Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem

Size: px
Start display at page:

Download "Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem"

Transcription

1 Reading W. Dally, C. Seitz, Deadlock-Free Message Routing on Multiprocessor Interconnection Networks,, IEEE TC, May 1987 Deadlock F. Silla, and J. Duato, Improving the Efficiency of Adaptive Routing in Networks with Irregular Topology, HIPC 1997 J. Duato A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks, IEEE TPDS, December 1993 Chapter 3 of Duato, Yalamanchili and Ni Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) ECE 8813a (2) Overview: The Problem Guaranteeing message delivery v Fundamentally an issue of finite resources (buffers) and the manner in which they are allocated o How are distributed structural hazards handled? Waiting for resources can lead to v Deadlock: configuration of messages that cannot make progress v Livelock: messages that never reach the destination v Starvation: messages that never received requested resources o Even though the requested resource does periodically become available Deadlock v Prevention v Avoidance v Recovery Livelock v Minimal paths v Restricted non-minimal paths v Probabilistic Starvation v Resource allocation Ensuring Packet Delivery ECE 8813a (3) ECE 8813a (4) 1

2 Focus Deadlocked Configuration of Messages We are primarily concerned with deadlock v Starvation is addressed via fair sharing v Livelock is addressed (at the moment) by constraining messages to minimal paths Relationship between resources, traffic and conditions v Some conditions can produce others o Deadlocked configuration à livelock for other messages Routing in a 2D mesh What can we infer from this figure? v Routing v Dependencies or Wait-for relationships ECE 8813a (5) ECE 8813a (6) Some Definitions Router and Network Model s i c i d i Blocked packets wait for first available channel Fair access to channel bandwidth Routing function R delivers a set of channels v Memoryless, coherent, and connected v Note we define the domain as N N Selection function picks a channel v Determines performance properties Arbitrary topology Fair access to routing and arbitration unit Edge buffers v Theory can be extended to central buffers (we will not) Wait for any channel in a set For wormhole routing, allocated channel must be empty v See Appendix A for detailed list of assumptions Consumption Assumption ECE 8813a (7) ECE 8813a (8) 2

3 Concepts and Definitions Message Configurations No assumptions about the paths delivered by R v Expect that minimal paths are always included in R Coherent routing function v If a routing function supplies a path, it also supplies all sub-paths of the path Configuration v Assignment of packets to a set of queues/buffers Connected routing function S D Channels delivered by a routing function Canonical message configurations v All messages deadlocked Legal, and reachable message configurations v A legal configuration must be possible with the routing function o E.g., non-minimal paths v Since routing functions are memoryless, all legal configurations are reachable ECE 8813a (9) ECE 8813a (10) Deadlock Channel Dependencies A canonical, deadlocked, reachable, legal configuration is one which no message can advance v SAF and VCT o All packets are in transit o All adjacent buffers are full v Wormhole o Messages are in transit o Header flits and data flits cannot advance since all adjacent buffers are full Framework for proving deadlock freedom SAF & VCT dependency Wormhole dependency dependency Header flit Data flit When a packet holds a channel and requests another channel, there is a direct dependency between them Channel dependency graph D = G(C,E) For deterministic routing: single dependency at each node For adaptive routing: all requested channels produce dependencies, and dependency graph may contain cycles ECE 8813a (11) ECE 8813a (12) 3

4 Some Observations Deadlock is not synonymous with the occurrence of cyclic dependencies v Note the goal of guaranteeing message delivery v Are there exits from cycles? The set of dependencies that actually occur (wait-for) are a subset of the statically determined dependencies that can occur as determined by the routing function c 3 c 0 c 2 Breaking Cycles in Rings/Torii c 1 c 00 c 13 The configuration to the left can deadlock Add (virtual) channels v We can make the channel dependency graph acyclic via routing restrictions (via the routing function) Routing function is c 0i when j<i, c 1i ECE 8813a (13) ECE 8813a (14) Breaking Cycles in Rings/Torii (cont.) Extension to Adaptive Routing c 13 c 00 c 00 c 00 Cyclic dependency? Channels c 00 and c 13 are unused Routing function breaks cycles in the channel dependency graph Note the acyclic subgraph Routing function: is c 0i j iand c 1i How can we formalize this? Additional dependencies due to adaptive routing ECE 8813a (15) ECE 8813a (16) 4

