Learning to Play Well With Others

Size: px
Start display at page:

Download "Learning to Play Well With Others"

Transcription

1 Virtual Memory 1

2 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

3 Learning to Play Well With Others malloc(0x20000) (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

4 Learning to Play Well With Others malloc(0x20000) (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

5 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

6 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

7 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

8 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) Stack Heap 0x00000

9 Learning to Play Well With Others Virtual Memory 0x10000 (64KB) Stack Heap 0x00000 Virtual Memory 0x10000 (64KB) Stack Heap 0x00000

10 Learning to Play Well With Others Virtual Memory 0x10000 (64KB) Stack Physical Memory Heap 0x x10000 (64KB) Virtual Memory 0x10000 (64KB) Stack 0x00000 Heap 0x00000

11 Learning to Play Well With Others Virtual Memory 0x10000 (64KB) Stack Physical Memory Heap 0x x10000 (64KB) Virtual Memory 0x10000 (64KB) Stack 0x00000 Heap 0x00000

12 Learning to Play Well With Others Virtual Memory 0x (4MB) Stack Physical Memory Heap 0x x10000 (64KB) Virtual Memory 0xF (240MB) Stack 0x00000 Disk (GBs) Heap 0x00000

13 Mapping Virtual-to-physical mapping Virtual --> virtual address space physical --> physical address space We will break both address spaces up into pages Typically 4KB in size, although sometimes large Use a page table to map between virtual pages and physical pages. The processor generates virtual addresses They are translated via address translation into physical addresses. 6

14 Implementing Virtual Memory (or whatever) Stack We need to keep track of this mapping Heap 0 0 Virtual Address Space Physical Address Space

15 The Mapping Process Virtual address (32 bits) Virtual Page Number Page Offset (log(page size)) Virtual-to-physical map Physical Page Number Page Offset (log(page size)) Physical address (32 bits) 8

16 Two Problems With VM How do we store the map compactly? How do we translation quickly? 9

17 How Big is the map? 32 bit address space: 4GB of virtual addresses 1MPages Each entry is 4 bytes (a 32 bit physical address) 4MB of map 64 bit address space 16 exabytes of virtual address space 4PetaPages Entry is 8 bytes 64PB of map 10

18 Shrinking the map Only store the entries that matter (i.e.,. enough for your physical address space) 64GB on a 64bit machine 16M pages, 128MB of map This is still pretty big. Representing the map is now hard The OS allocates stuff all over the place. For security, convenience, or caching optimizations How do you represent this sparse map. 11

19 Hierarchical Page Tables Break the virtual page number into several pieces If each piece has N bits, build an 2 N -ary tree Only store the part of the tree that contain valid pages To do translation, walk down the tree using the pieces to select with child to visit. 12

20 Hierarchical Page Table Virtual Address p1 p2 offset 0 10-bit L1 index Root of the Current Page Table 10-bit L2 index p2 offset p1 (Processor Register) Level 1 Page Table Level 2 Page Tables Parts of the map that exist Parts that don t Data Pages

21 Making Translation Fast Address translation has to happen for every memory access This potentially puts it squarely on the critical for memory operation (which are already slow) 14

22 Solution 1 : Use the Page Table We could walk the page table on every memory access Result: every load or store requires an additional 3-4 loads to walk the page table. Unacceptable performance hit. 15

23 Solution 2: TLBs We have a large pile of data (i.e., the page table) and we want to access it very quickly (i.e., in one clock cycle) So, build a cache for the page mapping, but call it a translation lookaside buffer or TLB 16

24 TLBs TLBs are small (maybe 128 entries), highlyassociative (often fully-associative) caches for page table entries. This raises the possibility of a TLB miss, which can be expensive To make them cheaper, there are hardware page table walkers -- specialized state machines that can load page table entries into the TLB without OS intervention This means that the page table format is now part of the big-a architecture. Typically, the OS can disable the walker and implement its own format. 17

