Accelerator-centric operating systems

Size: px
Start display at page:

Download "Accelerator-centric operating systems"

Transcription

1 Accelerator-centric operating systems Rethinking the role of s in modern computers Mark Silberstein EE, Technion

2 System design challenge: Programmability and Performance 2

3 System design challenge: Programmability and Performance Hardware architectures Systems Developers Systems Software 3

4 Computer hardware: circa ~2000 Network Adapter Graphical Processing Units (GPUs) Storage controller Size = transistor count 4

5 Systems software stack circa ~2000 Applications OS I/O devices 5

6 Computer hardware: circa ~2015 Network I/O accelerator GPU parallel accelerator Storage I/O accelerator Accelerators for encryption, media, signal processing... 6

7 Central Processing Units (s) are no longer Central Network I/O accelerator GPU parallel accelerator Storage I/O accelerator r e Pow ance m r y t o i f l i r b a Pe m m a r g o r P Accelerators for encryption, media, signal processing... 7

8 Systems software stack circa 2015 Accelerated applications OS I/O I/O Manycore processors accelerators FPGA FPGAs Hybrid DSPs -GPU GPUs GPUs 8

9 Software-hardware gap is widening Accelerated applications Inadequate abstractions and management mechanisms OS I/O I/O Manycore processors accelerators FPGA FPGAs DSPs GPUs GPUs 9

10 THE problem: - centric software architecture Network Storage GPU 10

11 Breaking the -centric system design OS Services GPU OS Services Operating system OS Services Network Storage Hardware is here We need OS support 11

12 Accelerator-centric OS architecture Applications Accelerator I/O services (network, files) OS Accelerator abstractions and mechanisms Accelerator applications Accelerator OS support (Interprocessor I/O, file system, networking APIs, memory management) Hardware support for OS I/O Manycore I/O accelerators processors FPGAs FPGA DSPs GPUs 12

13 This talk Applications Accelerator I/O services (network, files) OS Accelerator abstractions and mechanisms Accelerator applications Accelerator OS support (Interprocessor I/O, file system, networking APIs ) OSDI14, CACM14 ASPLOS13, TOCS14, Hardware support for OS Storage Network Manycore I/O accelerators processors FPGA DSPs GPUs GPUs 13

14 GPU 101 and motivation GPUnet: Network Stack for GPUs GPUfs: File access support for GPUs Recap: Accelerator-centric OS architecture 14

15 Hybrid GPU- 101 Architecture GPU 15

16 Co-processor model GPU Computation 16

17 Co-processor model GPU Computation tation 17

18 Co-processor model GPU kernel Computation tation GPU t a t i o n 18

19 Co-processor model GPU Computation 19

20 GPUs make a difference... Top 10 fastest supercomputers use GPUs GPUs enable order-of-magnitude speedups in... Physics Vision HCI Meteorology Graph Algorithms Deep Nets Bioinformatics Linear Algebra Finance 20

21 GPUs make a difference, but why only in HPC? Top 10 fastest supercomputers use GPUs GPUs enable order-of-magnitude speedups in... Physics Vision HCI Meteorology Graph Algorithms Deep Nets Bioinformatics Linear Algebra Finance... Web servers, Network services Antivirus File search???? 21

22 Programming complexity exposed Example: GPU-accelerated server 22

23 server NIC recv() compute() send() 23

24 Inside a GPU-accelerated server NIC GPU PCIe bus Theory recv() GPU_compute() send() 24

25 Inside a GPU-accelerated server recv(); NIC GPU recv(); batch(); Theory recv() GPU_compute() send() 25

26 Inside a GPU-accelerated server transfer(); NIC GPU recv(); Theory recv() GPU_compute() send() batch(); optimize(); transfer(); 26

27 Inside a GPU-accelerated server invoke(); NIC recv(); Theory recv() GPU_compute() send() batch(); optimize(); transfer(); balance(); GPU_compute(); GPU_compute() 27

28 Inside a GPU-accelerated server transfer(); NIC GPU recv(); Theory recv() GPU_compute() send() batch(); optimize(); transfer(); balance(); GPU_compute(); GPU_compute() transfer(); cleanup(); 28

29 Inside a GPU-accelerated server send(); NIC GPU recv(); Theory recv() GPU_compute() send() batch(); optimize(); transfer(); balance(); GPU_compute() transfer(); cleanup(); dispatch(); send(); 29

