balanced Gamma Switch for Broadband Communications 1

Architecture and Performance Analysis of the Multicast Balanced Gamma Switch for Broadband Communications 1 Architecture and Performance Analysis of the Multicast Balanced Gamma Switch for Broadband Communications 1 Cheng Li, Member, IEEE, R. Venkatesan, Senior Member, IEEE, and H. M. Heys, Member, IEEE Faculty

More information

Introduction to ATM Technology

Introduction to ATM Technology Introduction to ATM Technology ATM Switch Design Switching network (N x N) Switching network (N x N) SP CP SP CP Presentation Outline Generic Switch Architecture Specific examples Shared Buffer Switch

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS ATM SWITCHING ATM is a connection-oriented transport concept An end-to-end connection (virtual channel) established prior to transfer of cells Signaling used for connection

More information

High-Speed Cell-Level Path Allocation in a Three-Stage ATM Switch.

High-Speed Cell-Level Path Allocation in a Three-Stage ATM Switch. High-Speed Cell-Level Path Allocation in a Three-Stage ATM Switch. Martin Collier School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland. email address: collierm@eeng.dcu.ie

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information

A quasi-nonblocking self-routing network which routes packets in log 2 N time.

A quasi-nonblocking self-routing network which routes packets in log 2 N time. A quasi-nonblocking self-routing network which routes packets in log 2 N time. Giuseppe A. De Biase Claudia Ferrone Annalisa Massini Dipartimento di Scienze dell Informazione, Università di Roma la Sapienza

More information

A High Performance ATM Switch Architecture

A High Performance ATM Switch Architecture A High Performance ATM Switch Architecture Hong Xu Chen A thesis submitted for the degree of Doctor of Philosophy at The Swinburne University of Technology Faculty of Information and Communication Technology

More information

Space-division switch fabrics. Copyright 2003, Tim Moors

Space-division switch fabrics. Copyright 2003, Tim Moors 1 Space-division switch fabrics 2 Outline: Space-division switches Single-stage Crossbar, Knockout Staged switches: Multiple switching elements between input and output Networks of basic elements Clos

More information

Design of Optical Burst Switches based on Dual Shuffle-exchange Network and Deflection Routing

Design of Optical Burst Switches based on Dual Shuffle-exchange Network and Deflection Routing Design of Optical Burst Switches based on Dual Shuffle-exchange Network and Deflection Routing Man-Ting Choy Department of Information Engineering, The Chinese University of Hong Kong mtchoy1@ie.cuhk.edu.hk

More information

Knockout Switches. HIGH PERFORMANCE SWITCHES AND ROUTERS Wiley H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh

Knockout Switches. HIGH PERFORMANCE SWITCHES AND ROUTERS Wiley H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh HIGH PERFORMANCE SWITCHES AND ROUTERS Wiley H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh Outlines Introduction Single Stage Knockout-Basic Architecture Knockout Concentration Principle

More information

Structure and Performance Evaluation of a Replicated Banyan Network Based ATM Switch

Structure and Performance Evaluation of a Replicated Banyan Network Based ATM Switch Structure and Performance Evaluation of a Replicated Banyan Network Based ATM Switch Moustafa A. Youssef, Mohamed N. El-Derini, and Hussien H. Aly Department of Computer Science and Automatic Control,

More information

CS/EE 577 Final Exam December 17, 1996

CS/EE 577 Final Exam December 17, 1996 CS/EE 577 Final Exam December 17, 1996 This is a closed book exam. 1. (8 points) The virtual path/circuit table shown below is of the type introduced in the first section of the lecture notes. A copy of

More information

A distributed memory management for high speed switch fabrics

A distributed memory management for high speed switch fabrics A distributed memory management for high speed switch fabrics MEYSAM ROODI +,ALI MOHAMMAD ZAREH BIDOKI +, NASSER YAZDANI +, HOSSAIN KALANTARI +,HADI KHANI ++ and ASGHAR TAJODDIN + + Router Lab, ECE Department,