25 Solution 3: Defer translating Accesses If we translate before we go to the cache, we have a physically cache, since cache works on physical addresses. Critical path = TLB access time + Cache access time CPU VA TLB Physical Cache PA Primary Memory Alternately, we could translate after the cache Translation is only required on a miss. This is a virtual cache VA CPU Virtual Cache TLB PA Primary Memory 18

26 The Danger Of Virtual Caches (1) Process A is running. It issues a memory request to address 0x10000 It is a miss, and is brought into the virtual cache A context switch occurs Process B starts running. It issues a request to 0x10000 Will B get the right data? 19

27 The Danger Of Virtual Caches (1) Process A is running. It issues a memory request to address 0x10000 It is a miss, and is brought into the virtual cache A context switch occurs Process B starts running. It issues a request to 0x10000 Will B get the right data? No! We must flush virtual caches on a context switch. 19

28 The Danger Of Virtual Caches (2) There is no rule that says that each virtual address maps to a different physical address. When this occurs, it is called aliasing Example: An alias exists in the cache 0x1000 Page Table 0xfff0000 Address 0x1000 Cache Data A 0x2000 0xfff0000 0x2000 A Store B to 0x1000 Page Table 0x1000 0xfff0000 Cache Address Data 0x1000 B 0x2000 0xfff0000 Now, a load from 0x2000 will return the wrong value 0x2000 A 20

29 The Danger Of Virtual Caches (2) There is no rule that says that each virtual address maps to a different physical address. Copy on write: char * A char * A Virtual address space Physical address space Virtual address space Physical address space My Big Data By Big Empty Buffer memcpy(a, B, ) My Big Data char * B; char * B; My Empty Buffer My Big Data memcpy(a, B, ) Unwriteable copy My Big Data The initial copy is free, and the OS will catch attempts to write to the copy, and do the actual copy lazily. There are also system calls that let you do this arbitrarily. 21

30 The Danger Of Virtual Caches (2) There is no rule that says that each virtual address maps to a different physical address. Copy on write: char * A char * A Two virtual addresses pointing the same physical address Virtual address space Physical address space Virtual address space Physical address space My Big Data By Big Empty Buffer memcpy(a, B, ) My Big Data char * B; char * B; My Empty Buffer My Big Data memcpy(a, B, ) Unwriteable copy My Big Data The initial copy is free, and the OS will catch attempts to write to the copy, and do the actual copy lazily. There are also system calls that let you do this arbitrarily. 21

31 Avoiding Aliases If the system has virtual caches, the operating system must prevent alias from occurring. This means that any addresses that may alias must map to the same cache index. If VA1 and VA2 are aliases, VA1 mod (cache size) == VA2 mod (cache size) 22

32 Solution (4): Virtually indexed physically tagged VA key idea: page offset bits are not translated and thus can be presented to the cache immediately VPN L = C-b b Virtual Index PA TLB PPN P Page Offset Direct-map Cache Size 2 C = 2 L+b Tag hit? = Physical Tag Data Index L is available without consulting the TLB cache and TLB accesses can begin simultaneously Critical path = max(cache time, TLB time)!!! Tag comparison is made after both accesses are completed Work if Cache Size Page Size ( C P) because then all the cache inputs do not need to be translated Adapted from Arvind and Krste s MIT Course Fall 05

33 Avoiding Aliasing in Large Caches The restrictions on cache size might be too painful. In this case, we need another mechanism to avoid aliasing. 24

34 Anti-Aliasing Using Inclusive L2: MIPS R10000-style Once again, ensure the invariant that only one copy of physical address is in virtually-addressed L1 cache at any one time. The physically-addressed L2, which includes contents of L1, contains the missing virtual address bits that identify the location of the item in the L1. VA VPN a Page Offset b TLB into L2 tag Virtual Index L1 VA cache VA 1 PPN a Data VA 2 PPN a Data PA PPN Page Offset b Tag PPN = hit? Suppose VA1 and VA2 both map to PA and VA1 is already in L1, L2 (VA1 VA2) After VA2 is resolved to PA, a collision will be detected in L2 because the a 1 bits don t match. VA1 will be purged from L1 and L2, and VA2 will be loaded no aliasing! PA a 1 Data Direct-Mapped PA L2 (could be associative too, just need to check more entries) Adapted from Arvind and Krste s MIT Course Fall 05