30 Aggressive pipelining Inside a GPU-accelerated server Buffering, asynchrony, multithreading NIC recv (); recv (); recv batch(); recv(); (); batch(); recv() GPU_compute() send() batch(); optimize(); batch(); optimize(); optimize(); transfer(); optimize(); transfer(); transfer(); balance(); transfer(); balance(); balance(); GPU_compute(); balance(); GPU_compute(); GPU_compute(); transfer(); GPU_compute(); GPU_compute() transfer(); transfer(); cleanup(); transfer(); cleanup(); cleanup(); dispatch(); cleanup(); dispatch(); dispatch(); send(); dispatch(); send(); send(); send(); 30

31 y r a s s e c e n un This code is for a to manage a GPU recv (); recv (); recv (); batch(); batch(); batch(); batch(); optimize(); optimize(); optimize(); optimize(); transfer(); transfer(); transfer(); transfer(); balance(); balance(); balance(); GPU_compute(); balance(); GPU_compute(); GPU_compute(); transfer(); GPU_compute() transfer(); transfer(); cleanup(); cleanup(); transfer(); cleanup(); dispatch(); dispatch(); dispatch(); cleanup(); send(); send(); send(); dispatch(); 31

32 GPUs are not co-processors GPUs are peer-processors They need I/O abstractions 32

33 GPUnet: socket API for GPUs Application view node0.technion.ac.il GPU native server socket(af_inet,sock_stream); listen(:2340) GPUnet Network GPU native client client socket(af_inet,sock_stream); connect( node0:2340 ) socket(af_inet,sock_stream); connect( node0:2340 ); GPUnet 33

34 GPU-accelerated server with GPUnet not involved NIC GPU PCIe bus recv() GPU_compute() send() 34

35 GPU-accelerated server with GPUnet GPU NIC PCIe bus recv() GPU_compute() send() 35

36 GPU-accelerated server with GPUnet No request batching send() recv() NIC recv() recv() recv() GPU_compute() GPU_compute() GPU_compute() send() send() send() Transparent pipelining 36

37 GPU-accelerated server with GPUnet send() recv() NIC recv() recv() recv() GPU_compute() GPU_compute() GPU_compute() send() send() send() Seamless buffer management 37

38 GPUnet design Simplicity GPU Socket API Reliable in-order streaming GPU Reliable channel RDMA Transports Non-RDMA Transports Infiniband UNIX Domain Sockets, TCP/IP NIC Performance 38

39 GPUfs: file access for GPUs Application view ) ile GPU3 m m ap () le ) d_fi hare n( s ope f d_ re ha ( s en op System-wide shared namespace GPU2 GPU1 write () s POSIX ()-like API GPUfs Host File System Persistent storage 39

40 Face verification server client (unmodified) via rsocket GPU server (GPUnet) memcached (unmodified) via rsocket Infiniband? = recv() features() GPU_features() query_db() compare() GPU_compare() send() 40

41 Latency (μsec) Face verification: Different implementations GPU (no GPUnet) cores 1.9x throughput 1/3x latency (500usec) ½ LOC GPU GPUnet Throughput (KReq/sec) 41

42 Recap: Accelerator-centric OS design 42

43 Why OS layer on accelerators? To abstract away... Hardware interaction overhead Programming model gap I/O and memory performance gap I/O topology 43

44 Challenges Hardware Systems software consistency, NUMA, limitations No OS hardware support, physical device sharing, state sharing Applications Data layout reorganization, resource management 44

45 45

46 46

47 47

48 Coming up next... Distributed accelerator applications High concurrency servers Multi-accelerator OS support Interprocessor I/O, file system, networking APIs, VM, memory consistency, isolation, security Manycore I/O accelerators processors FPGAs FPGA DSPs GPUs 48

49 Team Accelerated systems group, Technion Amir Wated, Sagi Shachar, Feras Daud, Pavel Lifshitz Collaborators Operating System Architecture group, UT Austin Sangman Kim, Yige Hu, Emmett Witchel 49

50 Accelerator-centric OS design GPUfs GPU GPUnet GPU Looking for a graduate degree in systems? We're hiring! mark@ee.technion.ac.il 50

GPUnet: networking abstractions for GPU programs

GPUnet: networking abstractions for GPU programs net: networking abstractions for programs Mark Silberstein Technion Israel Institute of Technology Sangman Kim, Seonggu Huh, Xinya Zhang Yige Hu, Emmett Witchel University of Texas at Austin Amir Wated

