CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory. Last?me in Lecture 9

Size: px
Start display at page:

Download "CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory. Last?me in Lecture 9"

Transcription

1 CS 152 Computer Architecture and Engineering Lecture 9 - Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley Last?me in Lecture 9 ProtecDon and transladon required for muldprogramming Base and bounds was early simple scheme Page- based transladon and protecdon avoids need for memory compacdon, easy allocadon by OS But need to indirect in large page table on every access spaces accessed sparsely Can use muld- level page table to hold transladon/protecdon informadon, but implies muldple memory accesses per reference space access with locality Can use transladon lookaside buffer () to cache address transladons (somedmes known as address transladon cache) SDll have to walk page tables on miss, can be hardware or sosware talk memory uses DRAM as a cache of disk memory, allows very cheap main memory 2 CS252 S05 1

2 Management Can separate into orthogonal funcdons: TranslaDon (mapping of virtual address to physical address) ProtecDon (permission to access word in memory) memory (transparent extension of memory space using slower disk or flash storage) But most modern systems provide support for all the above funcdons with a single page- based system 3 Modern Systems Illusion of a large, private, uniform store ProtecDon & Privacy several users, each with their private address space and one or more shared address spaces page table name space Demand Paging Provides the ability to run programs larger than the primary memory Hides differences in machine configuradons Primary OS user i Secondary Storage The price is address transla/on on each memory reference VA mapping 4 CS252 S05 2

3 Hierarchical Page Table p1 p2 offset 10- bit L1 index Root of Current Page Table (Processor Register) 10- bit L2 index p1 Level 1 Page Table page in primary memory page in secondary memory PTE of a nonexistent page p2 Level 2 Page Tables offset Pages 5 PC Page- Based - Machine Page Fault? Protec/on viola/on? Inst. (Hardware Page- Table Walk) Inst. D Decode E + M Page Fault? Protec/on viola/on? W Miss? Page- Table Base Register Miss? Hardware Page Table Walker Controller Main (DRAM) Assumes page tables held in untranslated physical memory 6 CS252 S05 3

4 Transla?on: pu3ng it all together miss Lookup hit hardware hardware or sosware sosware Page Table Walk ProtecDon Check the page is memory memory denied permibed Where? Page Fault (OS loads page) Update SEGFAULT ProtecDon Fault (to cache) 7 Page Fault Handler When the referenced page is not in DRAM: The missing page is located (or created) It is brought in from disk, and page table is updated Another job may be run on the CPU while the first job waits for the requested page to be read from disk If no free pages are les, a page is swapped out Pseudo- LRU replacement policy, implemented in sosware Since it takes a long Dme to transfer a page (msecs), page faults are handled completely in sosware by the OS Untranslated addressing mode is essendal to allow kernel to access page tables 8 CS252 S05 4

5 Handling VM- related excep?ons PC Inst Inst. D Decode E + M W miss? Page Fault? Protec/on viola/on? miss? Page Fault? Protec/on viola/on? Handling a miss needs a hardware or sosware mechanism to refill Handling a page fault (e.g., page is on disk) needs a restartable excepdon so sosware handler can resume aser retrieving page Precise excepdons are easy to restart Can be imprecise but restartable, but this complicates OS sosware Handling protecdon violadon may abort process But osen handled the same as a page fault 9 Transla?on in CPU Pipeline PC Inst Inst. D Decode E + M W miss? Page Fault? Protec/on viola/on? miss? Page Fault? Protec/on viola/on? Need to cope with addidonal latency of : slow down the clock? pipeline the and cache access? virtual address caches parallel /cache access 10 CS252 S05 5

6 - s CPU VA Primary Alternative: place the cache before the CPU VA VA Primary (StrongARM) one- step process in case of a hit (+) cache needs to be flushed on a context switch unless address space idendfiers (ASIDs) included in tags (- ) aliasing problems due to the sharing of pages (- ) maintaining cache coherence (- ) (see later in course) 11 ly ed ( Index/ Tag) PC Inst. D Decode E + M Miss? Inst. InstrucDon data Translate on miss P Register Controller Main (DRAM) Hardware Page Table Walker Miss? W 12 CS252 S05 6

