Towards A Formally Verified Network-on-Chip

Size: px
Start display at page:

Download "Towards A Formally Verified Network-on-Chip"

Transcription

1 Towards A Formally Verified Network-on-Chip Tom van den Broek 1 Julien Schmaltz 12 1 Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands 2 School of Computer Science Open University The Netherlands t.vandenbroek@cs.ru.nl & julien.schmaltz@ou.nl FMCAD 09

2 Outline Networks-on-Chips: Hermes Implemented as model instance Characteristics: XY minimal deterministic routing Wormhole switching Frame structure: Header flit (Route Information) Data flits (Payload) Torn-down flit (Last flit) TD DATA HD

3 Outline Network-on-Chips Platform-Based Design and Networks-on-Chip Platform-Based Design: Re-use of parametric modules (Intellectual Properties) High-level of abstraction Communication-centric: from buses to networks Solves the communication issues The components are connected in a communication network Advantages Scalable Parallelism

4 Outline Network-on-Chips Formal Methods and Networks-on-Chips System Verification: Proof of each component Proof of their interconnection State-of-the-Art: Model checking or theorem proving of instances of systems Often at hardware level (RTL) The GeNoC Approach: A generic model for reasoning about NoCs Reduces amount of the user interaction needed to prove properties on NoC instances

5 GeNoC approach Outline Network-on-Chips Interfaces Routing Scheduling Proof Obligations Proof Obligations Proof Obligations (0 2) (1 2) (2 2) Y () () (2 1) (0 0) (1 0) (2 0) X THEOREM messages reach their expected destination Proof Obligations Instantiated for the given NoC Proof Obligations Proof Obligations To be discharged for the given NoC

6 Contribution Outline Contribution and Method Original GeNoC Model Highly abstract representation of the communications The model has access to the complete precomputed routes the messages will traverse in the network How does the specification level relates to the implementation level? Contribution A generic implementation model A (generic) specification model A refinement proof between two instances of these models

7 Outline Method - Specification model Contribution and Method

8 Method - Contribution Outline Contribution and Method

9 Models Structure of the two models Both models consist of two main parts: The NoC characteristics are defined in the Network model Topology Router components: Datalink Routing Scheduling The Network interpreter takes a network model and simulates the network Implemented in ACL2

10 Models The main interpreter structure Model Structure State Messages Depart delayed Updated state Stepnetwork Router UpdateNeighbours

11 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state Stepnetwork Router 0 0 UpdateNeighbours

12 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state M Stepnetwork Router 0 0 UpdateNeighbours

13 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state M Stepnetwork Router 0 0 UpdateNeighbours ProcessInputs

14 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state M Stepnetwork Router 0 0 UpdateNeighbours RouteControl

15 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state Stepnetwork Router M 0 0 UpdateNeighbours FlowControl

16 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state Stepnetwork Router 0 0 M 1 0 UpdateNeighbours ProcessOutputs

17 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state Stepnetwork Router M 0 0 UpdateNeighbours

18 Models Interpreter Network interpreter Implementation Level State Messages Depart delayed Updated state Stepnetwork Router 0 0 M 1 0 UpdateNeighbours

19 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state Stepnetwork Spec-Router 0 0 UpdateNeighbours

20 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state M ENL Stepnetwork Spec-Router 0 0 UpdateNeighbours

21 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state M ENL Stepnetwork Spec-Router 0 0 UpdateNeighbours

22 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state Stepnetwork Spec-Router M ENL 0 0 UpdateNeighbours

23 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state Stepnetwork Spec-Router 0 0 M NL 1 0 UpdateNeighbours

24 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state Stepnetwork Spec-Router M NL 0 0 UpdateNeighbours

25 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state Stepnetwork Spec-Router M NL 0 0 UpdateNeighbours

26 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed Updated state M L Stepnetwork Spec-Router 0 0 UpdateNeighbours

27 Models Interpreter Network interpreter Specification Level State Messages R-Depart delayed M L Updated state Stepnetwork Spec-Router 0 0 UpdateNeighbours

28 Models Interpreter Network interpreter Specification Level State Messages M L R-Depart delayed Updated state Stepnetwork Spec-Router 0 0 UpdateNeighbours

29 Proof concept Refinement proof The implementation model is a refinement of the specification model 1 Given the same input the models should produce the same output 2 The messages should traverse the same paths in the network

30 Proof concept Refinement proof The implementation model is a refinement of the specification model 1 Given the same input the models should produce the same output 2 The messages should traverse the same paths in the network spec spec Transform impl impl The Transform relation removes the routes from the network state

