Traffic Engineering with Forward Fault Correction

Size: px
Start display at page:

Download "Traffic Engineering with Forward Fault Correction"

Transcription

1 Traffic Engineering with Forward Fault Correction Harry Liu Microsoft Research 06/02/2016 Joint work with Ratul Mahajan, Srikanth Kandula, Ming Zhang and David Gelernter 1

2 Cloud services require large network capacity Cloud Applications Growing traffic Cloud Networks Expensive (e.g. cost of WAN: $100M/year) 2

3 TE is critical to effectively utilizing networks Traffic Engineering (centralized & SDN-Based) WAN Network Datacenter Network Microsoft SWAN (SIGCOMM 13) Google B4 (SIGCOMM 13) Devoflow (SIGCOMM 11) MicroTE (CoNEXT 11) 3

4 Centralized TE is the key to network efficiency Sub-optimal resource allocation based on local view & control. Demand=10 Demand=10 1) how much traffic to admit 2) how to route Link Cap: Requirement: path length 2 hops Total throughput: 15 Optimal resource allocation based on global view & control. 10 Link Cap: Total throughput: 20 TE controller 3 4

5 But, centralized TE is also vulnerable to faults TE controller Network view (e.g. topo, cap, traffic) Frequent updates for high utilization (e.g. per 5min) Network configuration (e.g. routes, rate limits) Data-plane faults Network Control-plane faults 5

6 Data plane faults Link and switch failures Rescaling: Sending traffic proportionally to residual paths s2 s4 (10) s2 link 7 failure s2 link failure 3 10 s1 s3 s4 (10) 3 s3 7 Link Capacity: 10 s4 s1 congestion 3 s3 7 s4 6

7 Control plane faults Failures or long delays to configure a network device TE Controller Switch TE configurations RPC failure Firmware bugs Overloaded CPU Memory shortage Control plane faults can also result in congestion. 7

8 The TE controllability is undermined by faults Network view Inaccuracy TE controller Network configuration Incompleteness Data-plane faults Network Control-plane faults 8

9 Control and data plane faults in practice In a production WAN network (200+ routers, links): Faults are common. Faults cause severe congestion. Data plane: fault rate = 25% per 5 minutes. Control plane: fault rate = 0.1% -- 1% per TE update. 9

10 State of the art for handling faults Heavy over-provisioning: Big loss in throughput Reactive handling of faults: Control plane faults: retry Data plane faults: re-compute TE and update networks Cannot prevent congestion Slow (seconds -- minutes) Blocked by control plane faults 10

11 How about handling faults proactively? TE Algorithm making it robust Network not robust enough 11

12 Forward fault correction (FFC) in TE [Bad News] Individual faults are unpredictable. [Good News] Simultaneous #faults is small. FEC guarantees no information loss under up to k arbitrary packet drops. Packet loss with careful data encoding Network faults FFC guarantees no congestion under up to k arbitrary faults. with careful traffic distribution 12

13 Example: FFC for link failures s2 s4 (9) s1 s3 s4 (9) Link Capacity: 10 s2 1 1 s3 K=1 (FFC) 8 8 s4 Failure Cases s2 link failure s1 1 s3 9 8 s4 s1 s2 link failure s3 9 9 s4 s1 s2 9 1 s3 link failure 8 s4 13

14 Trade-off: network efficiency v.s. robustness Non-FFC (Throughput: 30) FFC (k=1) (Throughput: 18) Non-FFC (Throughput: 18) s1 1 8 s1 s s3 link failure 10 There exists a trade-off between throughput and robustness Achieving the s1 optimal throughput s4 with FFC guarantee s1 s2 5 5 s3 s2 1 s3 s2 4 4 s s4 s4 FFC does not always sacrifice efficiency for robustness s1 s2 9 4 s3 s4 link failure 5 s4 14

15 Systematically realizing FFC in TE Formulation: How to merge FFC into existing TE framework? Computation: How to find FFC-TE efficiently? 15

16 Basic TE linear programming formulations TE decisions: TE objective: Sizes of flows Traffic on paths Maximizing throughput LP formulations max. b f l f,t f b f Basic TE constraints: Deliver all granted flows No overloaded link s.t. f: t l f,t b f e: f t e l f,t c e FFC constraints: No overloaded link up to k c control plane faults k e link failures k v switch failures 16