35 In the Real World L1 caches are virtually indexed, physically tagged. Lower levels are pure physical Once you go physical, it is not possible (or desirable) to go back. 26

36 Adapted from Arvind and Krste s MIT Course Fall 05 Power PC: Hashed Page Table VPN d 80-bit VA Offset hash + PA of Slot Page Table VPN PPN VPN Base of Table Each hash table slot has 8 PTE's <VPN,PPN> that are searched sequentially If the first hash slot fails, an alternate hash function is used to look in another slot ( rehashing ) All these steps are done in hardware! Hashed Table is typically 2 to 3 times larger than the number of physical pages The full backup Page Table is a software data structure Primary Memory

37 Page table with pages on disk Virtual Address p1 p2 offset 0 10-bit L1 index Root of the Current Page Table 10-bit L2 index p2 offset p1 (Processor Register) Level 1 Page Table page in primary memory page on disk PTE of a nonexistent page Level 2 Page Tables Data Pages

38 The TLB With Disk TLB entries always point to memory, not disks 29

39 The Value of Paging Disk are really really slow. Paging is not very useful for expanding the active memory capacity of a system It s good for coarse grain context switching between apps And for dealing with memory leaks ;-) As a result, fast systems don t page. 30

40 The Future of Paging Non-volatile, solid-state memories significantly alter the trade-offs for paging. NAND-based SSDs can be between x faster than disk Is paging viable now? In what circumstances? 31

41 Other uses for VM VM provides us a mechanism for adding meta data to different regions of memory. The primary piece of meta data is the location of the data in physical ram. But we can support other bits of information as well 32

42 Other uses for VM VM provides us a mechanism for adding meta data to different regions of memory. The primary piece of meta data is the location of the data in physical ram. But we can support other bits of information as well Backing memory to disk next slide Protection Pages can be readable, writable, or executable Pages can be cachable or un-cachable Pages can be write-through or write back. Other tricks Arrays bounds checking Copy on write, etc. 33

43 Heterogeneous Memory VA space 1 VA space 2 Fast/non-dense/volatile memory Buffer cache Slower/denser/non-volatile memory Physical Address Space Really slow, really dense (Disk/SSD) VM is responsible for combining different types of data into a single, coherent interface. 34

44 Universal Memory Fast (as DRAM), dense (as flash or better), nonvolatile (as disk), reliable (as DRAM and disk), addressable (like DRAM) UM has wide-ranging systems implications Disks as fast as dram Change the file system OS overhead will now dominate accesses Potentially blurred line between volatile and non-volatile state Disk looks like DRAM. Shouldn t we access it like DRAM (i.e., using loads and stores)? Need permanent naming, protection (FS are good at this) Allocation in FS is very expensive. What are the semantics of a non-volatile data structure? Probably need language support. 35

45 Non-volatile Data Structures If non-volatile storage is byte addressable, we can apply everything we know about data structures, etc. to non-volatile data No more serialization Radically redesigned databases (Tables are built for disks) Reuse the tried-and-true programming models we use for volatile data. New problems How do you deal with power failure in this model? Transactions Do you have to trust user code? No. Use the FS to manage the namespace, the TLB to enforce protection. The common case is access. The other stuff can be slower. 36

Learning to Play Well With Others

Learning to Play Well With Others Virtual Memory 1 Learning to Play Well With Others (Physical) Memory 0x10000 (64KB) 0x00000 Learning to Play Well With Others malloc(0x20000) (Physical) Memory 0x10000 (64KB) 0x00000 Learning to Play Well