5 Key Idea Informally: The deterministic routing sub-function is used to provide an escape path for an adaptive routing protocol v Packets are guaranteed to escape cyclic dependencies Formally the escape path is defined by a connected routing sub-function defined over a subset of channels v Routing sub-function supplies only escape channels v In practice, this concept only used as a proof mechanism v R 1 (x,y) R(x,y) for all x, y and C 1 is the set of channels supplied by R 1 Theorems Theorem: A connected routing function R for an interconnection network I is deadlock free iff there exists a routing sub-function R 1 that is connected and has no cycles in its extended channel dependency graph Holds for both adaptive and deterministic routing functions v In the case of the latter, R = R1 and the extended channel dependency graph = channel dependency graph v Dally & Seitz 1987 for deterministic routing v Duato 1996 for adaptive routing ECE 8813a (17) ECE 8813a (18) Properties Use of escape channels by a message is not unidirectional v If a message enters the escape network it can move back to the adaptive network Do not need to wait on a specific channel v Can wait on any channel including escape channels - the latter guaranteed to show up eventually if allocation is fair Application: start with a deterministic routing function and add channels to be used for adaptive routing Additional restriction required for wormhole (coherent) while this holds for SAF and VCTs Robustness of the Model No assumptions are made about paths v At least one minimal path is necessary for performance The use of NxN routing functions are practical v What are the alternatives? No assumptions about packet generation rate, packet length and destinations (other than connectivity) For wormhole, only one message can occupy a buffer v Buffers at both ends are single buffer v Thus head flits always block occupying the head of the queue head flit Cannot access escape channels ECE 8813a (19) ECE 8813a (20) 5

6 Canonical legal configuration Revisit Some Properties Deadlock Avoidance in SAF &VCT Networks direct dependency direct cross dependency Which legal configurations are reachable from an empty network for a given routing function? What is the importance of a legal configuration? v Can model a legal configuration as one that occurred by packet injection at the blocked node (VCT/SAF) or the packet with the tail node (wormhole) c A0 Direct cross dependency escape channel for when j<i, c Hi A closer look at escape channel dependencies v is an escape channel for but not v is an escape channel for Extended channel dependency graph must be acyclic ECE 8813a (21) ECE 8813a (22) c A0 Deadlock Avoidance in SAF &VCT Networks escape channel for direct dependency direct cross dependency Deterministic network for Example: Constructing Deadlock Free Routing Algorithms Channels returned by R Channels returned by R 1 Direct cross dependency Deterministic Network Adaptive Network Deterministic network for when j<i, c when j>i Hi Routing function: is c Ai and c Hi j i ECE 8813a (23) ECE 8813a (24) 6

7 Example: Constructing Deadlock Free Routing Algorithms Some More Observations N1 N2 Extra virtual channel in the north direction Can have one escape network for all packets or multiple escape networks Construct dependency graph on escape channels R is deadlock free if R1 is deadlock free Making the North-last algorithm fully adaptive v Add an extra adaptive channel in the North Direction v The extra channel has no turn restrictions v N1, E, S, and W implement North-Last Deadlock freedom: no cycles in the extended channel dependency graph of R 1 v Must consider all direct and indirect dependencies o There still remain dependencies we have not yet considered! ECE 8813a (25) ECE 8813a (26) Indirect Channel Dependencies Deadlock Avoidance in Wormhole Networks Network c A0cB0 c B1 c i request c k n5 n4 Direct and indirect dependencies between escape channels Channel c i is an escape channel for some destination Now we can focus all of our attention on the escape channels v Add other channels for adaptive routing v Define the extended channel dependency graph for escape channels o Capture the use of all channels à for adaptive routing ECE 8813a (27) indirect dependency j i Routing function R is c Ai or c Bi c Hi when j >I when j<i, c Hi Note the addition of indirect dependencies for Wormhole switching v Cross and direct dependencies between escape channels transmitted through adaptive channels ECE 8813a (28) 7

8 Deadlock Avoidance in Wormhole Networks (cont.) c A0cB0 c B1 c A0 Deadlock Avoidance in Wormhole Networks (cont.) direct dependency direct cross dependency indirect dependency n5 n4 indirect cross dependency j i Routing function R is c Ai or c Bi c Hi when j >I when j<i, c Hi Note the addition of indirect dependencies for Wormhole switching v Cross and direct dependencies between escape channels transmitted through adaptive channels ECE 8813a (29) j i Routing function: is c Ai and c Hi when j<i, c Hi ECE 8813a (30) Example: Fully Adaptive Routing Extensions to Irregular Networks S Adaptive channel supplied by R Deterministic channel supplied by R Each physical channel has a fully adaptive channel a, and DOR channel b Look at the channels supplied by R at node S D Create an appropriate routing sub-function Example: v Identify a distinguished node and construct a spanning tree v Label each channel as up/down depending on proximity of end points to root (break ties with unique node number) v Routing restriction: a valid path traverses zero or more links in the up direction followed by zero or more links in the down direction How does this avoid cycles? Note the absence of virtual channels! 5 ECE 8813a (31) ECE 8813a (32) 8