17 Formulating data-plane FFC flow size: s f S bw allocation: a 1 a 2 path-1 Paths are link-disjoint. path-2 D Fault on path-1: s f a 2 +a 3 FFC k=1 Fault on path-2: s f a 1 +a 3 Fault on path-3: s f a 1 +a 2 a path-3 Lemma: FFC is achieved when path-i s weight is a i /a 1 +a 2 +a 3 17

18 An efficient and precise solution to FFC k-sum linear constraint group (k-sum group): Given n paths and A = {a 1, a 2,, a n }, FFC requires that the sum of arbitrary n-k elements in A is flow size O( n k ) FFC-TE LP-formulation: TE Objective Basic TE Constraints k-sum group-1 k-sum group-n FFC Constraints (too many) Lossless compression of a k-sum group: O( n k ) O(kn) O(n) bubble sorting network (SIGCOMM 2014) strong duality (MSR TR 2016) 18

19 FFC extensions Differential protection for different traffic priorities Minimizing congestion risks without rate limiters Control plane faults on rate limiters Uncertainty in current TE Different TE objectives (e.g. max-min fairness) 19

20 Implementation & evaluation highlights Testbed experiment (8 switches & 30 servers) FFC can be implemented in commodity switches FFC has no data loss due to congestion under faults Large-scale simulation A WAN network with O(100) switches and O(1000) links One-week traffic trace Fault injection according to real failure trace Results: with negligible throughput loss, FFC can reduce data loss by a factor of in well-provisioned networks data loss of high priority traffic to almost zero in well-utilized networks 20

21 Conclusion and future work Network view SDN Controller Network configuration FFC Network Properties: High throughput No congestion Security Availability Connectivity Network Network Faults: Data-plane Control-plane Misconfigurations Attacks Traffic spikes 21

22 Q&A 22

SWAN: Software-driven wide area network. Ratul Mahajan

SWAN: Software-driven wide area network. Ratul Mahajan SWAN: Software-driven wide area network Ratul Mahajan Partners in crime Vijay Gill Chi-Yao Hong Srikanth Kandula Ratul Mahajan Mohan Nanduri Ming Zhang Roger Wattenhofer Rohan Gandhi Xin Jin Harry Liu

More information

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 10.1 A real SDN implementation: the Google B4 case Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it WAN WAN = Wide Area Network WAN features: Very expensive (specialized high-end

More information

Topic 6: SDN in practice: Microsoft's SWAN. Student: Miladinovic Djordje Date:

Topic 6: SDN in practice: Microsoft's SWAN. Student: Miladinovic Djordje Date: Topic 6: SDN in practice: Microsoft's SWAN Student: Miladinovic Djordje Date: 17.04.2015 1 SWAN at a glance Goal: Boost the utilization of inter-dc networks Overcome the problems of current traffic engineering

More information

SCALING SOFTWARE DEFINED NETWORKS. Chengyu Fan (edited by Lorenzo De Carli)

SCALING SOFTWARE DEFINED NETWORKS. Chengyu Fan (edited by Lorenzo De Carli) SCALING SOFTWARE DEFINED NETWORKS Chengyu Fan (edited by Lorenzo De Carli) Introduction Network management is driven by policy requirements Network Policy Guests must access Internet via web-proxy Web

More information

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines Mohammad Noormohammadpour, Cauligi S. Raghavendra Ming Hsieh Department of Electrical Engineering University of Southern

More information

Application of SDN: Load Balancing & Traffic Engineering

Application of SDN: Load Balancing & Traffic Engineering Application of SDN: Load Balancing & Traffic Engineering Outline 1 OpenFlow-Based Server Load Balancing Gone Wild Introduction OpenFlow Solution Partitioning the Client Traffic Transitioning With Connection

More information

Efficient Point to Multipoint Transfers Across Datacenters

Efficient Point to Multipoint Transfers Across Datacenters Efficient Point to Multipoint Transfers cross Datacenters Mohammad Noormohammadpour 1, Cauligi S. Raghavendra 1, Sriram Rao, Srikanth Kandula 1 University of Southern California, Microsoft Source: https://azure.microsoft.com/en-us/overview/datacenters/how-to-choose/

More information

Lecture 14 SDN and NFV. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 14 SDN and NFV. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 14 SDN and NFV Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Traditional network vs SDN TRADITIONAL Closed equipment Software + hardware Cost Vendor-specific management.