7 Aliasing in - s VA 1 Page Table Pages Tag VA 1 1st Copy of at VA 2 2nd Copy of at VA 2 Two virtual pages share one physical page cache can have two copies of same physical data. Writes to one copy not visible to reads of other! General SoluDon: Prevent aliases coexis/ng in cache SoSware (i.e., OS) soludon for direct- mapped cache VAs of shared pages must agree in cache index bits; this ensures all VAs accessing same will conflict in direct- mapped cache (early SRCs) 13 Concurrent Access to & ( Index/ Tag) VA VPN L b k PPN Page Offset Index Direct- map 2 L blocks 2 b - byte block Tag hit? Index L is available without consuldng the cache and accesses can begin simultaneously! Tag comparison is made aser both accesses are completed Cases: L + b = k, L + b < k, L + b > k = Tag 14 CS252 S05 7

8 - Index - Tag s: Associa?ve Organiza?on VA VPN a L = k- b b 2 a Index k Direct- map 2 L blocks Direct- map 2 L blocks PPN Tag Page Offset = hit? Phy. Tag 2 a = ASer the PPN is known, 2 a physical tags are compared How does this scheme scale to larger caches? 15 Concurrent Access to & Large L1 The problem with L1 > Page size VA Index VPN a Page Offset b VA 1 VA 2 PPN a PPN a L1 cache Direct- map PPN Page Offset b Tag Can VA 1 and VA 2 both map to? = hit? 16 CS252 S05 8

9 CS152 Administrivia PS 2 and Lab 2 out Short Dme frame only one week les Dll due so start soon Quiz 2, Tuesday March 5 Lectures 6-9, PS 2, Lab 2, readings 17 A solu?on via Second Level CPU RF L1 InstrucDon L1 Unified L2 Usually a common L2 cache backs up both InstrucDon and L1 caches L2 is inclusive of both InstrucDon and caches Inclusive means L2 has copy of any line in either L1 18 CS252 S05 9

10 VA An?- Aliasing Using L2 [MIPS R10000,1996] VPN a Page Offset b into L2 tag Index VA 1 VA 2 L1 cache Direct- map PPN a PPN a PPN Page Offset b Tag Suppose VA1 and VA2 both map to and VA1 is already in L1, L2 (VA1 VA2) ASer VA2 is resolved to, a collision will be detected in L2. VA1 will be purged from L1 and L2, and VA2 will be loaded no aliasing! PPN = hit? a 1 Direct- Mapped L2 19 An?- Aliasing using L2 for a ly ed L1 VA VPN Page Offset b PPN Page Offset b Index & Tag VA 1 VA 2 L1 VA Tag Index & Tag ly- addressed L2 can also be used to avoid aliases in virtually- addressed L1 VA 1 Tag L2 L2 contains L1 20 CS252 S05 10

11 Atlas Revisited One R for each physical page R s contain the VPN s of the pages resident in primary memory Advantage: The size is propordonal to the size of the primary memory PPN R s VPN What is the disadvantage? 21 Hashed Page Table: Approxima?ng Associa?ve ing PID VPN d Offset hash + of PTE Page Table Base of Table Hashed Page Table is typically 2 to 3 Dmes larger than the number of PPN s to reduce collision probability It can also contain DPN s for some non- resident pages (not common) If a transladon cannot be resolved in this table then the sosware consults a data structure that has an entry for every exisdng page (e.g., full page table) VPN PID PPN VPN PID DPN VPN PID Primary 22 CS252 S05 11

12 Power PC: Hashed Page Table VPN d 80- bit VA hash Base of Table Offset Each hash table slot has 8 PTE's <VPN,PPN> that are searched sequendally If the first hash slot fails, an alternate hash funcdon is used to look in another slot All these steps are done in hardware! Hashed Table is typically 2 to 3 Dmes larger than the number of physical pages The full backup Page Table is managed in sosware + of Slot Page Table VPN VPN PPN Primary 23 VM features track historical uses: Bare machine, only physical addresses One program owned endre machine Batch- style muldprogramming Several programs sharing CPU while waidng for I/O Base & bound: transladon and protecdon between programs (supports swapping endre programs but not demand- paged virtual memory) Problem with external fragmentadon (holes in memory), needed occasional memory defragmentadon as new jobs arrived Time sharing More interacdve programs, waidng for user. Also, more jobs/second. MoDvated move to fixed- size page transladon and protecdon, no external fragmentadon (but now internal fragmentadon, wasted bytes in page) MoDvated adopdon of virtual memory to allow more jobs to share limited physical memory resources while holding working set in memory Machine Monitors Run muldple operadng systems on one machine Idea from 1970s IBM mainframes, now common on laptops e.g., run Windows on top of Mac OS X Hardware support for two levels of transladon/protecdon Guest OS virtual - > Guest OS physical - > Host machine physical 24 CS252 S05 12