31 Refinement proof Refinement theorem (1) Correct-GeNoC state, transactions : transform(genoc S (state, transactions)) = GeNoC I (state, transactions) GeNoC I and GeNoC S return a tuple of (arrived, delayed, trace) so this theorem can be read as: 1 The transformed arrived messages are equal 2 Delayed messages are equal 3 The transformed simulation trace is the same

32 Proof - Structure Refinement proof Main theorem eq-genoc eq-genoc_t Pedicates delayed arrived ntkst ntkmem accup Valid-routes stepnetwork step-outputs step-flowcontrol step-routing step-inputs Correct-routing good-ntkst routinglogic-eq-next-hop good-switch Valid-routes

33 Proof - Structure Refinement proof Main theorem eq-genoc eq-genoc_t Pedicates delayed arrived ntkst ntkmem accup Valid-routes stepnetwork step-outputs step-flowcontrol step-routing step-inputs Correct-routing good-ntkst routinglogic-eq-next-hop good-switch Valid-routes

34 Refinement proof Example theorem - Routinglogic-eq-next-hop msg : validroute(msg) = computeroute(cur(msg))(dest(msg)) = getnexthop(msg) This theorem states: A message with a valid route implies that computing the next step in the route is equal to extracting it from the precomputed route.

35 Refinement proof Proof - Statistics Group number of Theorems Changed functions 72 Predicates 140 Not changed functions 88 Total 300 The source code of the proofs and models is available on the web julien/julien at Nijmegen/FMCAD09.html

36 Conclusion - overview Conclusion

37 Conclusion Conclusion - contributions The contributions are: First cross-layer verification attempt of a NoC A realistic generic implementation model Multiple implementation instances of real NoCs Packet, circuit, and wormhole switching XY and Spidergon routing Hermes NoC Octagon NoC Instance of a NoC at the specification level Refinement proof between two instances

38 Conclusion Conclusion - Future work Current and future research directions: A generic cross-layer verification method Proof between two generic models at two different levels More instances of different NoCs Integration of deadlock and liveness properties (Verbeek & Schmaltz ACL2 09 and DATE 10) Extending the number of layers Towards RTL Layer with Source and Distributed scheduling

39 Conclusion Thank you for listening!

40 Appendix Network Model Generic Router Port Address Id Port Name Direction N E S W L Data Data Input Input Stage Rx ackrx StatusField Buffer Routing Control Port Flow Control Data Address Id Data Output Port Name Direction Output Stage N E S W L Tx acktx StatusField Buffer

41 Appendix Wormhole switching and XY Routing 0 0

42 Appendix Wormhole switching and XY Routing H booked 0 0

43 Appendix Wormhole switching and XY Routing D booked H 0 0 booked 1 0

44 Appendix Wormhole switching and XY Routing D booked D H 0 0 booked booked 1 0

45 Appendix Wormhole switching and XY Routing T H booked booked D D 0 0 booked booked 1 0

46 Appendix Wormhole switching and XY Routing H booked D T booked D 0 0 booked booked 1 0

47 Appendix Wormhole switching and XY Routing H booked D booked D booked T 0 0 booked 1 0

48 Appendix Wormhole switching and XY Routing D booked D booked T booked 0 0

49 Appendix Wormhole switching and XY Routing D booked T booked 0 0

50 Appendix Wormhole switching and XY Routing T booked 0 0

51 Appendix Wormhole switching and XY Routing 0 0

52 Appendix Circuit Switching 0 0

53 Appendix Circuit Switching m req 0 0 req 1 0

54 Appendix Circuit Switching m req 0 0 req req 1 0

55 Appendix Circuit Switching m req req 0 0 req req 1 0

56 Appendix Circuit Switching req m req req 0 0 req req 1 0

57 Appendix Circuit Switching booked ack req m req req 0 0 req req 1 0

58 Appendix Circuit Switching booked ack booked m req req 0 0 req req 1 0

59 Appendix Circuit Switching booked ack booked m req booked 0 0 req req 1 0

60 Appendix Circuit Switching booked ack booked m req booked 0 0 req booked1 0

61 Appendix Circuit Switching booked ack booked m req booked 0 0booked booked1 0

62 Appendix Circuit Switching booked ack booked m booked booked 0 0booked booked1 0

Towards A Formal Theory of On Chip Communications in the ACL2 Logic

Towards A Formal Theory of On Chip Communications in the ACL2 Logic (c) Julien Schmaltz, ACL2 2006, San José August 15-16 p. 1/37 Towards A Formal Theory of On Chip Communications in the ACL2 Logic Julien Schmaltz Saarland University - Computer Science Department Saarbrücken,