More information

MED: The Monitor-Emulator-Debugger for Software-Defined Networks

MED: The Monitor-Emulator-Debugger for Software-Defined Networks MED: The Monitor-Emulator-Debugger for Software-Defined Networks Quanquan Zhi and Wei Xu Institute for Interdisciplinary Information Sciences Tsinghua University Software-Defined Networks (SDN): promises

More information

Efficient Point to Multipoint Transfers Across Datacenters

Efficient Point to Multipoint Transfers Across Datacenters Efficient Point to Multipoint Transfers cross atacenters Mohammad Noormohammadpour 1, Cauligi S. Raghavendra 1, Sriram Rao, Srikanth Kandula 1 University of Southern California, Microsoft Source: https://azure.microsoft.com/en-us/overview/datacenters/how-to-choose/

More information

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao and Haitao Zheng U.C. Santa Barbara, Dartmouth College, U.C.

More information

Pricing Intra-Datacenter Networks with

Pricing Intra-Datacenter Networks with Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee Jian Guo 1, Fangming Liu 1, Tao Wang 1, and John C.S. Lui 2 1 Cloud Datacenter & Green Computing/Communications Research Group

More information

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Cutting the Cord: A Robust Wireless Facilities Network for Data Centers Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao and Haitao Zheng U.C. Santa Barbara, Dartmouth College, U.C.

More information

RPT: Re-architecting Loss Protection for Content-Aware Networks

RPT: Re-architecting Loss Protection for Content-Aware Networks RPT: Re-architecting Loss Protection for Content-Aware Networks Dongsu Han, Ashok Anand ǂ, Aditya Akella ǂ, and Srinivasan Seshan Carnegie Mellon University ǂ University of Wisconsin-Madison Motivation:

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

Dynamic Scheduling of Network Updates (Extended version)

Dynamic Scheduling of Network Updates (Extended version) Dynamic Scheduling of Network Updates (Extended version) Xin Jin Hongqiang Harry Liu Rohan Gandhi Srikanth Kandula Ratul Mahajan Ming Zhang Jennifer Rexford Roger Wattenhofer Microsoft Research Princeton

More information

Distributed Denial of Service

Distributed Denial of Service Distributed Denial of Service John Ioannidis ji@research.att.com AT&T Labs Research Joint work with Steve Bellovin, Matt Blaze (AT&T), Sally Floyd, Vern Paxson, Scott Shenker (ICIR), Ratul Mahajan (University

More information

Practical, Real-time Centralized Control for CDN-based Live Video Delivery

Practical, Real-time Centralized Control for CDN-based Live Video Delivery Practical, Real-time Centralized Control for CDN-based Live Video Delivery Matt Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srini Seshan, Hui Zhang Combating Latency in Wide Area Control Planes

More information

A Strategy of CDN Traffic Optimization Based on the Technology of SDN

A Strategy of CDN Traffic Optimization Based on the Technology of SDN 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016) ISBN: 978-1-60595-364-9 A Strategy of Traffic Optimization Based on the Technology of SDN Yirong

More information

Joint Allocation and Scheduling of Network Resource for Multiple Control Applications in SDN

Joint Allocation and Scheduling of Network Resource for Multiple Control Applications in SDN Joint Allocation and Scheduling of Network Resource for Multiple Control Applications in SDN Tao Feng, Jun Bi, Ke Wang Institute for Network Sciences and Cyberspace, Tsinghua University Department of Computer

More information

Software-Defined Networking (SDN) Overview

Software-Defined Networking (SDN) Overview Reti di Telecomunicazione a.y. 2015-2016 Software-Defined Networking (SDN) Overview Ing. Luca Davoli Ph.D. Student Network Security (NetSec) Laboratory davoli@ce.unipr.it Luca Davoli davoli@ce.unipr.it

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley?

From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley? Networking 2004 Athens 11 May 2004 From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley? Jim Roberts France Telecom R&D The story of QoS: how to get

More information

IP Bandwidth on Demand and Traffic Engineering via Multi-Layer Transport Networks. Dr. Greg M. Bernstein Grotto Networking 2004

IP Bandwidth on Demand and Traffic Engineering via Multi-Layer Transport Networks. Dr. Greg M. Bernstein Grotto Networking 2004 IP Bandwidth on Demand and Traffic Engineering via Multi-Layer Transport Networks Dr. Greg M. Bernstein Grotto Networking Page - 1 Problem Scope Bandwidth on Demand Medium to high speed bandwidth demands

More information

3. Quality of Service

3. Quality of Service 3. Quality of Service Usage Applications Learning & Teaching Design User Interfaces Services Content Process ing Security... Documents Synchronization Group Communi cations Systems Databases Programming

More information

Forwarding Architecture

Forwarding Architecture Forwarding Architecture Brighten Godfrey CS 538 February 14 2018 slides 2010-2018 by Brighten Godfrey unless otherwise noted Building a fast router Partridge: 50 Gb/sec router A fast IP router well, fast

More information

Computer Networks CS 552

Computer Networks CS 552 Computer Networks CS 552 Badri Nath Rutgers University badri@cs.rutgers.edu Internet measurements-why? Why measure? What s the need? Do we need to measure? Can we just google it? What is the motivation?