9 Review The extended channel dependency graph must capture all dependencies v Direct and indirect cross dependencies For wormhole switching routing function must be coherent, otherwise the preceding theorem provides only a sufficient condition Complete the list of dependencies accommodated by the theorem ECE 8813a (33) channel Class Extensions: Channel Classes Y1+ Y0+ X0+ X1+ X0- X1- Create equivalence classes of channels v For example, with no intra-class dependencies If the extended class dependency graph is acyclic, routing is deadlock free (sufficient condition) Y0- Y1- ECE 8813a (34) Extensions Extending the domain of the routing function v Including source, channel, or history information Extension to central buffers v Channels are really queues o Associate routing functions with central queues and use queue dependencies to analyze deadlocks v Domain of the routing function may be or NxN or QxN o Example 2-D mesh: four queues/node, one corresponding to each direction in each dimension. v Queue dependency graph is acyclic v Mixed resource types (edge buffers and central queues) utilizes similar analysis techniques à the extended resource dependency graph Summarize Solution Philosophies Defined permitted dependencies (prevention) v Correct by construction (acyclic) v Minimal routing freedom Weaken the preceding requirement (avoidance) v Ensure cycles cannot lead to deadlock v Improve routing freedom v Some creative avoidance techniques based on the theory (next) Detect and recover (Next) v Predicated on unlikelihood of occurrence v Maximal routing freedom ECE 8813a (35) ECE 8813a (36) 9

EE 6900: Interconnection Networks for HPC Systems Fall 2016

EE 6900: Interconnection Networks for HPC Systems Fall 2016 EE 6900: Interconnection Networks for HPC Systems Fall 2016 Avinash Karanth Kodi School of Electrical Engineering and Computer Science Ohio University Athens, OH 45701 Email: kodi@ohio.edu 1 Acknowledgement:

More information

Deadlock: Part II. Reading Assignment. Deadlock: A Closer Look. Types of Deadlock

Deadlock: Part II. Reading Assignment. Deadlock: A Closer Look. Types of Deadlock Reading Assignment T. M. Pinkston, Deadlock Characterization and Resolution in Interconnection Networks, Chapter 13 in Deadlock Resolution in Computer Integrated Systems, CRC Press 2004 Deadlock: Part

More information

Routing and Deadlock

Routing and Deadlock 3.5-1 3.5-1 Routing and Deadlock Routing would be easy...... were it not for possible deadlock. Topics For This Set: Routing definitions. Deadlock definitions. Resource dependencies. Acyclic deadlock free

More information

NOC Deadlock and Livelock

NOC Deadlock and Livelock NOC Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

Deadlock and Livelock. Maurizio Palesi

Deadlock and Livelock. Maurizio Palesi Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

Generic Methodologies for Deadlock-Free Routing

Generic Methodologies for Deadlock-Free Routing Generic Methodologies for Deadlock-Free Routing Hyunmin Park Dharma P. Agrawal Department of Computer Engineering Electrical & Computer Engineering, Box 7911 Myongji University North Carolina State University

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Deadlock and Router Micro-Architecture

Deadlock and Router Micro-Architecture 1 EE482: Advanced Computer Organization Lecture #8 Interconnection Network Architecture and Design Stanford University 22 April 1999 Deadlock and Router Micro-Architecture Lecture #8: 22 April 1999 Lecturer:

More information

Basic Low Level Concepts

Basic Low Level Concepts Course Outline Basic Low Level Concepts Case Studies Operation through multiple switches: Topologies & Routing v Direct, indirect, regular, irregular Formal models and analysis for deadlock and livelock

More information

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms CS252 Graduate Computer Architecture Lecture 16 Multiprocessor Networks (con t) March 14 th, 212 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger Interconnection Networks: Flow Control Prof. Natalie Enright Jerger Switching/Flow Control Overview Topology: determines connectivity of network Routing: determines paths through network Flow Control:

More information

SOFTWARE BASED FAULT-TOLERANT OBLIVIOUS ROUTING IN PIPELINED NETWORKS*

SOFTWARE BASED FAULT-TOLERANT OBLIVIOUS ROUTING IN PIPELINED NETWORKS* SOFTWARE BASED FAULT-TOLERANT OBLIVIOUS ROUTING IN PIPELINED NETWORKS* Young-Joo Suh, Binh Vien Dao, Jose Duato, and Sudhakar Yalamanchili Computer Systems Research Laboratory Facultad de Informatica School

More information

Lecture 3: Flow-Control

Lecture 3: Flow-Control High-Performance On-Chip Interconnects for Emerging SoCs http://tusharkrishna.ece.gatech.edu/teaching/nocs_acaces17/ ACACES Summer School 2017 Lecture 3: Flow-Control Tushar Krishna Assistant Professor

More information

EE 382C Interconnection Networks

EE 382C Interconnection Networks EE 8C Interconnection Networks Deadlock and Livelock Stanford University - EE8C - Spring 6 Deadlock and Livelock: Terminology Deadlock: A condition in which an agent waits indefinitely trying to acquire

More information

Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent

Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent Anjan K. V. Timothy Mark Pinkston José Duato Pyramid Technology Corp. Electrical Engg. - Systems Dept.