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs ASPLOS 2013 GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications OS CPU

More information

GPUnet: Networking Abstractions for GPU Programs. Author: Andrzej Jackowski

GPUnet: Networking Abstractions for GPU Programs. Author: Andrzej Jackowski Author: Andrzej Jackowski 1 Author: Andrzej Jackowski 2 GPU programming problem 3 GPU distributed application flow 1. recv req Network 4. send repl 2. exec on GPU CPU & Memory 3. get results GPU & Memory

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Building systems with GPUs is hard. Why? 2 Goal of

More information

Eleos: Exit-Less OS Services for SGX Enclaves

Eleos: Exit-Less OS Services for SGX Enclaves Eleos: Exit-Less OS Services for SGX Enclaves Meni Orenbach Marina Minkin Pavel Lifshits Mark Silberstein Accelerated Computing Systems Lab Haifa, Israel What do we do? Improve performance: I/O intensive

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information

Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing

Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing Solros: A Data-Centric Operating System Architecture for Heterogeneous Computing Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap, Steffen Maass, Heeseung Jo, Taesoo Kim Virginia Tech, ebay, Georgia

More information

2017 Storage Developer Conference. Mellanox Technologies. All Rights Reserved.

2017 Storage Developer Conference. Mellanox Technologies. All Rights Reserved. Ethernet Storage Fabrics Using RDMA with Fast NVMe-oF Storage to Reduce Latency and Improve Efficiency Kevin Deierling & Idan Burstein Mellanox Technologies 1 Storage Media Technology Storage Media Access

More information

Paving the Road to Exascale

Paving the Road to Exascale Paving the Road to Exascale Gilad Shainer August 2015, MVAPICH User Group (MUG) Meeting The Ever Growing Demand for Performance Performance Terascale Petascale Exascale 1 st Roadrunner 2000 2005 2010 2015

More information

Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation

Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation Farewell to Servers: Hardware, Software, and Network Approaches towards Datacenter Resource Disaggregation Yiying Zhang Datacenter 3 Monolithic Computer OS / Hypervisor 4 Can monolithic Application Hardware

More information

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

IX: A Protected Dataplane Operating System for High Throughput and Low Latency IX: A Protected Dataplane Operating System for High Throughput and Low Latency Adam Belay et al. Proc. of the 11th USENIX Symp. on OSDI, pp. 49-65, 2014. Presented by Han Zhang & Zaina Hamid Challenges

More information

Memory Management Strategies for Data Serving with RDMA

Memory Management Strategies for Data Serving with RDMA Memory Management Strategies for Data Serving with RDMA Dennis Dalessandro and Pete Wyckoff (presenting) Ohio Supercomputer Center {dennis,pw}@osc.edu HotI'07 23 August 2007 Motivation Increasing demands

More information

Messaging Overview. Introduction. Gen-Z Messaging

Messaging Overview. Introduction. Gen-Z Messaging Page 1 of 6 Messaging Overview Introduction Gen-Z is a new data access technology that not only enhances memory and data storage solutions, but also provides a framework for both optimized and traditional

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Smart Interconnect for Next Generation HPC Platforms Gilad Shainer, August 2016, 4th Annual MVAPICH User Group (MUG) Meeting Mellanox Connects the World s Fastest Supercomputer

More information

Empower Diverse Open Transport Layer Protocols in Cloud Networking GEORGE ZHAO DIRECTOR OSS & ECOSYSTEM, HUAWEI

Empower Diverse Open Transport Layer Protocols in Cloud Networking GEORGE ZHAO DIRECTOR OSS & ECOSYSTEM, HUAWEI Empower Diverse Open Transport Layer Protocols in Cloud Networking GEORGE ZHAO DIRECTOR OSS & ECOSYSTEM, HUAWEI Agenda FD.io Introduction Challenges in Container & Cloud Native Apps Proposed Solutions

More information

Building NVLink for Developers

Building NVLink for Developers Building NVLink for Developers Unleashing programmatic, architectural and performance capabilities for accelerated computing Why NVLink TM? Simpler, Better and Faster Simplified Programming No specialized