13 Use Today - 1 Servers/desktops/laptops/smartphones have full demand- paged virtual memory Portability between machines with different memory sizes ProtecDon between muldple users or muldple tasks Share small physical memory among acdve tasks Simplifies implementadon of some OS features Vector supercomputers have transladon and protecdon but rarely complete demand- paging (Older Crays: base&bound, Japanese & Cray X1/X2: pages) Don t waste expensive CPU Dme thrashing to disk (make jobs fit in memory) Mostly run in batch mode (run set of jobs that fits in memory) Difficult to implement restartable vector instrucdons 25 Use Today - 2 Most embedded processors and DSPs provide physical addressing only Can t afford area/speed/power budget for virtual memory support OSen there is no secondary storage to swap to! Programs custom wriben for pardcular memory configuradon in product Difficult to implement restartable instrucdons for exposed architectures 26 CS252 S05 13

14 Acknowledgements These slides contain material developed and copyright by: Arvind (MIT) Krste Asanovic (MIT/UCB) Joel Emer (Intel/MIT) James Hoe (CMU) John Kubiatowicz (UCB) David Paberson (UCB) MIT material derived from course UCB material derived from course CS CS252 S05 14

Lecture 9 - Virtual Memory

Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 9 Virtual Memory

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 9 Virtual Memory CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 9 Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 17: Virtual Memory and Caches

CS252 Spring 2017 Graduate Computer Architecture. Lecture 17: Virtual Memory and Caches CS252 Spring 2017 Graduate Computer Architecture Lecture 17: Virtual Memory and Caches Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture 16 Memory

More information

Lecture 9 Virtual Memory

Lecture 9 Virtual Memory CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 9 Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley

More information

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches CS 152 Computer Architecture and Engineering Lecture 11 - Virtual Memory and Caches Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Modern Virtual Memory Systems. Modern Virtual Memory Systems

Modern Virtual Memory Systems. Modern Virtual Memory Systems 6.823, L12--1 Modern Virtual Systems Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 6.823, L12--2 Modern Virtual Systems illusion of a large, private, uniform store Protection

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation CS 152 Computer Architecture and Engineering Lecture 8 - Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 9, 2015

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation CS 152 Computer Architecture and Engineering Lecture 8 - Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Last =me in Lecture 7 3 C s of cache misses Compulsory, Capacity, Conflict

Last =me in Lecture 7 3 C s of cache misses Compulsory, Capacity, Conflict CS 152 Computer Architecture and Engineering Lecture 8 - Transla=on Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 8 Address Transla>on

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 8 Address Transla>on CS 5 Computer Architecture and Engineering CS5 Graduate Computer Architecture Lecture 8 Transla>on Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/ 1 Review Programmed I/O Polling vs. Interrupts Booting

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 1 Agenda Virtual Memory Paged Physical Memory Swap Space

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda Virtual Memory Paged Physical Memory Swap Space Page Faults

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Learning to Play Well With Others

Learning to Play Well With Others Virtual Memory 1 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000 Learning to Play Well With Others malloc(0x20000) (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

More information

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: Krste Asanovic & Vladimir Stojanovic h>p://inst.eecs.berkeley.

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: Krste Asanovic & Vladimir Stojanovic h>p://inst.eecs.berkeley. CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructors: Krste Asanovic & Vladimir Stojanovic h>p://inst.eecs.berkeley.edu/~cs61c/ 1 Programmed I/O Review Polling versus Interrupts Asynchronous

More information

Transla'on, Protec'on, and Virtual Memory. 2/25/16 CS 152 Sec'on 6 Colin Schmidt

Transla'on, Protec'on, and Virtual Memory. 2/25/16 CS 152 Sec'on 6 Colin Schmidt Transla'on, Protec'on, and Virtual Memory 2/25/16 CS 152 Sec'on 6 Colin Schmidt Agenda Protec'on Transla'on Virtual Memory Lab 1 Feedback Ques'ons/Open-ended discussion Hand back Lab 1 Protec'on Why? Supervisor