More information

Formal Verification of Communications in Networks on Chips

Formal Verification of Communications in Networks on Chips Formal Verification of Communications in Networks on Chips Sebastiaan J.C. Joosten Julien Schmaltz Freek Verbeek Bernard van Gastel Open University of the Netherlands, Heerlen Radboud University Nijmegen

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

NOC Deadlock and Livelock

NOC Deadlock and Livelock NOC Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

Deadlock and Livelock. Maurizio Palesi

Deadlock and Livelock. Maurizio Palesi Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

Lecture 3: Flow-Control

Lecture 3: Flow-Control High-Performance On-Chip Interconnects for Emerging SoCs http://tusharkrishna.ece.gatech.edu/teaching/nocs_acaces17/ ACACES Summer School 2017 Lecture 3: Flow-Control Tushar Krishna Assistant Professor

More information

FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow

FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow Abstract: High-level synthesis (HLS) of data-parallel input languages, such as the Compute Unified Device Architecture

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information

Lecture 18: Communication Models and Architectures: Interconnection Networks

Lecture 18: Communication Models and Architectures: Interconnection Networks Design & Co-design of Embedded Systems Lecture 18: Communication Models and Architectures: Interconnection Networks Sharif University of Technology Computer Engineering g Dept. Winter-Spring 2008 Mehdi

More information

Flow Control can be viewed as a problem of

Flow Control can be viewed as a problem of NOC Flow Control 1 Flow Control Flow Control determines how the resources of a network, such as channel bandwidth and buffer capacity are allocated to packets traversing a network Goal is to use resources

More information

Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem

Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem Reading W. Dally, C. Seitz, Deadlock-Free Message Routing on Multiprocessor Interconnection Networks,, IEEE TC, May 1987 Deadlock F. Silla, and J. Duato, Improving the Efficiency of Adaptive Routing in

More information

OASIS NoC Architecture Design in Verilog HDL Technical Report: TR OASIS

OASIS NoC Architecture Design in Verilog HDL Technical Report: TR OASIS OASIS NoC Architecture Design in Verilog HDL Technical Report: TR-062010-OASIS Written by Kenichi Mori ASL-Ben Abdallah Group Graduate School of Computer Science and Engineering The University of Aizu

More information

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees, butterflies,

More information

A Flexible Design of Network on Chip Router based on Handshaking Communication Mechanism

A Flexible Design of Network on Chip Router based on Handshaking Communication Mechanism A Flexible Design of Network on Chip Router based on Handshaking Communication Mechanism Seyyed Amir Asghari, Hossein Pedram and Mohammad Khademi 2 Amirkabir University of Technology 2 Shahid Beheshti

More information

A formalisation of XMAS

A formalisation of XMAS A formalisation of XMAS Bernard van Gastel Julien Schmaltz Open University of the Netherlands {Bernard.vanGastel, Julien.Schmaltz}@ou.nl Communication fabrics play a key role in the correctness and performance

More information

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels Lecture: Interconnection Networks Topics: TM wrap-up, routing, deadlock, flow control, virtual channels 1 TM wrap-up Eager versioning: create a log of old values Handling problematic situations with a

More information

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger Interconnection Networks: Flow Control Prof. Natalie Enright Jerger Switching/Flow Control Overview Topology: determines connectivity of network Routing: determines paths through network Flow Control:

More information

Basic Switch Organization

Basic Switch Organization NOC Routing 1 Basic Switch Organization 2 Basic Switch Organization Link Controller Used for coordinating the flow of messages across the physical link of two adjacent switches 3 Basic Switch Organization

More information

Designing and Implementation of a Network on Chip Router Based on Handshaking Communication Mechanism

Designing and Implementation of a Network on Chip Router Based on Handshaking Communication Mechanism World Applied Sciences Journal 6 (1): 88-93, 2009 ISSN 1818-4952 IDOSI Publications, 2009 Designing and Implementation of a Network on Chip Based on Handshaking Communication Mechanism Seyyed Amir Asghari,

More information

Hardware Verification 2IMF20

Hardware Verification 2IMF20 Hardware Verification 2IMF20 Julien Schmaltz Lecture 06: Verification of on-chip communications Living a revolution It is a really exiting time to be in computing right now, because we are [experiencing]

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

SoC Design. Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik

SoC Design. Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik SoC Design Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik Chapter 5 On-Chip Communication Outline 1. Introduction 2. Shared media 3. Switched media 4. Network on

More information

Switching / Forwarding

Switching / Forwarding Switching / Forwarding A switch is a device that allows interconnection of links to form larger networks Multi-input, multi-output device Packet switch transfers packets from an input to one or more outputs

More information

A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J.