More information

Computer Networks CS 552

Computer Networks CS 552 Computer Networks CS 552 Badri Nath Rutgers University badri@cs.rutgers.edu 1. Measurements 1 Internet measurements-why? Why measure? What s the need? Do we need to measure? Can we just google it? What

More information

QoS Services with Dynamic Packet State

QoS Services with Dynamic Packet State QoS Services with Dynamic Packet State Ion Stoica Carnegie Mellon University (joint work with Hui Zhang and Scott Shenker) Today s Internet Service: best-effort datagram delivery Architecture: stateless

More information

Robust validation of network designs under uncertain demands and failures

Robust validation of network designs under uncertain demands and failures Robust validation of network designs under uncertain demands and failures Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani Purdue University USENIX NSDI 2017 Validating network design Network design today

More information

Data Center TCP (DCTCP)

Data Center TCP (DCTCP) Data Center Packet Transport Data Center TCP (DCTCP) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Cloud computing

More information

A Network-State Management Service. Peng Sun Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, Ahsan Arefin Princeton & Microsoft

A Network-State Management Service. Peng Sun Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, Ahsan Arefin Princeton & Microsoft A Network-State Management Service Peng Sun Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, Ahsan Arefin Princeton & Microsoft Complex Infrastructure 1 Complex Infrastructure Microsoft Azure Number

More information

Minimizing Collateral Damage by Proactive Surge Protection

Minimizing Collateral Damage by Proactive Surge Protection Minimizing Collateral Damage by Proactive Surge Protection Jerry Chou, Bill Lin University of California, San Diego Subhabrata Sen, Oliver Spatscheck AT&T Labs-Research ACM SIGCOMM LSAD Workshop, Kyoto,

More information

What is SDN, Current SDN projects and future of SDN VAHID NAZAKTABAR

What is SDN, Current SDN projects and future of SDN VAHID NAZAKTABAR What is SDN, Current SDN projects and future of SDN VAHID NAZAKTABAR Index What is SDN? How does it work? Advantages and Disadvantages SDN s Application Example 1, Internet Service Providers SDN s Application

More information

Progress Report No. 15. Shared Segments Protection

Progress Report No. 15. Shared Segments Protection NEXT GENERATION NETWORK (NGN) AVAILABILITY & RESILIENCE RESEARCH Progress Report No. 15 Shared Segments Protection The University of Canterbury Team 18 April 2006 Abstract As a complement to the Canterbury

More information

DevoFlow: Scaling Flow Management for High Performance Networks

DevoFlow: Scaling Flow Management for High Performance Networks DevoFlow: Scaling Flow Management for High Performance Networks SDN Seminar David Sidler 08.04.2016 1 Smart, handles everything Controller Control plane Data plane Dump, forward based on rules Existing

More information

Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing

Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing Nesime Tatbul Uğur Çetintemel Stan Zdonik Talk Outline Problem Introduction Approach Overview Advance Planning with an

More information

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan Coflow Recent Advances and What s Next? Mosharaf Chowdhury University of Michigan Rack-Scale Computing Datacenter-Scale Computing Geo-Distributed Computing Coflow Networking Open Source Apache Spark Open

More information

On low-latency-capable topologies, and their impact on the design of intra-domain routing

On low-latency-capable topologies, and their impact on the design of intra-domain routing On low-latency-capable topologies, and their impact on the design of intra-domain routing Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, Mark Handley University College London (UCL) We want low latency!

More information

Design and Implementation of Virtual TAP for Software-Defined Networks

Design and Implementation of Virtual TAP for Software-Defined Networks Design and Implementation of Virtual TAP for Software-Defined Networks - Master Thesis Defense - Seyeon Jeong Supervisor: Prof. James Won-Ki Hong Dept. of CSE, DPNM Lab., POSTECH, Korea jsy0906@postech.ac.kr

More information

Understanding BGP Miscounfiguration

Understanding BGP Miscounfiguration Understanding Archana P Student of Department of Electrical & Computer Engineering Missouri University of Science and Technology appgqb@mst.edu 16 Feb 2017 Introduction Background Misconfiguration Outline

More information

From Routing to Traffic Engineering

From Routing to Traffic Engineering 1 From Routing to Traffic Engineering Robert Soulé Advanced Networking Fall 2016 2 In the beginning B Goal: pair-wise connectivity (get packets from A to B) Approach: configure static rules in routers

More information

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth. " efficiency " fairness " stability. !