More information

FaRM: Fast Remote Memory

FaRM: Fast Remote Memory FaRM: Fast Remote Memory Problem Context DRAM prices have decreased significantly Cost effective to build commodity servers w/hundreds of GBs E.g. - cluster with 100 machines can hold tens of TBs of main

More information

Speeding up Linux TCP/IP with a Fast Packet I/O Framework

Speeding up Linux TCP/IP with a Fast Packet I/O Framework Speeding up Linux TCP/IP with a Fast Packet I/O Framework Michio Honda Advanced Technology Group, NetApp michio@netapp.com With acknowledge to Kenichi Yasukata, Douglas Santry and Lars Eggert 1 Motivation

More information

EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT. Konstantinos Alexopoulos ECE NTUA CSLab

EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT. Konstantinos Alexopoulos ECE NTUA CSLab EXTENDING AN ASYNCHRONOUS MESSAGING LIBRARY USING AN RDMA-ENABLED INTERCONNECT Konstantinos Alexopoulos ECE NTUA CSLab MOTIVATION HPC, Multi-node & Heterogeneous Systems Communication with low latency

More information

IsoStack Highly Efficient Network Processing on Dedicated Cores

IsoStack Highly Efficient Network Processing on Dedicated Cores IsoStack Highly Efficient Network Processing on Dedicated Cores Leah Shalev Eran Borovik, Julian Satran, Muli Ben-Yehuda Outline Motivation IsoStack architecture Prototype TCP/IP over 10GE on a single

More information

NTRDMA v0.1. An Open Source Driver for PCIe NTB and DMA. Allen Hubbe at Linux Piter 2015 NTRDMA. Messaging App. IB Verbs. dmaengine.h ntb.

NTRDMA v0.1. An Open Source Driver for PCIe NTB and DMA. Allen Hubbe at Linux Piter 2015 NTRDMA. Messaging App. IB Verbs. dmaengine.h ntb. Messaging App IB Verbs NTRDMA dmaengine.h ntb.h DMA DMA DMA NTRDMA v0.1 An Open Source Driver for PCIe and DMA Allen Hubbe at Linux Piter 2015 1 INTRODUCTION Allen Hubbe Senior Software Engineer EMC Corporation

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Advanced Computer Networks. End Host Optimization

Advanced Computer Networks. End Host Optimization Oriana Riva, Department of Computer Science ETH Zürich 263 3501 00 End Host Optimization Patrick Stuedi Spring Semester 2017 1 Today End-host optimizations: NUMA-aware networking Kernel-bypass Remote Direct

More information

OpenOnload. Dave Parry VP of Engineering Steve Pope CTO Dave Riddoch Chief Software Architect

OpenOnload. Dave Parry VP of Engineering Steve Pope CTO Dave Riddoch Chief Software Architect OpenOnload Dave Parry VP of Engineering Steve Pope CTO Dave Riddoch Chief Software Architect Copyright 2012 Solarflare Communications, Inc. All Rights Reserved. OpenOnload Acceleration Software Accelerated

More information

The Common Communication Interface (CCI)

The Common Communication Interface (CCI) The Common Communication Interface (CCI) Presented by: Galen Shipman Technology Integration Lead Oak Ridge National Laboratory Collaborators: Scott Atchley, George Bosilca, Peter Braam, David Dillow, Patrick

More information

Networking at the Speed of Light

Networking at the Speed of Light Networking at the Speed of Light Dror Goldenberg VP Software Architecture MaRS Workshop April 2017 Cloud The Software Defined Data Center Resource virtualization Efficient services VM, Containers uservices

More information

The Power of Batching in the Click Modular Router

The Power of Batching in the Click Modular Router The Power of Batching in the Click Modular Router Joongi Kim, Seonggu Huh, Keon Jang, * KyoungSoo Park, Sue Moon Computer Science Dept., KAIST Microsoft Research Cambridge, UK * Electrical Engineering

More information

Graph Streaming Processor

Graph Streaming Processor Graph Streaming Processor A Next-Generation Computing Architecture Val G. Cook Chief Software Architect Satyaki Koneru Chief Technology Officer Ke Yin Chief Scientist Dinakar Munagala Chief Executive Officer

More information

Application Acceleration Beyond Flash Storage

Application Acceleration Beyond Flash Storage Application Acceleration Beyond Flash Storage Session 303C Mellanox Technologies Flash Memory Summit July 2014 Accelerating Applications, Step-by-Step First Steps Make compute fast Moore s Law Make storage