A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J. A decision procedure for deadlock-free routing in wormhole networks Verbeek, F.; Schmaltz, J. Published in: IEEE Transactions on Parallel and Distributed Systems DOI: 10.1109/TPDS.2013.121 Published: 01/01/2014

More information

HiRA: A Methodology for Deadlock Free Routing in Hierarchical Networks on Chip

HiRA: A Methodology for Deadlock Free Routing in Hierarchical Networks on Chip HiRA: A Methodology for Deadlock Free Routing in Hierarchical Networks on Chip Rickard Holsmark 1, Maurizio Palesi 2, Shashi Kumar 1 and Andres Mejia 3 1 Jönköping University, Sweden 2 University of Catania,

More information

Architecture and Design of Efficient 3D Network-on-Chip for Custom Multi-Core SoC

Architecture and Design of Efficient 3D Network-on-Chip for Custom Multi-Core SoC BWCCA 2010 Fukuoka, Japan November 4-6 2010 Architecture and Design of Efficient 3D Network-on-Chip for Custom Multi-Core SoC Akram Ben Ahmed, Abderazek Ben Abdallah, Kenichi Kuroda The University of Aizu

More information

SoC Design Lecture 13: NoC (Network-on-Chip) Department of Computer Engineering Sharif University of Technology

SoC Design Lecture 13: NoC (Network-on-Chip) Department of Computer Engineering Sharif University of Technology SoC Design Lecture 13: NoC (Network-on-Chip) Department of Computer Engineering Sharif University of Technology Outline SoC Interconnect NoC Introduction NoC layers Typical NoC Router NoC Issues Switching

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

Packe k t e S w S it w ching

Packe k t e S w S it w ching Packet Switching Jun Jie, NG 08 Oct 2011 Reference Book Chapter 3: Packet Switching What is a Switch? In the simplest terms, a switch is a mechanism that allows us to interconnect links to form a larger

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks

Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks Andreas Lankes¹, Soeren Sonntag², Helmut Reinig³, Thomas Wild¹, Andreas Herkersdorf¹

More information

Formal verification of Network-on-Chip (NoC) Architecture

Formal verification of Network-on-Chip (NoC) Architecture Formal verification of Network-on-Chip (NoC) Architecture By Anam Zaman 2010-NUST-MS-EE(S)-40 Supervisor Dr. Osman Hasan Department of Electrical Engineering A thesis submitted in partial fulfillment of

More information

Design of Router Architecture Based on Wormhole Switching Mode for NoC

Design of Router Architecture Based on Wormhole Switching Mode for NoC International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 1 Design of Router Architecture Based on Wormhole Switching Mode for NoC L.Rooban, S.Dhananjeyan Abstract - Network

More information

Interconnection Network

Interconnection Network Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics Lecture 16: On-Chip Networks Topics: Cache networks, NoC basics 1 Traditional Networks Huh et al. ICS 05, Beckmann MICRO 04 Example designs for contiguous L2 cache regions 2 Explorations for Optimality

More information

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013 NetSpeed ORION: A New Approach to Design On-chip Interconnects August 26 th, 2013 INTERCONNECTS BECOMING INCREASINGLY IMPORTANT Growing number of IP cores Average SoCs today have 100+ IPs Mixing and matching

More information

A VERIOG-HDL IMPLEMENTATION OF VIRTUAL CHANNELS IN A NETWORK-ON-CHIP ROUTER. A Thesis SUNGHO PARK

A VERIOG-HDL IMPLEMENTATION OF VIRTUAL CHANNELS IN A NETWORK-ON-CHIP ROUTER. A Thesis SUNGHO PARK A VERIOG-HDL IMPLEMENTATION OF VIRTUAL CHANNELS IN A NETWORK-ON-CHIP ROUTER A Thesis by SUNGHO PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies Alvin R. Lebeck CPS 220 Admin Homework #5 Due Dec 3 Projects Final (yes it will be cumulative) CPS 220 2 1 Review: Terms Network characterized

More information

A Functional Specification and Validation Model for Networks on Chip in the ACL2 Logic