More information

CS 152 Computer Architecture and Engineering. Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming

CS 152 Computer Architecture and Engineering. Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming CS 152 Computer Architecture and Engineering Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming John Wawrzynek Electrical Engineering and Computer Sciences University of California at

More information

CS 61C: Great Ideas in Computer Architecture Excep&ons/Traps/Interrupts. Smart Phone. Core. FuncWonal Unit(s) Logic Gates

CS 61C: Great Ideas in Computer Architecture Excep&ons/Traps/Interrupts. Smart Phone. Core. FuncWonal Unit(s) Logic Gates CS 6C: Great Ideas in Computer Architecture Excep&ons/Traps/Interrupts Instructors: Krste Asanovic, Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs6c/fa Review Programmed I/O versus DMA Polling versus Interrupts

More information

Lecture 7 - Memory Hierarchy-II

Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II John Wawrzynek Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~johnw

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Virtual Instructor: Michael Greenbaum 1 New-School Machine Structures Software Parallel Requests Assigned to computer e.g., Search Katz

More information

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging 6.823, L8--1 Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Highly-Associative

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance 6.823, L11--1 Cache Performance and Memory Management: From Absolute Addresses to Demand Paging Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Performance 6.823,

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements CS 61C: Great Ideas in Computer Architecture Virtual II Guest Lecturer: Justin Hsia Agenda Review of Last Lecture Goals of Virtual Page Tables Translation Lookaside Buffer (TLB) Administrivia VM Performance

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Lecture 14: Multithreading

Lecture 14: Multithreading CS 152 Computer Architecture and Engineering Lecture 14: Multithreading John Wawrzynek Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~johnw

More information

HY225 Lecture 12: DRAM and Virtual Memory

HY225 Lecture 12: DRAM and Virtual Memory HY225 Lecture 12: DRAM and irtual Memory Dimitrios S. Nikolopoulos University of Crete and FORTH-ICS May 16, 2011 Dimitrios S. Nikolopoulos Lecture 12: DRAM and irtual Memory 1 / 36 DRAM Fundamentals Random-access

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

Page 1. Review: Address Segmentation " Review: Address Segmentation " Review: Address Segmentation "

Page 1. Review: Address Segmentation  Review: Address Segmentation  Review: Address Segmentation Review Address Segmentation " CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs" February 23, 2011! Ion Stoica! http//inst.eecs.berkeley.edu/~cs162! 1111 0000" 1110 000" Seg #"

More information

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont Lecture 16 Virtual Memory Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, and

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner CPS104 Computer Organization and Programming Lecture 16: Virtual Memory Robert Wagner cps 104 VM.1 RW Fall 2000 Outline of Today s Lecture Virtual Memory. Paged virtual memory. Virtual to Physical translation:

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CPS 104 Computer Organization and Programming Lecture 20: Virtual Memory

CPS 104 Computer Organization and Programming Lecture 20: Virtual Memory CPS 104 Computer Organization and Programming Lecture 20: Virtual Nov. 10, 1999 Dietolf (Dee) Ramm http://www.cs.duke.edu/~dr/cps104.html CPS 104 Lecture 20.1 Outline of Today s Lecture O Virtual. 6 Paged

More information

CS 152 Computer Architecture and Engineering. Lecture 18: Multithreading

CS 152 Computer Architecture and Engineering. Lecture 18: Multithreading CS 152 Computer Architecture and Engineering Lecture 18: Multithreading Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 14: Multithreading

CS 152 Computer Architecture and Engineering. Lecture 14: Multithreading CS 152 Computer Architecture and Engineering Lecture 14: Multithreading Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Cache Protocols Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 10: Virtual Memory II Ryan Huang Slides adapted from Geoff Voelker s lectures Administrivia Next Tuesday project hacking day No class My office

More information

Lecture 17: Address Translation. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 17: Address Translation. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 17: Address Translation James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L17 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping see Virtual Memory into

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

CS162 Operating Systems and Systems Programming Lecture 14. Caching and Demand Paging

CS162 Operating Systems and Systems Programming Lecture 14. Caching and Demand Paging CS162 Operating Systems and Systems Programming Lecture 14 Caching and Demand Paging October 17, 2007 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162 Review: Hierarchy of a Modern Computer