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 4, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts

More information

TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions

TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions TxFS: Leveraging File-System Crash Consistency to Provide ACID Transactions Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Chen, Vijay Chidambaram, Emmett Witchel The University of Texas at Austin

More information

DDN. DDN Updates. Data DirectNeworks Japan, Inc Shuichi Ihara. DDN Storage 2017 DDN Storage

DDN. DDN Updates. Data DirectNeworks Japan, Inc Shuichi Ihara. DDN Storage 2017 DDN Storage DDN DDN Updates Data DirectNeworks Japan, Inc Shuichi Ihara DDN A Broad Range of Technologies to Best Address Your Needs Protection Security Data Distribution and Lifecycle Management Open Monitoring Your

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Maximum Performance. How to get it and how to avoid pitfalls. Christoph Lameter, PhD

Maximum Performance. How to get it and how to avoid pitfalls. Christoph Lameter, PhD Maximum Performance How to get it and how to avoid pitfalls Christoph Lameter, PhD cl@linux.com Performance Just push a button? Systems are optimized by default for good general performance in all areas.

More information

How Might Recently Formed System Interconnect Consortia Affect PM? Doug Voigt, SNIA TC

How Might Recently Formed System Interconnect Consortia Affect PM? Doug Voigt, SNIA TC How Might Recently Formed System Interconnect Consortia Affect PM? Doug Voigt, SNIA TC Three Consortia Formed in Oct 2016 Gen-Z Open CAPI CCIX complex to rack scale memory fabric Cache coherent accelerator

More information

LITE Kernel RDMA. Support for Datacenter Applications. Shin-Yeh Tsai, Yiying Zhang

LITE Kernel RDMA. Support for Datacenter Applications. Shin-Yeh Tsai, Yiying Zhang LITE Kernel RDMA Support for Datacenter Applications Shin-Yeh Tsai, Yiying Zhang Time 2 Berkeley Socket Userspace Kernel Hardware Time 1983 2 Berkeley Socket TCP Offload engine Arrakis & mtcp IX Userspace

More information

PARAVIRTUAL RDMA DEVICE

PARAVIRTUAL RDMA DEVICE 12th ANNUAL WORKSHOP 2016 PARAVIRTUAL RDMA DEVICE Aditya Sarwade, Adit Ranadive, Jorgen Hansen, Bhavesh Davda, George Zhang, Shelley Gong VMware, Inc. [ April 5th, 2016 ] MOTIVATION User Kernel Socket

More information

In-Network Computing. Sebastian Kalcher, Senior System Engineer HPC. May 2017

In-Network Computing. Sebastian Kalcher, Senior System Engineer HPC. May 2017 In-Network Computing Sebastian Kalcher, Senior System Engineer HPC May 2017 Exponential Data Growth The Need for Intelligent and Faster Interconnect CPU-Centric (Onload) Data-Centric (Offload) Must Wait

More information

HMM: GUP NO MORE! XDC Jérôme Glisse

HMM: GUP NO MORE! XDC Jérôme Glisse HMM: GUP NO MORE! XDC 2018 Jérôme Glisse HETEROGENEOUS COMPUTING CPU is dead, long live the CPU Heterogeneous computing is back, one device for each workload: GPUs for massively parallel workload Accelerators

More information

Using (Suricata over) PF_RING for NIC-Independent Acceleration

Using (Suricata over) PF_RING for NIC-Independent Acceleration Using (Suricata over) PF_RING for NIC-Independent Acceleration Luca Deri Alfredo Cardigliano Outlook About ntop. Introduction to PF_RING. Integrating PF_RING with

More information

FPGA Augmented ASICs: The Time Has Come

FPGA Augmented ASICs: The Time Has Come FPGA Augmented ASICs: The Time Has Come David Riddoch Steve Pope Copyright 2012 Solarflare Communications, Inc. All Rights Reserved. Hardware acceleration is Niche (With the obvious exception of graphics

More information

打造 Linux 下的高性能网络 北京酷锐达信息技术有限公司技术总监史应生.