A Functional Specification and Validation Model for Networks on Chip in the ACL2 Logic A Functional Specification and Validation Model for Networks on Chip in the ACL2 Logic J. Schmaltz * and D. Borrione TIMA Laboratory - VDS Group Grenoble, France * Part of this work was done while visiting

More information

OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel

OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel Hyoukjun Kwon and Tushar Krishna Georgia Institute of Technology Synergy Lab (http://synergy.ece.gatech.edu) hyoukjun@gatech.edu April

More information

DESIGN AND IMPLEMENTATION ARCHITECTURE FOR RELIABLE ROUTER RKT SWITCH IN NOC

DESIGN AND IMPLEMENTATION ARCHITECTURE FOR RELIABLE ROUTER RKT SWITCH IN NOC International Journal of Engineering and Manufacturing Science. ISSN 2249-3115 Volume 8, Number 1 (2018) pp. 65-76 Research India Publications http://www.ripublication.com DESIGN AND IMPLEMENTATION ARCHITECTURE

More information

Getting to Work with OpenPiton

Getting to Work with OpenPiton Getting to Work with OpenPiton Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl, David Wentzlaff

More information

JUNCTION BASED ROUTING: A NOVEL TECHNIQUE FOR LARGE NETWORK ON CHIP PLATFORMS

JUNCTION BASED ROUTING: A NOVEL TECHNIQUE FOR LARGE NETWORK ON CHIP PLATFORMS 1 JUNCTION BASED ROUTING: A NOVEL TECHNIQUE FOR LARGE NETWORK ON CHIP PLATFORMS Shabnam Badri THESIS WORK 2011 ELECTRONICS JUNCTION BASED ROUTING: A NOVEL TECHNIQUE FOR LARGE NETWORK ON CHIP PLATFORMS

More information

Design and Implementation of Low Complexity Router for 2D Mesh Topology using FPGA

Design and Implementation of Low Complexity Router for 2D Mesh Topology using FPGA Design and Implementation of Low Complexity Router for 2D Mesh Topology using FPGA Maheswari Murali * and Seetharaman Gopalakrishnan # * Assistant professor, J. J. College of Engineering and Technology,

More information

NoC Test-Chip Project: Working Document

NoC Test-Chip Project: Working Document NoC Test-Chip Project: Working Document Michele Petracca, Omar Ahmad, Young Jin Yoon, Frank Zovko, Luca Carloni and Kenneth Shepard I. INTRODUCTION This document describes the low-power high-performance

More information

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background 1 Hard Error Tolerance in PCM PCM cells will eventually fail; important to cause gradual capacity degradation

More information

HeMPS Platform v7.3. Marcelo Ruaro, Eduardo Wachter, Guilherme Madalozzo, Guilherme Castilhos, André del Mestre Fernando G. Moraes

HeMPS Platform v7.3. Marcelo Ruaro, Eduardo Wachter, Guilherme Madalozzo, Guilherme Castilhos, André del Mestre Fernando G. Moraes 1 HeMPS Platform v7.3 Marcelo Ruaro, Eduardo Wachter, Guilherme Madalozzo, Guilherme Castilhos, André del Mestre Fernando G. Moraes PUCRS University, Computer Science Department, Porto Alegre, Brazil Platform

More information

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching.

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching. Switching/Flow Control Overview Interconnection Networks: Flow Control and Microarchitecture Topology: determines connectivity of network Routing: determines paths through network Flow Control: determine

More information

Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip

Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip Trade Offs in the Design of a Router with Both Guaranteed and BestEffort Services for Networks on Chip E. Rijpkema, K. Goossens, A. R dulescu, J. Dielissen, J. van Meerbergen, P. Wielage, and E. Waterlander

More information

Dynamic Stress Wormhole Routing for Spidergon NoC with effective fault tolerance and load distribution

Dynamic Stress Wormhole Routing for Spidergon NoC with effective fault tolerance and load distribution Dynamic Stress Wormhole Routing for Spidergon NoC with effective fault tolerance and load distribution Nishant Satya Lakshmikanth sailtosatya@gmail.com Krishna Kumaar N.I. nikrishnaa@gmail.com Sudha S

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on Chip

HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on Chip 1 HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on Chip Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, Luciano Ost Pontifícia Universidade Católica do Rio Grande

More information

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal Lecture 19 Interconnects: Flow Control Winter 2018 Subhankar Pal http://www.eecs.umich.edu/courses/eecs570/ Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk,

More information

FPGA Prototyping and Parameterised based Resource Evaluation of Network on Chip Architecture

FPGA Prototyping and Parameterised based Resource Evaluation of Network on Chip Architecture FPGA Prototyping and Parameterised based Resource Evaluation of Network on Chip Architecture Ayas Kanta Swain Kunda Rajesh Babu Sourav Narayan Satpathy Kamala Kanta Mahapatra ECE Dept. ECE Dept. ECE Dept.