More information

A distributed architecture of IP routers

A distributed architecture of IP routers A distributed architecture of IP routers Tasho Shukerski, Vladimir Lazarov, Ivan Kanev Abstract: The paper discusses the problems relevant to the design of IP (Internet Protocol) routers or Layer3 switches

More information

ECE 697J Advanced Topics in Computer Networks

ECE 697J Advanced Topics in Computer Networks ECE 697J Advanced Topics in Computer Networks Switching Fabrics 10/02/03 Tilman Wolf 1 Router Data Path Last class: Single CPU is not fast enough for processing packets Multiple advanced processors in

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

Cost-based Pricing for Multicast Streaming Services

Cost-based Pricing for Multicast Streaming Services Cost-based Pricing for Multicast Streaming Services Eiji TAKAHASHI, Takaaki OHARA, Takumi MIYOSHI,, and Yoshiaki TANAKA Global Information and Telecommunication Institute, Waseda Unviersity 29-7 Bldg.,

More information

Dynamic Scheduling Algorithm for input-queued crossbar switches

Dynamic Scheduling Algorithm for input-queued crossbar switches Dynamic Scheduling Algorithm for input-queued crossbar switches Mihir V. Shah, Mehul C. Patel, Dinesh J. Sharma, Ajay I. Trivedi Abstract Crossbars are main components of communication switches used to

More information

An Enhanced Dynamic Packet Buffer Management

An Enhanced Dynamic Packet Buffer Management An Enhanced Dynamic Packet Buffer Management Vinod Rajan Cypress Southeast Design Center Cypress Semiconductor Cooperation vur@cypress.com Abstract A packet buffer for a protocol processor is a large shared

More information

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 10. Circuits Switching and Packet Switching 10-1 Chapter 10 Circuits Switching and Packet Switching 10-1 Content Switched communication networks Circuit switching networks Circuit-switching concepts Packet-switching principles X.25 (mentioned but not

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636 1 Adaptive Routing Adaptive Routing Basics Minimal Adaptive Routing Fully Adaptive Routing Load-Balanced Adaptive Routing Search-Based Routing Case Study: Adapted Routing in the Thinking Machines CM-5

More information

Parallel Packet Copies for Multicast

Parallel Packet Copies for Multicast Do you really need multicast? At line rates? Less is More J Parallel Packet Copies for Multicast J.1 Introduction Multicasting is the process of simultaneously sending the same data to multiple destinations

More information

Multicast ATM Switches: Survey and Performance Evaluation. Ming-Huang Guo and Ruay-Shiung Chang

Multicast ATM Switches: Survey and Performance Evaluation. Ming-Huang Guo and Ruay-Shiung Chang Multicast ATM Switches: Survey and Performance Evaluation Ming-Huang Guo and Ruay-Shiung Chang Department of Information Management ational Taiwan University of Science and Technology Taipei, Taiwan, ROC,

More information

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network This Lecture BUS0 - Computer Facilities Network Management Switching networks Circuit switching Packet switching gram approach Virtual circuit approach Routing in switching networks Faculty of Information

More information

1. INTRODUCTION light tree First Generation Second Generation Third Generation

1. INTRODUCTION light tree First Generation Second Generation Third Generation 1. INTRODUCTION Today, there is a general consensus that, in the near future, wide area networks (WAN)(such as, a nation wide backbone network) will be based on Wavelength Division Multiplexed (WDM) optical

More information

Network Model for Delay-Sensitive Traffic

Network Model for Delay-Sensitive Traffic Traffic Scheduling Network Model for Delay-Sensitive Traffic Source Switch Switch Destination Flow Shaper Policer (optional) Scheduler + optional shaper Policer (optional) Scheduler + optional shaper cfla.