打造 Linux 下的高性能网络 北京酷锐达信息技术有限公司技术总监史应生. 打造 Linux 下的高性能网络 北京酷锐达信息技术有限公司技术总监史应生 shiys@solutionware.com.cn BY DEFAULT, LINUX NETWORKING NOT TUNED FOR MAX PERFORMANCE, MORE FOR RELIABILITY Trade-off :Low Latency, throughput, determinism Performance

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

Virtualization, Xen and Denali

Virtualization, Xen and Denali Virtualization, Xen and Denali Susmit Shannigrahi November 9, 2011 Susmit Shannigrahi () Virtualization, Xen and Denali November 9, 2011 1 / 70 Introduction Virtualization is the technology to allow two

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES BIG AND SMALL SERVER PLATFORMS

WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES BIG AND SMALL SERVER PLATFORMS WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES ON BIG AND SMALL SERVER PLATFORMS Shuang Chen*, Shay Galon**, Christina Delimitrou*, Srilatha Manne**, and José Martínez* *Cornell University **Cavium

More information

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Tom Talpey Microsoft 2018 Storage Developer Conference. SNIA. All Rights Reserved. 1 Outline SNIA NVMP TWG activities Remote Access for

More information

The NE010 iwarp Adapter

The NE010 iwarp Adapter The NE010 iwarp Adapter Gary Montry Senior Scientist +1-512-493-3241 GMontry@NetEffect.com Today s Data Center Users Applications networking adapter LAN Ethernet NAS block storage clustering adapter adapter

More information

Containing RDMA and High Performance Computing

Containing RDMA and High Performance Computing Containing RDMA and High Performance Computing Liran Liss ContainerCon 2015 Agenda High Performance Computing (HPC) networking RDMA 101 Containing RDMA Challenges Solution approach RDMA network namespace

More information

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

IX: A Protected Dataplane Operating System for High Throughput and Low Latency IX: A Protected Dataplane Operating System for High Throughput and Low Latency Belay, A. et al. Proc. of the 11th USENIX Symp. on OSDI, pp. 49-65, 2014. Reviewed by Chun-Yu and Xinghao Li Summary In this

More information

IO virtualization. Michael Kagan Mellanox Technologies

IO virtualization. Michael Kagan Mellanox Technologies IO virtualization Michael Kagan Mellanox Technologies IO Virtualization Mission non-stop s to consumers Flexibility assign IO resources to consumer as needed Agility assignment of IO resources to consumer

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research Fast packet processing in the cloud Dániel Géhberger Ericsson Research Outline Motivation Service chains Hardware related topics, acceleration Virtualization basics Software performance and acceleration

More information

Advanced Computer Networks. RDMA, Network Virtualization

Advanced Computer Networks. RDMA, Network Virtualization Advanced Computer Networks 263 3501 00 RDMA, Network Virtualization Patrick Stuedi Spring Semester 2013 Oriana Riva, Department of Computer Science ETH Zürich Last Week Scaling Layer 2 Portland VL2 TCP

More information

Baidu s Best Practice with Low Latency Networks

Baidu s Best Practice with Low Latency Networks Baidu s Best Practice with Low Latency Networks Feng Gao IEEE 802 IC NEND Orlando, FL November 2017 Presented by Huawei Low Latency Network Solutions 01 1. Background Introduction 2. Network Latency Analysis

More information

Flexible Architecture Research Machine (FARM)

Flexible Architecture Research Machine (FARM) Flexible Architecture Research Machine (FARM) RAMP Retreat June 25, 2009 Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan Bronson Christos Kozyrakis, Kunle Olukotun Motivation Why CPUs + FPGAs make sense

More information

DCS-ctrl: A Fast and Flexible Device-Control Mechanism for Device-Centric Server Architecture

DCS-ctrl: A Fast and Flexible Device-Control Mechanism for Device-Centric Server Architecture DCS-ctrl: A Fast and Flexible ice-control Mechanism for ice-centric Server Architecture Dongup Kwon 1, Jaehyung Ahn 2, Dongju Chae 2, Mohammadamin Ajdari 2, Jaewon Lee 1, Suheon Bae 1, Youngsok Kim 1,

More information

Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads

Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads Liran Zvibel CEO, Co-founder WekaIO @liranzvibel 1 WekaIO Matrix: Full-featured and Flexible Public or Private S3 Compatible

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

M 3 Microkernel-based System for Heterogeneous Manycores

M 3 Microkernel-based System for Heterogeneous Manycores M 3 Microkernel-based System for Heterogeneous Manycores Nils Asmussen MKC, 06/29/2017 1 / 48 Overall System Design Prototype Platforms Capabilities OS Services Context Switching Evaluation Heterogeneous