More information

Ultra-Fast NoC Emulation on a Single FPGA

Ultra-Fast NoC Emulation on a Single FPGA The 25 th International Conference on Field-Programmable Logic and Applications (FPL 2015) September 3, 2015 Ultra-Fast NoC Emulation on a Single FPGA Thiem Van Chu, Shimpei Sato, and Kenji Kise Tokyo

More information

Communication Cost in Parallel Computing

Communication Cost in Parallel Computing Communication Cost in Parallel Computing Ned Nedialkov McMaster University Canada SE/CS 4F03 January 2016 Outline Cost Startup time Pre-hop time Pre-word time Store-and-forward Packet routing Cut-through

More information

Packet Switch Architecture

Packet Switch Architecture Packet Switch Architecture 3. Output Queueing Architectures 4. Input Queueing Architectures 5. Switching Fabrics 6. Flow and Congestion Control in Sw. Fabrics 7. Output Scheduling for QoS Guarantees 8.

More information

Packet Switch Architecture

Packet Switch Architecture Packet Switch Architecture 3. Output Queueing Architectures 4. Input Queueing Architectures 5. Switching Fabrics 6. Flow and Congestion Control in Sw. Fabrics 7. Output Scheduling for QoS Guarantees 8.

More information

Overlaid Mesh Topology Design and Deadlock Free Routing in Wireless Network-on-Chip. Danella Zhao and Ruizhe Wu Presented by Zhonghai Lu, KTH

Overlaid Mesh Topology Design and Deadlock Free Routing in Wireless Network-on-Chip. Danella Zhao and Ruizhe Wu Presented by Zhonghai Lu, KTH Overlaid Mesh Topology Design and Deadlock Free Routing in Wireless Network-on-Chip Danella Zhao and Ruizhe Wu Presented by Zhonghai Lu, KTH Outline Introduction Overview of WiNoC system architecture Overlaid

More information

Evaluation of NOC Using Tightly Coupled Router Architecture

Evaluation of NOC Using Tightly Coupled Router Architecture IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. II (Jan Feb. 2016), PP 01-05 www.iosrjournals.org Evaluation of NOC Using Tightly Coupled Router

More information

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom ISCA 2018 Session 8B: Interconnection Networks Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom Aniruddh Ramrakhyani Georgia Tech (aniruddh@gatech.edu) Tushar

More information

SONA: An On-Chip Network for Scalable Interconnection of AMBA-Based IPs*

SONA: An On-Chip Network for Scalable Interconnection of AMBA-Based IPs* SONA: An On-Chip Network for Scalable Interconnection of AMBA-Based IPs* Eui Bong Jung 1, Han Wook Cho 1, Neungsoo Park 2, and Yong Ho Song 1 1 College of Information and Communications, Hanyang University,

More information

SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES. Natalie Enright Jerger University of Toronto

SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES. Natalie Enright Jerger University of Toronto SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES University of Toronto Interaction of Coherence and Network 2 Cache coherence protocol drives network-on-chip traffic Scalable coherence protocols

More information

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus)

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Routing Algorithm How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Many routing algorithms exist 1) Arithmetic 2) Source-based 3) Table lookup

More information

OASIS Network-on-Chip Prototyping on FPGA

OASIS Network-on-Chip Prototyping on FPGA Master thesis of the University of Aizu, Feb. 20, 2012 OASIS Network-on-Chip Prototyping on FPGA m5141120, Kenichi Mori Supervised by Prof. Ben Abdallah Abderazek Adaptive Systems Laboratory, Master of

More information

A Dynamic NOC Arbitration Technique using Combination of VCT and XY Routing

A Dynamic NOC Arbitration Technique using Combination of VCT and XY Routing 727 A Dynamic NOC Arbitration Technique using Combination of VCT and XY Routing 1 Bharati B. Sayankar, 2 Pankaj Agrawal 1 Electronics Department, Rashtrasant Tukdoji Maharaj Nagpur University, G.H. Raisoni

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands MSc THESIS

Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands  MSc THESIS Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands http://ce.et.tudelft.nl/ 2014 MSc THESIS NoC characterization framework for design space exploration Sriram Prakash Adiga Abstract A Network