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Lecture 9 - Virtual Memory

Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches CS 152 Computer Architecture and Engineering Lecture 11 - Virtual Memory and Caches Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 17: Virtual Memory and Caches

CS252 Spring 2017 Graduate Computer Architecture. Lecture 17: Virtual Memory and Caches CS252 Spring 2017 Graduate Computer Architecture Lecture 17: Virtual Memory and Caches Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture 16 Memory

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 9, 2015

More information

Modern Virtual Memory Systems. Modern Virtual Memory Systems

Modern Virtual Memory Systems. Modern Virtual Memory Systems 6.823, L12--1 Modern Virtual Systems Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 6.823, L12--2 Modern Virtual Systems illusion of a large, private, uniform store Protection

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

Memory: Page Table Structure. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Memory: Page Table Structure. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Memory: Page Table Structure CSSE 332 Operating Systems Rose-Hulman Institute of Technology General address transla+on CPU virtual address data cache MMU Physical address Global memory Memory management

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Architecture Spring 2004 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture 18: Virtual Memory Lecture Outline Review of Main Memory Virtual Memory Simple Interleaving Cycle

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Lecture 9 Virtual Memory

Lecture 9 Virtual Memory CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 9 Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation CS 152 Computer Architecture and Engineering Lecture 8 - Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation CS 152 Computer Architecture and Engineering Lecture 8 - Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Memory Hierarchy. Mehran Rezaei

Memory Hierarchy. Mehran Rezaei Memory Hierarchy Mehran Rezaei What types of memory do we have? Registers Cache (Static RAM) Main Memory (Dynamic RAM) Disk (Magnetic Disk) Option : Build It Out of Fast SRAM About 5- ns access Decoders

More information

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Virtual Memory CS 3410 Computer System Organization & Programming [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Click any letter let me know you re here today. Instead of a DJ Clicker Question today,

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

CS162 - Operating Systems and Systems Programming. Address Translation => Paging"

CS162 - Operating Systems and Systems Programming. Address Translation => Paging CS162 - Operating Systems and Systems Programming Address Translation => Paging" David E. Culler! http://cs162.eecs.berkeley.edu/! Lecture #15! Oct 3, 2014!! Reading: A&D 8.1-2, 8.3.1. 9.7 HW 3 out (due

More information

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays. CSE420 Virtual Memory Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) Virtual Memory Virtual memory first used to relive programmers from the burden

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda Virtual Memory Paged Physical Memory Swap Space Page Faults

More information

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University Virtual addresses Virtual memory addresses (what the process uses) Page

More information

Reducing Hit Times. Critical Influence on cycle-time or CPI. small is always faster and can be put on chip

Reducing Hit Times. Critical Influence on cycle-time or CPI. small is always faster and can be put on chip Reducing Hit Times Critical Influence on cycle-time or CPI Keep L1 small and simple small is always faster and can be put on chip interesting compromise is to keep the tags on chip and the block data off

More information

Virtual Memory. Motivation:

Virtual Memory. Motivation: Virtual Memory Motivation:! Each process would like to see its own, full, address space! Clearly impossible to provide full physical memory for all processes! Processes may define a large address space

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Views of Memory. Real machines have limited amounts of memory. Programmer doesn t want to be bothered. 640KB? A few GB? (This laptop = 2GB)

Views of Memory. Real machines have limited amounts of memory. Programmer doesn t want to be bothered. 640KB? A few GB? (This laptop = 2GB) CS6290 Memory Views of Memory Real machines have limited amounts of memory 640KB? A few GB? (This laptop = 2GB) Programmer doesn t want to be bothered Do you think, oh, this computer only has 128MB so

More information

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name:

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name: Computer Architecture and Engineering CS152 Quiz #3 March 18th, 2008 Professor Krste Asanovic Name: Notes: This is a closed book, closed notes exam. 80 Minutes 10 Pages Not all questions are of equal difficulty,