More information

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels Lecture: Interconnection Networks Topics: TM wrap-up, routing, deadlock, flow control, virtual channels 1 TM wrap-up Eager versioning: create a log of old values Handling problematic situations with a

More information

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom ISCA 2018 Session 8B: Interconnection Networks Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom Aniruddh Ramrakhyani Georgia Tech (aniruddh@gatech.edu) Tushar

More information

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N.

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N. Interconnection topologies (cont.) [ 10.4.4] In meshes and hypercubes, the average distance increases with the dth root of N. In a tree, the average distance grows only logarithmically. A simple tree structure,

More information

Early Transition for Fully Adaptive Routing Algorithms in On-Chip Interconnection Networks

Early Transition for Fully Adaptive Routing Algorithms in On-Chip Interconnection Networks Technical Report #2012-2-1, Department of Computer Science and Engineering, Texas A&M University Early Transition for Fully Adaptive Routing Algorithms in On-Chip Interconnection Networks Minseon Ahn,

More information

Escape Path based Irregular Network-on-chip Simulation Framework

Escape Path based Irregular Network-on-chip Simulation Framework Escape Path based Irregular Network-on-chip Simulation Framework Naveen Choudhary College of technology and Engineering MPUAT Udaipur, India M. S. Gaur Malaviya National Institute of Technology Jaipur,

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 Parallel Computer Architecture Lecture 21 Routing Outline Routing Switch Design Flow Control Case Studies Routing Routing algorithm determines which of the possible paths are used as routes how

More information

Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits

Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits Computer Science Department Technical Report #TR050021 University of California, Los Angeles, June 2005 Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits Yoshio Turner and Yuval

More information

A New Theory of Deadlock-Free Adaptive Multicast Routing in. Wormhole Networks. J. Duato. Facultad de Informatica. Universidad Politecnica de Valencia

A New Theory of Deadlock-Free Adaptive Multicast Routing in. Wormhole Networks. J. Duato. Facultad de Informatica. Universidad Politecnica de Valencia A New Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole Networks J. Duato Facultad de Informatica Universidad Politecnica de Valencia P.O.B. 22012, 46071 - Valencia, SPAIN E-mail: jduato@aii.upv.es

More information

Deadlock- and Livelock-Free Routing Protocols for Wave Switching

Deadlock- and Livelock-Free Routing Protocols for Wave Switching Deadlock- and Livelock-Free Routing Protocols for Wave Switching José Duato,PedroLópez Facultad de Informática Universidad Politécnica de Valencia P.O.B. 22012 46071 - Valencia, SPAIN E-mail:jduato@gap.upv.es

More information

Wormhole Routing Techniques for Directly Connected Multicomputer Systems

Wormhole Routing Techniques for Directly Connected Multicomputer Systems Wormhole Routing Techniques for Directly Connected Multicomputer Systems PRASANT MOHAPATRA Iowa State University, Department of Electrical and Computer Engineering, 201 Coover Hall, Iowa State University,

More information

A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects

A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects SANDIA REPORT SAND2008-0068 Unlimited Release Printed January 2008 A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects David M. Holman and David S. Lee Prepared by Sandia National

More information

NOW Handout Page 1. Outline. Networks: Routing and Design. Routing. Routing Mechanism. Routing Mechanism (cont) Properties of Routing Algorithms

NOW Handout Page 1. Outline. Networks: Routing and Design. Routing. Routing Mechanism. Routing Mechanism (cont) Properties of Routing Algorithms Outline Networks: Routing and Design Routing Switch Design Case Studies CS 5, Spring 99 David E. Culler Computer Science Division U.C. Berkeley 3/3/99 CS5 S99 Routing Recall: routing algorithm determines

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ

A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ E. Baydal, P. López and J. Duato Depto. Informática de Sistemas y Computadores Universidad Politécnica de Valencia, Camino

More information

Interconnection Networks: Routing. Prof. Natalie Enright Jerger

Interconnection Networks: Routing. Prof. Natalie Enright Jerger Interconnection Networks: Routing Prof. Natalie Enright Jerger Routing Overview Discussion of topologies assumed ideal routing In practice Routing algorithms are not ideal Goal: distribute traffic evenly