More information

Fault-adaptive routing

Fault-adaptive routing Fault-adaptive routing Presenter: Zaheer Ahmed Supervisor: Adan Kohler Reviewers: Prof. Dr. M. Radetzki Prof. Dr. H.-J. Wunderlich Date: 30-June-2008 7/2/2009 Agenda Motivation Fundamentals of Routing

More information

Network on Chip Architecture: An Overview

Network on Chip Architecture: An Overview Network on Chip Architecture: An Overview Md Shahriar Shamim & Naseef Mansoor 12/5/2014 1 Overview Introduction Multi core chip Challenges Network on Chip Architecture Regular Topology Irregular Topology

More information

Real-Time Mixed-Criticality Wormhole Networks

Real-Time Mixed-Criticality Wormhole Networks eal-time Mixed-Criticality Wormhole Networks Leandro Soares Indrusiak eal-time Systems Group Department of Computer Science University of York United Kingdom eal-time Systems Group 1 Outline Wormhole Networks

More information

A Literature Review of on-chip Network Design using an Agent-based Management Method

A Literature Review of on-chip Network Design using an Agent-based Management Method A Literature Review of on-chip Network Design using an Agent-based Management Method Mr. Kendaganna Swamy S Dr. Anand Jatti Dr. Uma B V Instrumentation Instrumentation Communication Bangalore, India Bangalore,

More information

DESIGN, IMPLEMENTATION AND EVALUATION OF A CONFIGURABLE. NoC FOR AcENoCS FPGA ACCELERATED EMULATION PLATFORM. A Thesis SWAPNIL SUBHASH LOTLIKAR

DESIGN, IMPLEMENTATION AND EVALUATION OF A CONFIGURABLE. NoC FOR AcENoCS FPGA ACCELERATED EMULATION PLATFORM. A Thesis SWAPNIL SUBHASH LOTLIKAR DESIGN, IMPLEMENTATION AND EVALUATION OF A CONFIGURABLE NoC FOR AcENoCS FPGA ACCELERATED EMULATION PLATFORM A Thesis by SWAPNIL SUBHASH LOTLIKAR Submitted to the Office of Graduate Studies of Texas A&M

More information

NOC: Networks on Chip SoC Interconnection Structures

NOC: Networks on Chip SoC Interconnection Structures NOC: Networks on Chip SoC Interconnection Structures COE838: Systems-on-Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering

More information

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC)

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) D.Udhayasheela, pg student [Communication system],dept.ofece,,as-salam engineering and technology, N.MageshwariAssistant Professor

More information

Lecture 7. Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions?

Lecture 7. Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions? Lecture 7 Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions? Thursday, September 15 CS 475 Networks - Lecture 7 1 Outline Chapter

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

EE 382C Interconnection Networks

EE 382C Interconnection Networks EE 8C Interconnection Networks Deadlock and Livelock Stanford University - EE8C - Spring 6 Deadlock and Livelock: Terminology Deadlock: A condition in which an agent waits indefinitely trying to acquire

More information

Interconnection Networks: Routing. Prof. Natalie Enright Jerger

Interconnection Networks: Routing. Prof. Natalie Enright Jerger Interconnection Networks: Routing Prof. Natalie Enright Jerger Routing Overview Discussion of topologies assumed ideal routing In practice Routing algorithms are not ideal Goal: distribute traffic evenly

More information

Authors Neetu Soni 1, Khemraj Deshmukh 2. Deparment of Electronics and Telecommunication,CSVTU,Bhilai,C.G.,India

Authors Neetu Soni 1, Khemraj Deshmukh 2. Deparment of Electronics and Telecommunication,CSVTU,Bhilai,C.G.,India International journal of Emerging Trends in Science and Technology A Survey on Different Topologies, Switching Techniques and Routing Algorithms for A Network on Chip Authors Neetu Soni 1, Khemraj Deshmukh

More information

Modeling and Verification of Networkon-Chip using Constrained-DEVS

Modeling and Verification of Networkon-Chip using Constrained-DEVS Modeling and Verification of Networkon-Chip using Constrained-DEVS Soroosh Gholami Hessam S. Sarjoughian School of Computing, Informatics, and Decision Systems Engineering Arizona Center for Integrative

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information

Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip

Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip Nauman Jalil, Adnan Qureshi, Furqan Khan, and Sohaib Ayyaz Qazi Abstract