More information

In-Network Computing. Paving the Road to Exascale. 5th Annual MVAPICH User Group (MUG) Meeting, August 2017

In-Network Computing. Paving the Road to Exascale. 5th Annual MVAPICH User Group (MUG) Meeting, August 2017 In-Network Computing Paving the Road to Exascale 5th Annual MVAPICH User Group (MUG) Meeting, August 2017 Exponential Data Growth The Need for Intelligent and Faster Interconnect CPU-Centric (Onload) Data-Centric

More information

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D,

Flavors of Memory supported by Linux, their use and benefit. Christoph Lameter, Ph.D, Flavors of Memory supported by Linux, their use and benefit Christoph Lameter, Ph.D, Twitter: @qant Flavors Of Memory The term computer memory is a simple term but there are numerous nuances

More information

A 101 Guide to Heterogeneous, Accelerated, Data Centric Computing Architectures

A 101 Guide to Heterogeneous, Accelerated, Data Centric Computing Architectures A 101 Guide to Heterogeneous, Accelerated, Centric Computing Architectures Allan Cantle President & Founder, Nallatech Join the Conversation #OpenPOWERSummit 2016 OpenPOWER Foundation Buzzword & Acronym

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

DDN. DDN Updates. DataDirect Neworks Japan, Inc Nobu Hashizume. DDN Storage 2018 DDN Storage 1

DDN. DDN Updates. DataDirect Neworks Japan, Inc Nobu Hashizume. DDN Storage 2018 DDN Storage 1 1 DDN DDN Updates DataDirect Neworks Japan, Inc Nobu Hashizume DDN Storage 2018 DDN Storage 1 2 DDN A Broad Range of Technologies to Best Address Your Needs Your Use Cases Research Big Data Enterprise

More information

RDMA programming concepts

RDMA programming concepts RDMA programming concepts Robert D. Russell InterOperability Laboratory & Computer Science Department University of New Hampshire Durham, New Hampshire 03824, USA 2013 Open Fabrics Alliance,

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

An NVMe-based Offload Engine for Storage Acceleration Sean Gibb, Eideticom Stephen Bates, Raithlin

An NVMe-based Offload Engine for Storage Acceleration Sean Gibb, Eideticom Stephen Bates, Raithlin An NVMe-based Offload Engine for Storage Acceleration Sean Gibb, Eideticom Stephen Bates, Raithlin 1 Overview Acceleration for Storage NVMe for Acceleration How are we using (abusing ;-)) NVMe to support

More information

Process Description and Control

Process Description and Control Process Description and Control 1 Process:the concept Process = a program in execution Example processes: OS kernel OS shell Program executing after compilation www-browser Process management by OS : Allocate

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4 Motivation Threads Chapter 4 Most modern applications are multithreaded Threads run within application Multiple tasks with the application can be implemented by separate Update display Fetch data Spell

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia System Challenge in Deep Learning

More information

Programmable NICs. Lecture 14, Computer Networks (198:552)

Programmable NICs. Lecture 14, Computer Networks (198:552) Programmable NICs Lecture 14, Computer Networks (198:552) Network Interface Cards (NICs) The physical interface between a machine and the wire Life of a transmitted packet Userspace application NIC Transport

More information

Generic System Calls for GPUs

Generic System Calls for GPUs Generic System Calls for GPUs Ján Veselý*, Arkaprava Basu, Abhishek Bhattacharjee*, Gabriel H. Loh, Mark Oskin, Steven K. Reinhardt *Rutgers University, Indian Institute of Science, Advanced Micro Devices

More information

Snapify: Capturing Snapshots of Offload Applications on Xeon Phi Manycore Processors

Snapify: Capturing Snapshots of Offload Applications on Xeon Phi Manycore Processors Snapify: Capturing Snapshots of Offload Applications on Xeon Phi Manycore Processors Arash Rezaei 1, Giuseppe Coviello 2, Cheng-Hong Li 2, Srimat Chakradhar 2, Frank Mueller 1 1 Department of Computer

More information

IO-Lite: A Unified I/O Buffering and Caching System

IO-Lite: A Unified I/O Buffering and Caching System IO-Lite: A Unified I/O Buffering and Caching System Vivek S. Pai, Peter Druschel and Willy Zwaenepoel Rice University (Presented by Chuanpeng Li) 2005-4-25 CS458 Presentation 1 IO-Lite Motivation Network