More information

A New Theory of Deadlock-Free Adaptive. Routing in Wormhole Networks. Jose Duato. Abstract

A New Theory of Deadlock-Free Adaptive. Routing in Wormhole Networks. Jose Duato. Abstract A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks Jose Duato Abstract Second generation multicomputers use wormhole routing, allowing a very low channel set-up time and drastically reducing

More information

Routing Algorithms. Review

Routing Algorithms. Review Routing Algorithms Today s topics: Deterministic, Oblivious Adaptive, & Adaptive models Problems: efficiency livelock deadlock 1 CS6810 Review Network properties are a combination topology topology dependent

More information

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management Marina Garcia 22 August 2013 OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management M. Garcia, E. Vallejo, R. Beivide, M. Valero and G. Rodríguez Document number OFAR-CM: Efficient Dragonfly

More information

EE482, Spring 1999 Research Paper Report. Deadlock Recovery Schemes

EE482, Spring 1999 Research Paper Report. Deadlock Recovery Schemes EE482, Spring 1999 Research Paper Report Deadlock Recovery Schemes Jinyung Namkoong Mohammed Haque Nuwan Jayasena Manman Ren May 18, 1999 Introduction The selected papers address the problems of deadlock,

More information

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults 1/45 1/22 MICRO-46, 9 th December- 213 Davis, California udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults Ritesh Parikh and Valeria Bertacco Electrical Engineering & Computer

More information

Packet Switch Architecture

Packet Switch Architecture Packet Switch Architecture 3. Output Queueing Architectures 4. Input Queueing Architectures 5. Switching Fabrics 6. Flow and Congestion Control in Sw. Fabrics 7. Output Scheduling for QoS Guarantees 8.

More information

Packet Switch Architecture

Packet Switch Architecture Packet Switch Architecture 3. Output Queueing Architectures 4. Input Queueing Architectures 5. Switching Fabrics 6. Flow and Congestion Control in Sw. Fabrics 7. Output Scheduling for QoS Guarantees 8.

More information

FOLLOWING the introduction of networks of workstations

FOLLOWING the introduction of networks of workstations IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006 51 Layered Routing in Irregular Networks Olav Lysne, Member, IEEE, Tor Skeie, Sven-Arne Reinemo, and Ingebjørg Theiss

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal Lecture 19 Interconnects: Flow Control Winter 2018 Subhankar Pal http://www.eecs.umich.edu/courses/eecs570/ Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk,

More information

Bandwidth Aware Routing Algorithms for Networks-on-Chip

Bandwidth Aware Routing Algorithms for Networks-on-Chip 1 Bandwidth Aware Routing Algorithms for Networks-on-Chip G. Longo a, S. Signorino a, M. Palesi a,, R. Holsmark b, S. Kumar b, and V. Catania a a Department of Computer Science and Telecommunications Engineering

More information

MESH-CONNECTED networks have been widely used in

MESH-CONNECTED networks have been widely used in 620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 5, MAY 2009 Practical Deadlock-Free Fault-Tolerant Routing in Meshes Based on the Planar Network Fault Model Dong Xiang, Senior Member, IEEE, Yueli Zhang,

More information

Lecture 18: Communication Models and Architectures: Interconnection Networks

Lecture 18: Communication Models and Architectures: Interconnection Networks Design & Co-design of Embedded Systems Lecture 18: Communication Models and Architectures: Interconnection Networks Sharif University of Technology Computer Engineering g Dept. Winter-Spring 2008 Mehdi

More information

A Hybrid Interconnection Network for Integrated Communication Services

A Hybrid Interconnection Network for Integrated Communication Services A Hybrid Interconnection Network for Integrated Communication Services Yi-long Chen Northern Telecom, Inc. Richardson, TX 7583 kchen@nortel.com Jyh-Charn Liu Department of Computer Science, Texas A&M Univ.

More information

in Oblivious Routing

in Oblivious Routing Static Virtual Channel Allocation in Oblivious Routing Keun Sup Shim, Myong Hyon Cho, Michel Kinsy, Tina Wen, Mieszko Lis G. Edward Suh (Cornell) Srinivas Devadas MIT Computer Science and Artificial Intelligence

More information

Sanaz Azampanah Ahmad Khademzadeh Nader Bagherzadeh Majid Janidarmian Reza Shojaee

Sanaz Azampanah Ahmad Khademzadeh Nader Bagherzadeh Majid Janidarmian Reza Shojaee Sanaz Azampanah Ahmad Khademzadeh Nader Bagherzadeh Majid Janidarmian Reza Shojaee Application-Specific Routing Algorithm Selection Function Look-Ahead Traffic-aware Execution (LATEX) Algorithm Experimental

More information

CONNECTION-BASED ADAPTIVE ROUTING USING DYNAMIC VIRTUAL CIRCUITS

CONNECTION-BASED ADAPTIVE ROUTING USING DYNAMIC VIRTUAL CIRCUITS Proceedings of the International Conference on Parallel and Distributed Computing and Systems, Las Vegas, Nevada, pp. 379-384, October 1998. CONNECTION-BASED ADAPTIVE ROUTING USING DYNAMIC VIRTUAL CIRCUITS

More information

Input Buffering (IB): Message data is received into the input buffer.