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth.  efficiency  fairness  stability. ! Motivation Network Congestion Control EL 933, Class10 Yong Liu 11/22/2005! Network bandwidth shared by all users! Given routing, how to allocate bandwidth efficiency fairness stability! Challenges distributed/selfish/uncooperative

More information

Comparison of Shaping and Buffering for Video Transmission

Comparison of Shaping and Buffering for Video Transmission Comparison of Shaping and Buffering for Video Transmission György Dán and Viktória Fodor Royal Institute of Technology, Department of Microelectronics and Information Technology P.O.Box Electrum 229, SE-16440

More information

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

IX: A Protected Dataplane Operating System for High Throughput and Low Latency IX: A Protected Dataplane Operating System for High Throughput and Low Latency Belay, A. et al. Proc. of the 11th USENIX Symp. on OSDI, pp. 49-65, 2014. Reviewed by Chun-Yu and Xinghao Li Summary In this

More information

SecureNoC. (Team Colonel Panic): Xiaoming Guo, Sijia He, Amlan Nayak, Jay Zhang. December 3, 2015

SecureNoC. (Team Colonel Panic): Xiaoming Guo, Sijia He, Amlan Nayak, Jay Zhang. December 3, 2015 SecureNoC (Team Colonel Panic): Xiaoming Guo, Sijia He, Amlan Nayak, Jay Zhang December 3, 2015 1 Problem Statement Networks on Chip (NoCs) have been steadily investigated from reliability, efficiency,

More information

EP2210 Scheduling. Lecture material:

EP2210 Scheduling. Lecture material: EP2210 Scheduling Lecture material: Bertsekas, Gallager, 6.1.2. MIT OpenCourseWare, 6.829 A. Parekh, R. Gallager, A generalized Processor Sharing Approach to Flow Control - The Single Node Case, IEEE Infocom

More information

Resilient IP Backbones. Debanjan Saha Tellium, Inc.

Resilient IP Backbones. Debanjan Saha Tellium, Inc. Resilient IP Backbones Debanjan Saha Tellium, Inc. dsaha@tellium.com 1 Outline Industry overview IP backbone alternatives IP-over-DWDM IP-over-OTN Traffic routing & planning Network case studies Research

More information

Casa Systems Axyom Multiservice Router

Casa Systems Axyom Multiservice Router Solution Brief Casa Systems Axyom Multiservice Router Solving the Edge Network Challenge To keep up with broadband demand, service providers have used proprietary routers to grow their edge networks. Cost

More information

A Scalable, Commodity Data Center Network Architecture

A Scalable, Commodity Data Center Network Architecture A Scalable, Commodity Data Center Network Architecture B Y M O H A M M A D A L - F A R E S A L E X A N D E R L O U K I S S A S A M I N V A H D A T P R E S E N T E D B Y N A N X I C H E N M A Y. 5, 2 0

More information

Competitive and Deterministic Embeddings of Virtual Networks

Competitive and Deterministic Embeddings of Virtual Networks Competitive and Deterministic Embeddings of Virtual Networks Guy Even (Tel Aviv Uni) Moti Medina (Tel Aviv Uni) Gregor Schaffrath (T-Labs Berlin) Stefan Schmid (T-Labs Berlin) The Virtual Network Embedding

More information

Managing Network Bandwidth to Maximize Performance

Managing Network Bandwidth to Maximize Performance Managing Network Bandwidth to Maximize Performance With increasing bandwidth demands, network professionals are constantly looking to optimize network resources, ensure adequate bandwidth, and deliver

More information

Detailed diagnosis in enterprise networks. Network diagnosis

Detailed diagnosis in enterprise networks. Network diagnosis Detailed diagnosis in enterprise networks Srikanth Kandula, Ratul Mahajan, Patrick Verkaik (UCSD), Sharad Agarwal, Jitu Padhye, Victor Bahl Network diagnosis Explaining faulty behavior 1 Current landscape

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Congestion Control In the Network