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 13: Virtual Memory Management CSC 469H1F Fall 2006 Angela Demke Brown Topics Review virtual memory basics Large (64-bit) virtual address spaces Multiple Page Sizes Placement policy and cache effects

More information

VIRTUAL MEMORY II. Jo, Heeseung

VIRTUAL MEMORY II. Jo, Heeseung VIRTUAL MEMORY II Jo, Heeseung TODAY'S TOPICS How to reduce the size of page tables? How to reduce the time for address translation? 2 PAGE TABLES Space overhead of page tables The size of the page table

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 1 Agenda Virtual Memory Paged Physical Memory Swap Space

More information

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources.

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Virtual Memory Stefanos Kaxiras Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Caches Review & Intro Intended to make the slow main memory look fast by

More information

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Address Translation Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to reduce the size of page tables? How to reduce the time for

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 12

ECE 571 Advanced Microprocessor-Based Design Lecture 12 ECE 571 Advanced Microprocessor-Based Design Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 March 2018 HW#6 will be posted Project will be coming up Announcements

More information

Main Memory (Fig. 7.13) Main Memory

Main Memory (Fig. 7.13) Main Memory Main Memory (Fig. 7.13) CPU CPU CPU Cache Multiplexor Cache Cache Bus Bus Bus Memory Memory bank 0 Memory bank 1 Memory bank 2 Memory bank 3 Memory b. Wide memory organization c. Interleaved memory organization

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner CPS104 Computer Organization and Programming Lecture 16: Virtual Memory Robert Wagner cps 104 VM.1 RW Fall 2000 Outline of Today s Lecture Virtual Memory. Paged virtual memory. Virtual to Physical translation:

More information

EN1640: Design of Computing Systems Topic 06: Memory System

EN1640: Design of Computing Systems Topic 06: Memory System EN164: Design of Computing Systems Topic 6: Memory System Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University Spring

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

CPS 104 Computer Organization and Programming Lecture 20: Virtual Memory

CPS 104 Computer Organization and Programming Lecture 20: Virtual Memory CPS 104 Computer Organization and Programming Lecture 20: Virtual Nov. 10, 1999 Dietolf (Dee) Ramm http://www.cs.duke.edu/~dr/cps104.html CPS 104 Lecture 20.1 Outline of Today s Lecture O Virtual. 6 Paged

More information

Cache Architectures Design of Digital Circuits 217 Srdjan Capkun Onur Mutlu http://www.syssec.ethz.ch/education/digitaltechnik_17 Adapted from Digital Design and Computer Architecture, David Money Harris

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory. Last?me in Lecture 9

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory. Last?me in Lecture 9 CS 152 Computer Architecture and Engineering Lecture 9 - Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste! http://inst.eecs.berkeley.edu/~cs152!

More information

Memory Management. Goals of Memory Management. Mechanism. Policies

Memory Management. Goals of Memory Management. Mechanism. Policies Memory Management Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Memory Management Goals of Memory Management Convenient abstraction for programming

More information

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) Important from last time We re trying to build efficient virtual address spaces Why?? Virtual / physical translation is done by HW and

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch Upon process switch what is updated in order to assist address translation? Contiguous

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Topics: Memory Management (SGG, Chapter 08) 8.1, 8.2, 8.3, 8.5, 8.6 CS 3733 Operating Systems

Topics: Memory Management (SGG, Chapter 08) 8.1, 8.2, 8.3, 8.5, 8.6 CS 3733 Operating Systems Topics: Memory Management (SGG, Chapter 08) 8.1, 8.2, 8.3, 8.5, 8.6 CS 3733 Operating Systems Instructor: Dr. Turgay Korkmaz Department Computer Science The University of Texas at San Antonio Office: NPB