Input Buffering (IB): Message data is received into the input buffer. TITLE Switching Techniques BYLINE Sudhakar Yalamanchili School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA. 30332 sudha@ece.gatech.edu SYNONYMS Flow Control DEFITION

More information

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636 1 Adaptive Routing Adaptive Routing Basics Minimal Adaptive Routing Fully Adaptive Routing Load-Balanced Adaptive Routing Search-Based Routing Case Study: Adapted Routing in the Thinking Machines CM-5

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture On-chip Networking Prof. Michel A. Kinsy Virtual Channel Router VC 0 Routing Computation Virtual Channel Allocator Switch Allocator Input Ports VC x VC 0 VC x It s a system

More information

Thomas Moscibroda Microsoft Research. Onur Mutlu CMU

Thomas Moscibroda Microsoft Research. Onur Mutlu CMU Thomas Moscibroda Microsoft Research Onur Mutlu CMU CPU+L1 CPU+L1 CPU+L1 CPU+L1 Multi-core Chip Cache -Bank Cache -Bank Cache -Bank Cache -Bank CPU+L1 CPU+L1 CPU+L1 CPU+L1 Accelerator, etc Cache -Bank

More information

Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks

Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks J. M. Martínez, P. López, J. Duato T. M. Pinkston Facultad de Informática SMART Interconnects Group Universidad

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Flow Control can be viewed as a problem of

Flow Control can be viewed as a problem of NOC Flow Control 1 Flow Control Flow Control determines how the resources of a network, such as channel bandwidth and buffer capacity are allocated to packets traversing a network Goal is to use resources

More information

A Deterministic Fault-Tolerant and Deadlock-Free Routing Protocol in 2-D Meshes Based on Odd-Even Turn Model

A Deterministic Fault-Tolerant and Deadlock-Free Routing Protocol in 2-D Meshes Based on Odd-Even Turn Model A Deterministic Fault-Tolerant and Deadlock-Free Routing Protocol in 2-D Meshes Based on Odd-Even Turn Model Jie Wu Dept. of Computer Science and Engineering Florida Atlantic University Boca Raton, FL

More information

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees, butterflies,

More information

Communication Performance in Network-on-Chips

Communication Performance in Network-on-Chips Communication Performance in Network-on-Chips Axel Jantsch Royal Institute of Technology, Stockholm November 24, 2004 Network on Chip Seminar, Linköping, November 25, 2004 Communication Performance In

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

Dynamic Network Reconfiguration for Switch-based Networks

Dynamic Network Reconfiguration for Switch-based Networks Dynamic Network Reconfiguration for Switch-based Networks Ms. Deepti Metri 1, Prof. A. V. Mophare 2 1Student, Computer Science and Engineering, N. B. N. Sinhgad College of Engineering, Maharashtra, India

More information

Traffic Control in Wormhole Routing Meshes under Non-Uniform Traffic Patterns

Traffic Control in Wormhole Routing Meshes under Non-Uniform Traffic Patterns roceedings of the IASTED International Conference on arallel and Distributed Computing and Systems (DCS) November 3-6, 1999, Boston (MA), USA Traffic Control in Wormhole outing Meshes under Non-Uniform

More information

A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J.

A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J. A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J. Published in: IEEE Transactions on Parallel and Distributed Systems DOI: 10.1109/TPDS.2013.121 Published: 01/01/2014

More information

ACCELERATING COMMUNICATION IN ON-CHIP INTERCONNECTION NETWORKS. A Dissertation MIN SEON AHN

ACCELERATING COMMUNICATION IN ON-CHIP INTERCONNECTION NETWORKS. A Dissertation MIN SEON AHN ACCELERATING COMMUNICATION IN ON-CHIP INTERCONNECTION NETWORKS A Dissertation by MIN SEON AHN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Fault-Tolerant Wormhole Routing Algorithms in Meshes in the Presence of Concave Faults

Fault-Tolerant Wormhole Routing Algorithms in Meshes in the Presence of Concave Faults Fault-Tolerant Wormhole Routing Algorithms in Meshes in the Presence of Concave Faults Seungjin Park Jong-Hoon Youn Bella Bose Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

More information

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching.