Congestion Control In the Network Congestion Control In the Network Brighten Godfrey cs598pbg September 9 2010 Slides courtesy Ion Stoica with adaptation by Brighten Today Fair queueing XCP Announcements Problem: no isolation between flows

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Routing Metric. ARPANET Routing Algorithms. Problem with D-SPF. Advanced Computer Networks

Routing Metric. ARPANET Routing Algorithms. Problem with D-SPF. Advanced Computer Networks Advanced Computer Networks Khanna and Zinky, The Revised ARPANET Routing Metric, Proc. of ACM SIGCOMM '89, 19(4):45 46, Sep. 1989 Routing Metric Distributed route computation is a function of link cost

More information

Converged Communication Networks

Converged Communication Networks Converged Communication Networks Dr. Associate Professor Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai - 400076 girishs@ee.iitb.ac.in Outline Convergence in core

More information

68% 63% 50% 25% 24% 20% 17% Credit Theft. DDoS. Web Fraud. Cross-site Scripting. SQL Injection. Clickjack. Cross-site Request Forgery.

68% 63% 50% 25% 24% 20% 17% Credit Theft. DDoS. Web Fraud. Cross-site Scripting. SQL Injection. Clickjack. Cross-site Request Forgery. PRESENTED BY: Credit Theft 68% DDoS 63% Web Fraud 50% Cross-site Scripting SQL Injection Clickjack Cross-site Request Forgery 25% 24% 20% 17% Other 2% F5 Ponemon Survey -Me East-West Traffic Flows App

More information

Radon: Network QoS. Andrew Shewmaker Carlos Maltzahn Katia Obraczka Scott Brandt Ivo Jimenez. UC Santa Cruz Graduate Studies in Computer Science

Radon: Network QoS. Andrew Shewmaker Carlos Maltzahn Katia Obraczka Scott Brandt Ivo Jimenez. UC Santa Cruz Graduate Studies in Computer Science Radon: Network QoS Andrew Shewmaker Carlos Maltzahn Katia Obraczka Scott Brandt Ivo Jimenez UC Santa Cruz Graduate Studies in Computer Science Oct 22nd, 2013 This research was made possible by LANL, Cisco,

More information

Outline. EL736 Communications Networks II: Design and Algorithms. Class3: Network Design Modelling Yong Liu 09/19/2006

Outline. EL736 Communications Networks II: Design and Algorithms. Class3: Network Design Modelling Yong Liu 09/19/2006 EL736 Communications Networks II: Design and Algorithms Class3: Network Design Modelling Yong Liu 09/19/2006 1 Outline Examples Basic Problems Routing Restriction 2 1 Example: Intra-Domain Traffic Engineering

More information

15-744: Computer Networking. Middleboxes and NFV

15-744: Computer Networking. Middleboxes and NFV 15-744: Computer Networking Middleboxes and NFV Middleboxes and NFV Overview of NFV Challenge of middleboxes Middlebox consolidation Outsourcing middlebox functionality Readings: Network Functions Virtualization

More information

SCREAM: Sketch Resource Allocation for Software-defined Measurement

SCREAM: Sketch Resource Allocation for Software-defined Measurement SCREAM: Sketch Resource Allocation for Software-defined Measurement (CoNEXT 15) Masoud Moshref, Minlan Yu, Ramesh Govindan, Amin Vahdat Measurement is Crucial for Network Management Network Management

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Two Analyzing Technical Goals and Tradeoffs Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Technical Goals Scalability Availability Performance Security Manageability

More information

Data Center Networks and Switching and Queueing and Covert Timing Channels

Data Center Networks and Switching and Queueing and Covert Timing Channels Data Center Networks and Switching and Queueing and Covert Timing Channels Hakim Weatherspoon Associate Professor, Dept of Computer Science CS 5413: High Performance Computing and Networking March 10,

More information

T9: SDN and Flow Management: DevoFlow

T9: SDN and Flow Management: DevoFlow T9: SDN and Flow Management: DevoFlow Critique Lee, Tae Ho 1. Problems due to switch HW may be temporary. HW will evolve over time. Section 3.3 tries to defend against this point, but none of the argument

More information

Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective

Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective Ruozhou Yu, Guoliang Xue, and Xiang Zhang Arizona State University Outlines Background and Motivation System Modeling

More information

Multi-resource Energy-efficient Routing in Cloud Data Centers with Network-as-a-Service

Multi-resource Energy-efficient Routing in Cloud Data Centers with Network-as-a-Service in Cloud Data Centers with Network-as-a-Service Lin Wang*, Antonio Fernández Antaº, Fa Zhang*, Jie Wu+, Zhiyong Liu* *Institute of Computing Technology, CAS, China ºIMDEA Networks Institute, Spain + Temple