More information

Analysis of Crosspoint Cost and Buffer Cost of Omega Network Using MLMIN

Analysis of Crosspoint Cost and Buffer Cost of Omega Network Using MLMIN RESEARCH ARTICLE OPEN ACCESS Analysis of Crosspoint Cost and Buffer Cost of Omega Network Using MLMIN Smilly Soni Pursuing M.Tech(CSE RIMT, Mandi Gobindgarh Abhilash Sharma Assistant Prof. (CSE RIMT, Mandi

More information

ATM SWITCH: As an Application of VLSI in Telecommunication System

ATM SWITCH: As an Application of VLSI in Telecommunication System Volume-6, Issue-6, November-December 2016 International Journal of Engineering and Management Research Page Number: 87-94 ATM SWITCH: As an Application of VLSI in Telecommunication System Shubh Prakash

More information

MINSimulate A MULTISTAGE INTERCONNECTION NETWORK SIMULATOR

MINSimulate A MULTISTAGE INTERCONNECTION NETWORK SIMULATOR MINSimulate A MULTISTAGE INTERNNECTION NETWORK SIMULATOR DIETMAR TUTSCH and MARCUS BRENNER Technische Universität Berlin Real Time Systems and Robotics D 18 Berlin, Germany {dietmart,mbrenner}@cs.tu-berlin.de

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

Design of Large-scale Wire-speed Multicast Switching Fabric Based on Distributive Lattice

Design of Large-scale Wire-speed Multicast Switching Fabric Based on Distributive Lattice Design of Large-scale Wire-speed Multicast Switching Fabric Based on Distributive Lattice 1 CUI Kai, 2 LI Ke-dan, 1 CHEN Fu-xing, 1 ZHU Zhi-pu, 1 ZHU Yue-sheng 1. Shenzhen Eng. Lab of Converged Networks

More information

Bridging and Switching Basics

Bridging and Switching Basics CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

Efficient Queuing Architecture for a Buffered Crossbar Switch

Efficient Queuing Architecture for a Buffered Crossbar Switch Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 95 Efficient Queuing Architecture for a Buffered Crossbar Switch MICHAEL

More information

Switch Architecture for Efficient Transfer of High-Volume Data in Distributed Computing Environment

Switch Architecture for Efficient Transfer of High-Volume Data in Distributed Computing Environment Switch Architecture for Efficient Transfer of High-Volume Data in Distributed Computing Environment SANJEEV KUMAR, SENIOR MEMBER, IEEE AND ALVARO MUNOZ, STUDENT MEMBER, IEEE % Networking Research Lab,

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching William Stallings Data and Computer Communications 7 th Edition Chapter 10 Circuit Switching and Packet Switching Switching Networks Long distance transmission is typically done over a network of switched

More information

CH : 15 LOCAL AREA NETWORK OVERVIEW

CH : 15 LOCAL AREA NETWORK OVERVIEW CH : 15 LOCAL AREA NETWORK OVERVIEW P. 447 LAN (Local Area Network) A LAN consists of a shared transmission medium and a set of hardware and software for interfacing devices to the medium and regulating

More information

Stop-and-Go Service Using Hierarchical Round Robin

Stop-and-Go Service Using Hierarchical Round Robin Stop-and-Go Service Using Hierarchical Round Robin S. Keshav AT&T Bell Laboratories 600 Mountain Avenue, Murray Hill, NJ 07974, USA keshav@research.att.com Abstract The Stop-and-Go service discipline allows

More information

Comparative Study of blocking mechanisms for Packet Switched Omega Networks

Comparative Study of blocking mechanisms for Packet Switched Omega Networks Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 18 Comparative Study of blocking mechanisms for Packet

More information

A Path Decomposition Approach for Computing Blocking Probabilities in Wavelength-Routing Networks

A Path Decomposition Approach for Computing Blocking Probabilities in Wavelength-Routing Networks IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 6, DECEMBER 2000 747 A Path Decomposition Approach for Computing Blocking Probabilities in Wavelength-Routing Networks Yuhong Zhu, George N. Rouskas, Member,