More information

CS 152 Computer Architecture and Engineering. Lecture 12 - Advanced Out-of-Order Superscalars

CS 152 Computer Architecture and Engineering. Lecture 12 - Advanced Out-of-Order Superscalars CS 152 Computer Architecture and Engineering Lecture 12 - Advanced Out-of-Order Superscalars Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory

More information

CS 152 Computer Architecture and Engineering. Lecture 13 - Out-of-Order Issue and Register Renaming

CS 152 Computer Architecture and Engineering. Lecture 13 - Out-of-Order Issue and Register Renaming CS 152 Computer Architecture and Engineering Lecture 13 - Out-of-Order Issue and Register Renaming Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://wwweecsberkeleyedu/~krste

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 12

ECE 571 Advanced Microprocessor-Based Design Lecture 12 ECE 571 Advanced Microprocessor-Based Design Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 March 2018 HW#6 will be posted Project will be coming up Announcements

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

CS162 Operating Systems and Systems Programming Lecture 14. Caching (Finished), Demand Paging

CS162 Operating Systems and Systems Programming Lecture 14. Caching (Finished), Demand Paging CS162 Operating Systems and Systems Programming Lecture 14 Caching (Finished), Demand Paging October 11 th, 2017 Neeraja J. Yadwadkar http://cs162.eecs.berkeley.edu Recall: Caching Concept Cache: a repository

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Virtual Memory CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructor: Justin Hsia 7/30/2012 Summer 2012 Lecture #24 1 Review of Last Lecture (1/2) Multiple instruction issue increases max speedup, but

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Cache Protocols Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste

More information

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources Memory Management Topics CS 537 Lecture Memory Michael Swift Goals of memory management convenient abstraction for programming isolation between processes allocate scarce memory resources between competing

More information

Computer Architecture. Lecture 8: Virtual Memory

Computer Architecture. Lecture 8: Virtual Memory Computer Architecture Lecture 8: Virtual Memory Dr. Ahmed Sallam Suez Canal University Spring 2015 Based on original slides by Prof. Onur Mutlu Memory (Programmer s View) 2 Ideal Memory Zero access time

More information

Address Translation. Tore Larsen Material developed by: Kai Li, Princeton University

Address Translation. Tore Larsen Material developed by: Kai Li, Princeton University Address Translation Tore Larsen Material developed by: Kai Li, Princeton University Topics Virtual memory Virtualization Protection Address translation Base and bound Segmentation Paging Translation look-ahead

More information

Page 1. CS162 Operating Systems and Systems Programming Lecture 14. Caching and Demand Paging

Page 1. CS162 Operating Systems and Systems Programming Lecture 14. Caching and Demand Paging CS162 Operating Systems and Systems Programming Lecture 14 Caching and Demand Paging March 4, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Review: Hierarchy of a Modern Computer System Take advantage

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O Hallaron Today Address spaces VM as a tool for caching VM as a tool for memory management VM as

More information

CS162 Operating Systems and Systems Programming Lecture 13. Caches and TLBs. Page 1

CS162 Operating Systems and Systems Programming Lecture 13. Caches and TLBs. Page 1 CS162 Operating Systems and Systems Programming Lecture 13 Caches and TLBs March 12, 2008 Prof. Anthony D. Joseph http//inst.eecs.berkeley.edu/~cs162 Review Multi-level Translation What about a tree of

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Architecture Spring 2004 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture 18: Virtual Memory Lecture Outline Review of Main Memory Virtual Memory Simple Interleaving Cycle

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory III. Instructor: Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Virtual Memory III. Instructor: Dan Garcia CS 61C: Great Ideas in Computer Architecture Virtual Memory III Instructor: Dan Garcia 1 Agenda Review of Last Lecture Goals of Virtual Memory Page Tables TranslaFon Lookaside Buffer (TLB) Administrivia

More information

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 13 Memory Part 2

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 13 Memory Part 2 ECE 552 / CPS 550 Advanced Computer Architecture I Lecture 13 Memory Part 2 Benjamin Lee Electrical and Computer Engineering Duke University www.duke.edu/~bcl15 www.duke.edu/~bcl15/class/class_ece252fall12.html

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

Memory: Page Table Structure. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Memory: Page Table Structure. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Memory: Page Table Structure CSSE 332 Operating Systems Rose-Hulman Institute of Technology General address transla+on CPU virtual address data cache MMU Physical address Global memory Memory management