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching. Switching/Flow Control Overview Interconnection Networks: Flow Control and Microarchitecture Topology: determines connectivity of network Routing: determines paths through network Flow Control: determine

More information

Adaptive Routing in Hexagonal Torus Interconnection Networks

Adaptive Routing in Hexagonal Torus Interconnection Networks Adaptive Routing in Hexagonal Torus Interconnection Networks Arash Shamaei and Bella Bose School of Electrical Engineering and Computer Science Oregon State University Corvallis, OR 97331 5501 Email: {shamaei,bose}@eecs.oregonstate.edu

More information

Quest for High-Performance Bufferless NoCs with Single-Cycle Express Paths and Self-Learning Throttling

Quest for High-Performance Bufferless NoCs with Single-Cycle Express Paths and Self-Learning Throttling Quest for High-Performance Bufferless NoCs with Single-Cycle Express Paths and Self-Learning Throttling Bhavya K. Daya, Li-Shiuan Peh, Anantha P. Chandrakasan Dept. of Electrical Engineering and Computer

More information

Formal Verification of Communications in Networks on Chips

Formal Verification of Communications in Networks on Chips Formal Verification of Communications in Networks on Chips Sebastiaan J.C. Joosten Julien Schmaltz Freek Verbeek Bernard van Gastel Open University of the Netherlands, Heerlen Radboud University Nijmegen

More information

Evaluating Bufferless Flow Control for On-Chip Networks

Evaluating Bufferless Flow Control for On-Chip Networks Evaluating Bufferless Flow Control for On-Chip Networks George Michelogiannakis, Daniel Sanchez, William J. Dally, Christos Kozyrakis Stanford University In a nutshell Many researchers report high buffer

More information

Connection-oriented Multicasting in Wormhole-switched Networks on Chip

Connection-oriented Multicasting in Wormhole-switched Networks on Chip Connection-oriented Multicasting in Wormhole-switched Networks on Chip Zhonghai Lu, Bei Yin and Axel Jantsch Laboratory of Electronics and Computer Systems Royal Institute of Technology, Sweden fzhonghai,axelg@imit.kth.se,

More information

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background 1 Hard Error Tolerance in PCM PCM cells will eventually fail; important to cause gradual capacity degradation

More information

Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals

Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals Joint consideration of performance, reliability and fault tolerance in regular Networks-on-Chip via multiple spatially-independent interface terminals Philipp Gorski, Tim Wegner, Dirk Timmermann University

More information

Prevention Flow-Control for Low Latency Torus Networks-on-Chip

Prevention Flow-Control for Low Latency Torus Networks-on-Chip revention Flow-Control for Low Latency Torus Networks-on-Chip Arpit Joshi Computer Architecture and Systems Lab Department of Computer Science & Engineering Indian Institute of Technology, Madras arpitj@cse.iitm.ac.in

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali Self Stabilization CS553 Distributed Algorithms Prof. Ajay Kshemkalyani by Islam Ismailov & Mohamed M. Ali Introduction There is a possibility for a distributed system to go into an illegitimate state,

More information

Design and Evaluation of a Fault-Tolerant Adaptive Router for Parallel Computers

Design and Evaluation of a Fault-Tolerant Adaptive Router for Parallel Computers Design and Evaluation of a Fault-Tolerant Adaptive Router for Parallel Computers Tsutomu YOSHINAGA, Hiroyuki HOSOGOSHI, Masahiro SOWA Graduate School of Information Systems, University of Electro-Communications,

More information

SoC Design. Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik

SoC Design. Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik SoC Design Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik Chapter 5 On-Chip Communication Outline 1. Introduction 2. Shared media 3. Switched media 4. Network on

More information

Resource Deadlocks and Performance of Wormhole Multicast Routing Algorithms

Resource Deadlocks and Performance of Wormhole Multicast Routing Algorithms IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998 535 Resource Deadlocks and Performance of Wormhole Multicast Routing Algorithms Rajendra V. Boppana, Member, IEEE, Suresh

More information

Interconnection Network

Interconnection Network Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network

More information

Characterization of Deadlocks in Interconnection Networks

Characterization of Deadlocks in Interconnection Networks Characterization of Deadlocks in Interconnection Networks Sugath Warnakulasuriya Timothy Mark Pinkston SMART Interconnects Group EE-System Dept., University of Southern California, Los Angeles, CA 90089-56

More information

Communication in Multicomputers with Nonconvex Faults

Communication in Multicomputers with Nonconvex Faults Communication in Multicomputers with Nonconvex Faults Suresh Chalasani Rajendra V. Boppana Technical Report : CS-96-12 October 1996 The University of Texas at San Antonio Division of Computer Science San

More information

BLAM : A High-Performance Routing Algorithm for Virtual Cut-Through Networks

BLAM : A High-Performance Routing Algorithm for Virtual Cut-Through Networks BLAM : A High-Performance Routing Algorithm for Virtual Cut-Through Networks Mithuna Thottethodi Λ Alvin R. Lebeck y Shubhendu S. Mukherjee z Λ School of Electrical and Computer Engineering Purdue University

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

Communication in Multicomputers with Nonconvex Faults?