More information

Exact and Approximate Analytical Modeling of an FLBM-Based All-Optical Packet Switch

Exact and Approximate Analytical Modeling of an FLBM-Based All-Optical Packet Switch JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 3, MARCH 2003 719 Exact and Approximate Analytical Modeling of an FLBM-Based All-Optical Packet Switch Yatindra Nath Singh, Member, IEEE, Amit Kushwaha, and

More information

CONGESTION CONTROL BY USING A BUFFERED OMEGA NETWORK

CONGESTION CONTROL BY USING A BUFFERED OMEGA NETWORK IADIS International Conference on Applied Computing CONGESTION CONTROL BY USING A BUFFERED OMEGA NETWORK Ahmad.H. ALqerem Dept. of Comp. Science ZPU Zarka Private University Zarka Jordan ABSTRACT Omega

More information

To address these challenges, extensive research has been conducted and have introduced six key areas of streaming video, namely: video compression,

To address these challenges, extensive research has been conducted and have introduced six key areas of streaming video, namely: video compression, Design of an Application Layer Congestion Control for Reducing network load and Receiver based Buffering Technique for packet synchronization in Video Streaming over the Internet Protocol Mushfeq-Us-Saleheen

More information

Next-Generation Switching Systems

Next-Generation Switching Systems Next-Generation Switching Systems Atsuo Kawai Shin ichi Iwaki Haruyoshi Kiyoku Keizo Kusaba ABSTRACT: Today, the telecommunications industry is encountering a new wave of multimedia communications for

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

Tree-Based Minimization of TCAM Entries for Packet Classification

Tree-Based Minimization of TCAM Entries for Packet Classification Tree-Based Minimization of TCAM Entries for Packet Classification YanSunandMinSikKim School of Electrical Engineering and Computer Science Washington State University Pullman, Washington 99164-2752, U.S.A.

More information

Chapter 1 Introduction

Chapter 1 Introduction Emerging multimedia, high-speed data, and imaging applications are generating a demand for public networks to be able to multiplex and switch simultaneously a wide spectrum of data rates. These networks

More information

Multi-Processor / Parallel Processing

Multi-Processor / Parallel Processing Parallel Processing: Multi-Processor / Parallel Processing Originally, the computer has been viewed as a sequential machine. Most computer programming languages require the programmer to specify algorithms

More information

BROADBAND PACKET SWITCHING TECHNOLOGIES

BROADBAND PACKET SWITCHING TECHNOLOGIES BROADBAND PACKET SWITCHING TECHNOLOGIES A Practical Guide to ATM Switches and IP Routers H. JONATHAN CHAO CHEUK H. LAM EMI OKI A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York / Chichester

More information

Multicast Technology White Paper

Multicast Technology White Paper Multicast Technology White Paper Keywords: Multicast, IGMP, IGMP Snooping, PIM, MBGP, MSDP, and SSM Mapping Abstract: The multicast technology implements high-efficiency point-to-multipoint data transmission

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features

High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features UDC 621.395.31:681.3 High-Performance IP Service Node with Layer 4 to 7 Packet Processing Features VTsuneo Katsuyama VAkira Hakata VMasafumi Katoh VAkira Takeyama (Manuscript received February 27, 2001)

More information

FUTURE communication networks are expected to support

FUTURE communication networks are expected to support 1146 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 13, NO 5, OCTOBER 2005 A Scalable Approach to the Partition of QoS Requirements in Unicast and Multicast Ariel Orda, Senior Member, IEEE, and Alexander Sprintson,

More information

Switch Fabrics. Switching Technology S P. Raatikainen Switching Technology / 2006.