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 CPU-Memory Bottleneck Computer Architecture ELEC44 CPU Memory Lecture 9 Cache Dr. Hayden Kwok-Hay So Department of Electrical and Electronic Engineering Performance of high-speed computers is usually limited

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

Memory Hierarchy Review

Memory Hierarchy Review EECS 252 Graduate Computer Architecture Lecture 3 0 (continued) Review of Caches and Virtual January 27 th, 20 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 7 Memory III

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 7 Memory III CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 7 Memory III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name:

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name: Computer Architecture and Engineering CS152 Quiz #3 March 18th, 2008 Professor Krste Asanovic Name: Notes: This is a closed book, closed notes exam. 80 Minutes 10 Pages Not all questions are of equal difficulty,

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

ECE 252 / CPS 220 Advanced Computer Architecture I. Lecture 13 Memory Part 2

ECE 252 / CPS 220 Advanced Computer Architecture I. Lecture 13 Memory Part 2 ECE 252 / CPS 220 Advanced Computer Architecture I Lecture 13 Memory Part 2 Benjamin Lee Electrical and Computer Engineering Duke University www.duke.edu/~bcl15 www.duke.edu/~bcl15/class/class_ece252fall11.html

More information

COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory

COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory 1 COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Credits: Slides adapted from presentations

More information

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) Important from last time We re trying to build efficient virtual address spaces Why?? Virtual / physical translation is done by HW and

More information

Virtual Memory. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Virtual Memory. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Precise Definition of Virtual Memory Virtual memory is a mechanism for translating logical

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory-Based Protocols Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources.

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Virtual Memory Stefanos Kaxiras Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Caches Review & Intro Intended to make the slow main memory look fast by

More information

Lecture 12 Branch Prediction and Advanced Out-of-Order Superscalars

Lecture 12 Branch Prediction and Advanced Out-of-Order Superscalars CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 12 Branch Prediction and Advanced Out-of-Order Superscalars Krste Asanovic Electrical Engineering and Computer

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 8: Paging Ding Yuan Lecture Overview Today we ll cover more paging mechanisms: Op&miza&ons Managing page tables (space) Efficient transla&ons (TLBs) (&me) Demand paged virtual

More information

Chapter 5 (Part II) Large and Fast: Exploiting Memory Hierarchy. Baback Izadi Division of Engineering Programs

Chapter 5 (Part II) Large and Fast: Exploiting Memory Hierarchy. Baback Izadi Division of Engineering Programs Chapter 5 (Part II) Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Virtual Machines Host computer emulates guest operating system and machine resources Improved isolation of multiple

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

VIRTUAL MEMORY II. Jo, Heeseung

VIRTUAL MEMORY II. Jo, Heeseung VIRTUAL MEMORY II Jo, Heeseung TODAY'S TOPICS How to reduce the size of page tables? How to reduce the time for address translation? 2 PAGE TABLES Space overhead of page tables The size of the page table

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

Operating Systems (1DT020 & 1TT802) Lecture 9 Memory Management : Demand paging & page replacement. Léon Mugwaneza

Operating Systems (1DT020 & 1TT802) Lecture 9 Memory Management : Demand paging & page replacement. Léon Mugwaneza Operating Systems (1DT020 & 1TT802) Lecture 9 Memory Management : Demand paging & page replacement May 05, 2008 Léon Mugwaneza http://www.it.uu.se/edu/course/homepage/os/vt08 Review: Multiprogramming (with

More information

Topic 18: Virtual Memory

Topic 18: Virtual Memory Topic 18: Virtual Memory COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Virtual Memory Any time you see virtual, think using a level of indirection

More information

CS 152 Computer Architecture and Engineering. Lecture 19: Directory- Based Cache Protocols. Recap: Snoopy Cache Protocols

CS 152 Computer Architecture and Engineering. Lecture 19: Directory- Based Cache Protocols. Recap: Snoopy Cache Protocols CS 152 Computer Architecture and Engineering Lecture 19: Directory- Based Protocols Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley hap://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy. Part II Virtual Memory

Chapter 5. Large and Fast: Exploiting Memory Hierarchy. Part II Virtual Memory Chapter 5 Large and Fast: Exploiting Memory Hierarchy Part II Virtual Memory Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system

More information