More information

SD-WAN orchestrated by Amdocs

SD-WAN orchestrated by Amdocs SD-WAN orchestrated by Amdocs What is software-defined wide area network? SD-WAN determines the most cost-effective and efficient way to route enterprise traffic to remote locations over ubiquitous broadband

More information

One More Bit Is Enough

One More Bit Is Enough One More Bit Is Enough Yong Xia, RPI Lakshmi Subramanian, UCB Ion Stoica, UCB Shiv Kalyanaraman, RPI SIGCOMM 05, Philadelphia, PA 08 / 23 / 2005 Motivation #1: TCP doesn t work well in high b/w or delay

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE : Introduction to Communication Networks Fall 00 Lecture : Routing and Addressing I Introduction to Routing/Addressing Lectures 9- described the main components of point-to-point networks, i.e. multiplexed

More information

Consistent SDN Flow Migration aided by Optical Circuit Switching. Rafael Lourenço December 2nd, 2016

Consistent SDN Flow Migration aided by Optical Circuit Switching. Rafael Lourenço December 2nd, 2016 Consistent SDN Flow Migration aided by Optical Circuit Switching Rafael Lourenço December 2nd, 2016 What is Flow Migration? Installation/update of new rules on [multiple] [asynchronous] SDN switches to

More information

AS the increasing number of smart devices and various

AS the increasing number of smart devices and various 1 Virtual Machine Migration Planning in Software-Defined Networks Huandong Wang, Yong Li, Member, IEEE, Ying Zhang, Member, IEEE, Depeng Jin, Member, IEEE, Abstract Live migration is a key technique for

More information

Inter-Data-Center Network Traffic Prediction with Elephant Flows

Inter-Data-Center Network Traffic Prediction with Elephant Flows Inter-Data-Center Network Traffic Prediction with Elephant Flows Yi Li, Hong Liu, Wenjun Yang, Dianming Hu, Wei Xu Institute for Interdisciplinary Information Sciences, Tsinghua University Baidu Inc. Inter-Data-Center

More information

Knowledge-Defined Network Orchestration in a Hybrid Optical/Electrical Datacenter Network

Knowledge-Defined Network Orchestration in a Hybrid Optical/Electrical Datacenter Network Knowledge-Defined Network Orchestration in a Hybrid Optical/Electrical Datacenter Network Wei Lu (Postdoctoral Researcher) On behalf of Prof. Zuqing Zhu University of Science and Technology of China, Hefei,

More information

Software Defined Networking

Software Defined Networking Software Defined Networking 1 2 Software Defined Networking Middlebox Switch Controller Switch Switch Server Server Server Server Standardization: switches support a vendor-agnostic, open API Off-device

More information

Data Center TCP (DCTCP)

Data Center TCP (DCTCP) Data Center TCP (DCTCP) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Microsoft Research Stanford University 1

More information

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks X. Zhang, X. Dong Shanghai Jiaotong University J. Wu, X. Li Temple University, University of North Carolina N. Xiong Colorado

More information

Lecture 14: Performance Architecture

Lecture 14: Performance Architecture Lecture 14: Performance Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 14-1 Background Performance: levels for capacity, delay, and RMA. Performance

More information

RCD: Rapid Close to Deadline Scheduling for Datacenter Networks

RCD: Rapid Close to Deadline Scheduling for Datacenter Networks RCD: Rapid Close to Deadline Scheduling for Datacenter Networks Mohammad Noormohammadpour 1, Cauligi S. Raghavendra 1, Sriram Rao 2, Asad M. Madni 3 1 Ming Hsieh Department of Electrical Engineering, University

More information

Some Musings on OpenFlow and SDN for Enterprise Networks. David Meyer Open Networking Summit October 18-19, 2011

Some Musings on OpenFlow and SDN for Enterprise Networks. David Meyer Open Networking Summit October 18-19, 2011 Some Musings on OpenFlow and SDN for Enterprise Networks David Meyer Open Networking Summit October 18-19, 2011 Agenda Problem Space A Few Use Cases Reflections on the Promise of OF/SDN A Few Challenges

More information

Designing and Provisioning IP Contribution Networks

Designing and Provisioning IP Contribution Networks Designing and Provisioning IP Contribution Networks Chin Koh 2 June 2015 Outline Introduction Protecting Media over IP Real-time Monitoring Centralized Management Nationwide Contribution Broadcast Network

More information

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov.