Switch Fabrics. Switching Technology S P. Raatikainen Switching Technology / 2006. Switch Fabrics Switching Technology S38.3165 http://www.netlab.hut.fi/opetus/s383165 L4-1 Switch fabrics Basic concepts Time and space switching Two stage switches Three stage switches Cost criteria Multi-stage

More information

PDQRAP - Prioritized Distributed Queueing Random Access Protocol. DQRAP Research Group Report 93-2

PDQRAP - Prioritized Distributed Queueing Random Access Protocol. DQRAP Research Group Report 93-2 PDQRAP - Prioritized Distributed Queueing Random Access Protocol Harn-Jier Lin Graham Campbell Computer Science Dept. Illinois Institute of Technology Chicago IL, 60616 DQRAP Research Group Report 93-2

More information

SAMBA-BUS: A HIGH PERFORMANCE BUS ARCHITECTURE FOR SYSTEM-ON-CHIPS Λ. Ruibing Lu and Cheng-Kok Koh

SAMBA-BUS: A HIGH PERFORMANCE BUS ARCHITECTURE FOR SYSTEM-ON-CHIPS Λ. Ruibing Lu and Cheng-Kok Koh BUS: A HIGH PERFORMANCE BUS ARCHITECTURE FOR SYSTEM-ON-CHIPS Λ Ruibing Lu and Cheng-Kok Koh School of Electrical and Computer Engineering Purdue University, West Lafayette, IN 797- flur,chengkokg@ecn.purdue.edu

More information

DESIGN OF MULTICAST SWITCHES FOR SANS

DESIGN OF MULTICAST SWITCHES FOR SANS DESIGN OF MULTICAST SWITCHES FOR SANS APPROVED BY SUPERVISING COMMITTEE: Dr. Rajendra V. Boppana, Supervising Professor Dr. Turgay Korkmaz Dr. Weining Zhang Accepted: Dean of Graduate Studies DESIGN OF

More information

Globecom. IEEE Conference and Exhibition. Copyright IEEE.

Globecom. IEEE Conference and Exhibition. Copyright IEEE. Title FTMS: an efficient multicast scheduling algorithm for feedbackbased two-stage switch Author(s) He, C; Hu, B; Yeung, LK Citation The 2012 IEEE Global Communications Conference (GLOBECOM 2012), Anaheim,

More information

Performance Enhancement Techniques of a Banyan Network Based Interconnection Structure

Performance Enhancement Techniques of a Banyan Network Based Interconnection Structure Performance Enhancement Techniques of a Banyan Network Based Interconnection Structure Moustafa A. Youssef, Mohamed N. El-Derini, and Hussien H. Aly Department of Computer Science and Automatic Control,

More information

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off Crossbar Crossbar - example Simple space-division switch Crosspoints can be turned on or off i n p u t s sessions: (,) (,) (,) (,) outputs Crossbar Advantages: simple to implement simple control flexible

More information

Shared-Memory Multiprocessor Systems Hierarchical Task Queue

Shared-Memory Multiprocessor Systems Hierarchical Task Queue UNIVERSITY OF LUGANO Advanced Learning and Research Institute -ALaRI PROJECT COURSE: PERFORMANCE EVALUATION Shared-Memory Multiprocessor Systems Hierarchical Task Queue Mentor: Giuseppe Serazzi Candidates:

More information

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks X. Yuan, R. Melhem and R. Gupta Department of Computer Science University of Pittsburgh Pittsburgh, PA 156 fxyuan,

More information

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS Tzu-Chiang Chiang,, Ching-Hung Yeh, Yueh-Min Huang and Fenglien Lee Department of Engineering Science, National Cheng-Kung University, Taiwan,

More information

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 1.