More information

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks Lecture: Transactional Memory, Networks Topics: TM implementations, on-chip networks 1 Summary of TM Benefits As easy to program as coarse-grain locks Performance similar to fine-grain locks Avoids deadlock

More information

Deadlock-free XY-YX router for on-chip interconnection network

Deadlock-free XY-YX router for on-chip interconnection network LETTER IEICE Electronics Express, Vol.10, No.20, 1 5 Deadlock-free XY-YX router for on-chip interconnection network Yeong Seob Jeong and Seung Eun Lee a) Dept of Electronic Engineering Seoul National Univ

More information

Property-based design with HORUS / SYNTHORUS

Property-based design with HORUS / SYNTHORUS Property-based design with HORUS / SYNTHORUS Dominique Borrione, Negin Javaheri, Katell Morin-Allory, Yann Oddos, Alexandre Porcher Radboud University, Nijmegen 1 March 27, 2013 Functional specifications

More information

Routing Algorithms. Review

Routing Algorithms. Review Routing Algorithms Today s topics: Deterministic, Oblivious Adaptive, & Adaptive models Problems: efficiency livelock deadlock 1 CS6810 Review Network properties are a combination topology topology dependent

More information

Design and implementation of deadlock free NoC Router Architecture

Design and implementation of deadlock free NoC Router Architecture Design and implementation of deadlock free NoC Router Architecture Rohini 1, Dr.G.R.Udupi 2, G.A.Bidkar 3 1 - Student of M. Tech in Industrial Electronics, 2-Principal, 3- Asst.Prof & HOD E&C Dept KLS

More information

Fitting the Router Characteristics in NoCs to Meet QoS Requirements

Fitting the Router Characteristics in NoCs to Meet QoS Requirements Fitting the Router Characteristics in NoCs to Meet QoS Requirements Edgard de Faria Corrêa Superintendência de Informática - UFRN edgard@info.ufrn.br Leonardo A.de P. e Silva lapys@inf.ufrgs.br Flávio

More information

ES1 An Introduction to On-chip Networks

ES1 An Introduction to On-chip Networks December 17th, 2015 ES1 An Introduction to On-chip Networks Davide Zoni PhD mail: davide.zoni@polimi.it webpage: home.dei.polimi.it/zoni Sources Main Reference Book (for the examination) Designing Network-on-Chip

More information

Formal Verification of Circuit-Switched Network on Chip (NoC) Architectures using SPIN

Formal Verification of Circuit-Switched Network on Chip (NoC) Architectures using SPIN Formal Verification of Circuit-Switched Network on Chip (NoC) Architectures using SPIN Anam Zaman School of Electrical Engineering and Computer Science National University of Sciences and Technology (NUST),

More information

Noc Evolution and Performance Optimization by Addition of Long Range Links: A Survey. By Naveen Choudhary & Vaishali Maheshwari

Noc Evolution and Performance Optimization by Addition of Long Range Links: A Survey. By Naveen Choudhary & Vaishali Maheshwari Global Journal of Computer Science and Technology: E Network, Web & Security Volume 15 Issue 6 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

A Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-Chip

A Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-Chip A Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-Chip Leandro Möller Luciano Ost, Leandro Soares Indrusiak Sanna Määttä Fernando G. Moraes Manfred Glesner Jari Nurmi {ost,

More information

Fully Reliable Dynamic Routing Logic for a Fault-Tolerant NoC Architecture

Fully Reliable Dynamic Routing Logic for a Fault-Tolerant NoC Architecture Fully Reliable Dynamic Routing Logic for a Fault-Tolerant NoC Architecture Abdulaziz Alhussien, Freek Verbeek, Bernard van Gastel, Nader Bagherzadeh and Julien Schmaltz Dept. of Electrical Engineering

More information

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts School of Electrical and Computer Engineering Cornell University revision: 2017-10-17-12-26 1 Network/Roadway Analogy 3 1.1. Running

More information

Communication Performance in Network-on-Chips

Communication Performance in Network-on-Chips Communication Performance in Network-on-Chips Axel Jantsch Royal Institute of Technology, Stockholm November 24, 2004 Network on Chip Seminar, Linköping, November 25, 2004 Communication Performance In

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

Simplifying Microblaze to Hermes NoC Communication through Generic Wrapper

Simplifying Microblaze to Hermes NoC Communication through Generic Wrapper Simplifying Microblaze to Hermes NoC Communication through Generic Wrapper Andres Benavides A. 1, Byron Buitrago P. 2, Johnny Aguirre M. 1 1 Electronic Engineering Department, University of Antioquia,

More information