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. Lecture 21 Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. 7 http://money.cnn.com/2011/11/07/technology/juniper_internet_outage/

More information

Problems with IntServ. EECS 122: Introduction to Computer Networks Differentiated Services (DiffServ) DiffServ (cont d)

Problems with IntServ. EECS 122: Introduction to Computer Networks Differentiated Services (DiffServ) DiffServ (cont d) Problems with IntServ EECS 122: Introduction to Computer Networks Differentiated Services (DiffServ) Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

Joint Backup Capacity Allocation and Embedding for Survivable Virtual Networks

Joint Backup Capacity Allocation and Embedding for Survivable Virtual Networks Joint Backup Capacity Allocation and Embedding for Survivable Virtual Networks Nashid Shahriar, Shihabur R. Chowdhury, Reaz Ahmed, Aimal Khan, Raouf Boutaba Jeebak Mitra, Liu Liu Virtual Network Embedding

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

Casa Systems Axyom Multiservice Router

Casa Systems Axyom Multiservice Router Solution Brief Casa Systems Axyom Multiservice Router Solving the Edge Network Challenge To keep up with broadband demand, service providers have used proprietary routers to grow their edge networks. Cost

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

Revisiting Network Support for RDMA

Revisiting Network Support for RDMA Revisiting Network Support for RDMA Radhika Mittal 1, Alex Shpiner 3, Aurojit Panda 1, Eitan Zahavi 3, Arvind Krishnamurthy 2, Sylvia Ratnasamy 1, Scott Shenker 1 (1: UC Berkeley, 2: Univ. of Washington,

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Universal Packet Scheduling Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Packet Scheduling Active research literature with many Algorithms FIFO, DRR, virtual clocks, priorities

More information

SPARTA: Scalable Per-Address RouTing Architecture

SPARTA: Scalable Per-Address RouTing Architecture SPARTA: Scalable Per-Address RouTing Architecture John Carter Data Center Networking IBM Research - Austin IBM Research Science & Technology IBM Research activities related to SDN / OpenFlow IBM Research

More information

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks Gwangsun Kim Arm Research Hayoung Choi, John Kim KAIST High-radix Networks Dragonfly network in Cray XC30 system 1D Flattened butterfly

More information

Building Efficient and Reliable Software-Defined Networks. Naga Katta

Building Efficient and Reliable Software-Defined Networks. Naga Katta FPO Talk Building Efficient and Reliable Software-Defined Networks Naga Katta Jennifer Rexford (Advisor) Readers: Mike Freedman, David Walker Examiners: Nick Feamster, Aarti Gupta 1 Traditional Networking

More information

Hardware Evolution in Data Centers

Hardware Evolution in Data Centers Hardware Evolution in Data Centers 2004 2008 2011 2000 2013 2014 Trend towards customization Increase work done per dollar (CapEx + OpEx) Paolo Costa Rethinking the Network Stack for Rack-scale Computers

More information

Utilizing Datacenter Networks: Centralized or Distributed Solutions?

Utilizing Datacenter Networks: Centralized or Distributed Solutions? Utilizing Datacenter Networks: Centralized or Distributed Solutions? Costin Raiciu Department of Computer Science University Politehnica of Bucharest We ve gotten used to great applications Enabling Such

More information

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF Your Name: Answers SUNet ID: root @stanford.edu In accordance with both the letter and the

More information

UnivMon: Software-defined Monitoring with Universal Sketch

UnivMon: Software-defined Monitoring with Universal Sketch UnivMon: Software-defined Monitoring with Universal Sketch Zaoxing (Alan) Liu Joint work with Antonis Manousis (CMU), Greg Vorsanger(JHU), Vyas Sekar (CMU), and Vladimir Braverman(JHU) Network Management:

More information

Packet Scheduling in Data Centers. Lecture 17, Computer Networks (198:552)

Packet Scheduling in Data Centers. Lecture 17, Computer Networks (198:552) Packet Scheduling in Data Centers Lecture 17, Computer Networks (198:552) Datacenter transport Goal: Complete flows quickly / meet deadlines Short flows (e.g., query, coordination) Large flows (e.g., data

More information

DiffServ Architecture: Impact of scheduling on QoS

DiffServ Architecture: Impact of scheduling on QoS DiffServ Architecture: Impact of scheduling on QoS Abstract: Scheduling is one of the most important components in providing a differentiated service at the routers. Due to the varying traffic characteristics

More information