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 1. Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion Chapter 1 Foundation Eng. Haneen El-Masry February, 2014 A Computer Network A computer

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

A Survey of ATM Switching Techniques

A Survey of ATM Switching Techniques Page 1 of 23 A Survey of ATM Switching Techniques Sonia Fahmy < fahmy@cse.ohio-state.edu> Abstract -Asynchronous Transfer Mode (ATM) switching is not defined in the ATM standards, but a lot of research

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Switching. An Engineering Approach to Computer Networking

Switching. An Engineering Approach to Computer Networking Switching An Engineering Approach to Computer Networking What is it all about? How do we move traffic from one part of the network to another? Connect end-systems to switches, and switches to each other

More information

IEEE Time-Sensitive Networking (TSN)

IEEE Time-Sensitive Networking (TSN) IEEE 802.1 Time-Sensitive Networking (TSN) Norman Finn, IEEE 802.1CB, IEEE 802.1CS Editor Huawei Technologies Co. Ltd norman.finn@mail01.huawei.com Geneva, 27 January, 2018 Before We Start This presentation

More information

Egyptian Computer Science Journal Vol. 38 No.3 September 2014

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 Deploying IPTV Services Over Proposed Network for Yemen Universities Khaled O. Basulaim Dept. of Information Technology, Faculty of Engineering University of Aden k.basulaim@ycit-he.org Abstract Recently,

More information

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including Router Architectures By the end of this lecture, you should be able to. Explain the different generations of router architectures Describe the route lookup process Explain the operation of PATRICIA algorithm

More information

A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup

A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup Yan Sun and Min Sik Kim School of Electrical Engineering and Computer Science Washington State University Pullman, Washington

More information

Lecture (05) Network interface Layer media & switching II

Lecture (05) Network interface Layer media & switching II Lecture (05) Network interface Layer media & switching II By: ElShafee ١ Agenda Circuit switching technology (cont,..) Packet switching technique Telephone network ٢ Circuit switching technology (cont,..)

More information

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding. Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of

More information

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3 HWP2 Application level query routing HWP1 Each peer knows about every other beacon B2 B1 B3 B4 B5 B6 11-Feb-02 Computer Networks 1 HWP2 Query routing searchget(searchkey, hopcount) Rget(host, port, key)

More information

Multi-path Routing for Mesh/Torus-Based NoCs

Multi-path Routing for Mesh/Torus-Based NoCs Multi-path Routing for Mesh/Torus-Based NoCs Yaoting Jiao 1, Yulu Yang 1, Ming He 1, Mei Yang 2, and Yingtao Jiang 2 1 College of Information Technology and Science, Nankai University, China 2 Department

More information

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1,

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1, Topics for Today Network Layer Introduction Addressing Address Resolution Readings Sections 5.1, 5.6.1-5.6.2 1 Network Layer: Introduction A network-wide concern! Transport layer Between two end hosts

More information

From eventual to strong consistency. Primary-Backup Replication. Primary-Backup Replication. Replication State Machines via Primary-Backup

From eventual to strong consistency. Primary-Backup Replication. Primary-Backup Replication. Replication State Machines via Primary-Backup From eventual to strong consistency Replication s via - Eventual consistency Multi-master: Any node can accept operation Asynchronously, nodes synchronize state COS 418: Distributed Systems Lecture 10

More information

Last time. BGP policy. Broadcast / multicast routing. Link virtualization. Spanning trees. Reverse path forwarding, pruning Tunneling

Last time. BGP policy. Broadcast / multicast routing. Link virtualization. Spanning trees. Reverse path forwarding, pruning Tunneling Last time BGP policy Broadcast / multicast routing Spanning trees Source-based, group-shared, center-based Reverse path forwarding, pruning Tunneling Link virtualization Whole networks can act as an Internet

More information

Chapter 17: Distributed Systems (DS)

Chapter 17: Distributed Systems (DS) Chapter 17: Distributed Systems (DS) Silberschatz, Galvin and Gagne 2013 Chapter 17: Distributed Systems Advantages of Distributed Systems Types of Network-Based Operating Systems Network Structure Communication

More information

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Donald S. Miller Department of Computer Science and Engineering Arizona State University Tempe, AZ, USA Alan C.