Communication in Multicomputers with Nonconvex Faults? In Proceedings of EUROPAR 95 Communication in Multicomputers with Nonconvex Faults? Suresh Chalasani 1 and Rajendra V. Boppana 2 1 Dept. of ECE, University of Wisconsin-Madison, Madison, WI 53706-1691,

More information

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies Alvin R. Lebeck CPS 220 Admin Homework #5 Due Dec 3 Projects Final (yes it will be cumulative) CPS 220 2 1 Review: Terms Network characterized

More information

Towards A Formally Verified Network-on-Chip

Towards A Formally Verified Network-on-Chip Towards A Formally Verified Network-on-Chip Tom van den Broek 1 Julien Schmaltz 12 1 Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands 2 School of Computer Science

More information

Evaluation of NOC Using Tightly Coupled Router Architecture

Evaluation of NOC Using Tightly Coupled Router Architecture IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. II (Jan Feb. 2016), PP 01-05 www.iosrjournals.org Evaluation of NOC Using Tightly Coupled Router

More information

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts School of Electrical and Computer Engineering Cornell University revision: 2017-10-17-12-26 1 Network/Roadway Analogy 3 1.1. Running

More information

Design and Implementation of Buffer Loan Algorithm for BiNoC Router

Design and Implementation of Buffer Loan Algorithm for BiNoC Router Design and Implementation of Buffer Loan Algorithm for BiNoC Router Deepa S Dev Student, Department of Electronics and Communication, Sree Buddha College of Engineering, University of Kerala, Kerala, India

More information

Fault-Tolerant Routing Algorithm in Meshes with Solid Faults

Fault-Tolerant Routing Algorithm in Meshes with Solid Faults Fault-Tolerant Routing Algorithm in Meshes with Solid Faults Jong-Hoon Youn Bella Bose Seungjin Park Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science Oregon State University

More information

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus)

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Routing Algorithm How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Many routing algorithms exist 1) Arithmetic 2) Source-based 3) Table lookup

More information

Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing?

Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing? Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing? J. Flich 1,P.López 1, M. P. Malumbres 1, J. Duato 1, and T. Rokicki 2 1 Dpto. Informática

More information

NONBLOCKING COMMIT PROTOCOLS

NONBLOCKING COMMIT PROTOCOLS Dale Skeen NONBLOCKING COMMIT PROTOCOLS MC714 Sistemas Distribuídos Nonblocking Commit Protocols Dale Skeen From a certain point onward there is no longer any turning back. That is the point that must

More information

Boosting the Performance of Myrinet Networks

Boosting the Performance of Myrinet Networks IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH 22 1 Boosting the Performance of Myrinet Networks J. Flich, P. López, M. P. Malumbres, and J. Duato Abstract Networks of workstations

More information

Interconnection Networks

Interconnection Networks Lecture 18: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Credit: many of these slides were created by Michael Papamichael This lecture is partially

More information

Performance Evaluation of a New Routing Strategy for Irregular Networks with Source Routing

Performance Evaluation of a New Routing Strategy for Irregular Networks with Source Routing Performance Evaluation of a New Routing Strategy for Irregular Networks with Source Routing J. Flich, M. P. Malumbres, P. López and J. Duato Dpto. Informática de Sistemas y Computadores Universidad Politécnica

More information

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics Lecture 16: On-Chip Networks Topics: Cache networks, NoC basics 1 Traditional Networks Huh et al. ICS 05, Beckmann MICRO 04 Example designs for contiguous L2 cache regions 2 Explorations for Optimality

More information

Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip

Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip Nauman Jalil, Adnan Qureshi, Furqan Khan, and Sohaib Ayyaz Qazi Abstract

More information

Adaptive Multimodule Routers

Adaptive Multimodule Routers daptive Multimodule Routers Rajendra V Boppana Computer Science Division The Univ of Texas at San ntonio San ntonio, TX 78249-0667 boppana@csutsaedu Suresh Chalasani ECE Department University of Wisconsin-Madison

More information

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013 NetSpeed ORION: A New Approach to Design On-chip Interconnects August 26 th, 2013 INTERCONNECTS BECOMING INCREASINGLY IMPORTANT Growing number of IP cores Average SoCs today have 100+ IPs Mixing and matching

More information