More information

OPERATING SYSTEM. Chapter 4: Threads

OPERATING SYSTEM. Chapter 4: Threads OPERATING SYSTEM Chapter 4: Threads Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples Objectives To

More information

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al. Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.) Andreas Kurth 2017-12-05 1 In short: The situation Image credit:

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Martin Dubois, ing. Contents

Martin Dubois, ing. Contents Martin Dubois, ing Contents Without OpenNet vs With OpenNet Technical information Possible applications Artificial Intelligence Deep Packet Inspection Image and Video processing Network equipment development

More information

New Communication Standard Takyon Proposal Overview

New Communication Standard Takyon Proposal Overview Khronos Group Inc. 2018 - Page 1 Heterogenous Communications Exploratory Group New Communication Standard Takyon Proposal Overview November 2018 Khronos Group Inc. 2018 - Page 2 Khronos Exploratory Group

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

The rcuda middleware and applications

The rcuda middleware and applications The rcuda middleware and applications Will my application work with rcuda? rcuda currently provides binary compatibility with CUDA 5.0, virtualizing the entire Runtime API except for the graphics functions,

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

Operating System. Chapter 4. Threads. Lynn Choi School of Electrical Engineering

Operating System. Chapter 4. Threads. Lynn Choi School of Electrical Engineering Operating System Chapter 4. Threads Lynn Choi School of Electrical Engineering Process Characteristics Resource ownership Includes a virtual address space (process image) Ownership of resources including

More information

Containers Do Not Need Network Stacks

Containers Do Not Need Network Stacks s Do Not Need Network Stacks Ryo Nakamura iijlab seminar 2018/10/16 Based on Ryo Nakamura, Yuji Sekiya, and Hajime Tazaki. 2018. Grafting Sockets for Fast Networking. In ANCS 18: Symposium on Architectures

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

RapidIO.org Update.

RapidIO.org Update. RapidIO.org Update rickoco@rapidio.org June 2015 2015 RapidIO.org 1 Outline RapidIO Overview Benefits Interconnect Comparison Ecosystem System Challenges RapidIO Markets Data Center & HPC Communications

More information

Review: Hardware user/kernel boundary

Review: Hardware user/kernel boundary Review: Hardware user/kernel boundary applic. applic. applic. user lib lib lib kernel syscall pg fault syscall FS VM sockets disk disk NIC context switch TCP retransmits,... device interrupts Processor

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Introduction to OpenOnload Building Application Transparency and Protocol Conformance into Application Acceleration Middleware

Introduction to OpenOnload Building Application Transparency and Protocol Conformance into Application Acceleration Middleware White Paper Introduction to OpenOnload Building Application Transparency and Protocol Conformance into Application Acceleration Middleware Steve Pope, PhD Chief Technical Officer Solarflare Communications

More information

Why AI Frameworks Need (not only) RDMA?

Why AI Frameworks Need (not only) RDMA? Why AI Frameworks Need (not only) RDMA? With Design and Implementation Experience of Networking Support on TensorFlow GDR, Apache MXNet, WeChat Amber, and Tencent Angel Bairen Yi (byi@connect.ust.hk) Jingrong

More information

Accelerating Web Protocols Using RDMA

Accelerating Web Protocols Using RDMA Accelerating Web Protocols Using RDMA Dennis Dalessandro Ohio Supercomputer Center NCA 2007 Who's Responsible for this? Dennis Dalessandro Ohio Supercomputer Center - Springfield dennis@osc.edu Pete Wyckoff

More information

RDMA and Hardware Support

RDMA and Hardware Support RDMA and Hardware Support SIGCOMM Topic Preview 2018 Yibo Zhu Microsoft Research 1 The (Traditional) Journey of Data How app developers see the network Under the hood This architecture had been working

More information

Sharing High-Performance Devices Across Multiple Virtual Machines

Sharing High-Performance Devices Across Multiple Virtual Machines Sharing High-Performance Devices Across Multiple Virtual Machines Preamble What does sharing devices across multiple virtual machines in our title mean? How is it different from virtual networking / NSX,

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

Operating-System Structures

Operating-System Structures Operating-System Structures Chapter 2 Operating System Services One set provides functions that are helpful to the user: User interface Program execution I/O operations File-system manipulation Communications

More information