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

Implementing High-Speed Search Applications with APEX CAM

Implementing High-Speed Search Applications with APEX CAM Implementing High-Speed Search Applications with APEX July 999, ver.. Application Note 9 Introduction Most memory devices store and retrieve data by addressing specific memory locations. For example, a

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 10:- Local Area Network Overview Aims:- LAN topologies and media LAN protocol architecture bridges, hubs, layer 2 & 3 switches 1 LAN Applications (1) personal computer LANs low cost limited data

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications

Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications Jongho Bang Sirin Tekinay Nirwan Ansari New Jersey Center for Wireless Telecommunications Department of Electrical

More information

Designing Efficient Benes and Banyan Based Input-Buffered ATM Switches

Designing Efficient Benes and Banyan Based Input-Buffered ATM Switches Designing Efficient Benes and Banyan Based Input-Buffered ATM Switches Rajendra V. Boppana Computer Science Division The Univ. of Texas at San Antonio San Antonio, TX 829- boppana@cs.utsa.edu C. S. Raghavendra

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

Tag Switching. Background. Tag-Switching Architecture. Forwarding Component CHAPTER

Tag Switching. Background. Tag-Switching Architecture. Forwarding Component CHAPTER CHAPTER 23 Tag Switching Background Rapid changes in the type (and quantity) of traffic handled by the Internet and the explosion in the number of Internet users is putting an unprecedented strain on the

More information

Efficient Multicast Support in Buffered Crossbars using Networks on Chip

Efficient Multicast Support in Buffered Crossbars using Networks on Chip Efficient Multicast Support in Buffered Crossbars using etworks on Chip Iria Varela Senin Lotfi Mhamdi Kees Goossens, Computer Engineering, Delft University of Technology, Delft, The etherlands XP Semiconductors,

More information

DE62 TELECOMMUNICATION SWITCHING SYSTEMS JUN 2015

DE62 TELECOMMUNICATION SWITCHING SYSTEMS JUN 2015 Q.2 a. With neat diagrams explain the configuration of a step-by-step switching system. (8) b. List the basic functions of a switching system. (8) The switching office performs the following basic functions

More information

Literature Survey of nonblocking network topologies

Literature Survey of nonblocking network topologies Literature Survey of nonblocking network topologies S.UMARANI 1, S.PAVAI MADHESWARI 2, N.NAGARAJAN 3 Department of Computer Applications 1 Department of Computer Science and Engineering 2,3 Sakthi Mariamman

More information

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen Application Notes NETWORK TOPOLOGIES Author John Peter & Timo Perttunen Issued June 2014 Abstract Network topology is the way various components of a network (like nodes, links, peripherals, etc) are arranged.

More information

Supporting Multicast in ADSL Networks

Supporting Multicast in ADSL Networks Supporting Multicast in ADSL Networks A. Banchs, M. Gabrysch, T. Dietz, B. Lange, H. J. Stiittgen NEC Europe Ltd, Computer and Communication Research Laboratories Heidelberg E-mail: adsl@ccrle.nec.de Abstract:

More information

Course 6. Internetworking Routing 1/33

Course 6. Internetworking Routing 1/33 Course 6 Internetworking Routing 1/33 Routing The main function of the network layer is routing packets from the source machine to the destination machine. Along the way, at least one intermediate node

More information

Some portions courtesy Srini Seshan or David Wetherall

Some portions courtesy Srini Seshan or David Wetherall CSE 123 Computer Networks Fall 2009 Lecture 6: Data-Link III: Hubs, Bridges and Switches Some portions courtesy Srini Seshan or David Wetherall Misc Homework solutions have been posted I ll post a sample

More information

Deadlock-free XY-YX router for on-chip interconnection network

Deadlock-free XY-YX router for on-chip interconnection network LETTER IEICE Electronics Express, Vol.10, No.20, 1 5 Deadlock-free XY-YX router for on-chip interconnection network Yeong Seob Jeong and Seung Eun Lee a) Dept of Electronic Engineering Seoul National Univ

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information