More information

Lecture 21: Virtual Memory. Spring 2018 Jason Tang

Lecture 21: Virtual Memory. Spring 2018 Jason Tang Lecture 21: Virtual Memory Spring 2018 Jason Tang 1 Topics Virtual addressing Page tables Translation lookaside buffer 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Computer Systems Architecture I. CSE 560M Lecture 18 Guest Lecturer: Shakir James

Computer Systems Architecture I. CSE 560M Lecture 18 Guest Lecturer: Shakir James Computer Systems Architecture I CSE 560M Lecture 18 Guest Lecturer: Shakir James Plan for Today Announcements No class meeting on Monday, meet in project groups Project demos < 2 weeks, Nov 23 rd Questions

More information

Computer Structure. X86 Virtual Memory and TLB

Computer Structure. X86 Virtual Memory and TLB Computer Structure X86 Virtual Memory and TLB Franck Sala Slides from Lihu and Adi s Lecture 1 Virtual Memory Provides the illusion of a large memory Different machines have different amount of physical

More information

Topic 18 (updated): Virtual Memory

Topic 18 (updated): Virtual Memory Topic 18 (updated): Virtual Memory COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Virtual Memory Any time you see virtual, think using a level

More information

ECE 598 Advanced Operating Systems Lecture 14

ECE 598 Advanced Operating Systems Lecture 14 ECE 598 Advanced Operating Systems Lecture 14 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 22 March 2016 Announcements 1 Got a Pi3 over break Pi3 Notes Very impressive performance,

More information

Introduction to Paging

Introduction to Paging Introduction to Paging COMS W4118 References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright notice: care has been taken to use only those web images deemed by the

More information

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont Lecture 16 Virtual Memory Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, and

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements CS 61C: Great Ideas in Computer Architecture Virtual II Guest Lecturer: Justin Hsia Agenda Review of Last Lecture Goals of Virtual Page Tables Translation Lookaside Buffer (TLB) Administrivia VM Performance

More information

Chapter 8 Virtual Memory

Chapter 8 Virtual Memory Chapter 8 Virtual Memory Digital Design and Computer Architecture: ARM Edi*on Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edi>on 215 Chapter 8 Chapter 8 ::

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

Virtual Memory Fall /19/0. L21 Virtual Memory 1

Virtual Memory Fall /19/0. L21 Virtual Memory 1 Virtual Memory L21 Virtual Memory 1 Lessons from History There is only one mistake that can be made in computer design that is difficult to recover from not having enough address bits for memory addressing

More information

Virtual Memory 3. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4

Virtual Memory 3. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4 Virtual Memory 3 Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter 5.4 Project3 available now Administrivia Design Doc due next week, Monday, April 16 th Schedule

More information

Virtual Memory Overview

Virtual Memory Overview Virtual Memory Overview Virtual address (VA): What your program uses Virtual Page Number Page Offset Physical address (PA): What actually determines where in memory to go Physical Page Number Page Offset

More information

Memory hier ar hier ch ar y ch rev re i v e i w e ECE 154B Dmitri Struko Struk v o

Memory hier ar hier ch ar y ch rev re i v e i w e ECE 154B Dmitri Struko Struk v o Memory hierarchy review ECE 154B Dmitri Strukov Outline Cache motivation Cache basics Opteron example Cache performance Six basic optimizations Virtual memory Processor DRAM gap (latency) Four issue superscalar

More information

Spring 2016 :: CSE 502 Computer Architecture. Caches. Nima Honarmand

Spring 2016 :: CSE 502 Computer Architecture. Caches. Nima Honarmand Caches Nima Honarmand Motivation 10000 Performance 1000 100 10 Processor Memory 1 1985 1990 1995 2000 2005 2010 Want memory to appear: As fast as CPU As large as required by all of the running applications

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Virtual memory Paging

Virtual memory Paging Virtual memory Paging M1 MOSIG Operating System Design Renaud Lachaize Acknowledgments Many ideas and slides in these lectures were inspired by or even borrowed from the work of others: Arnaud Legrand,

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

Virtual Memory: Mechanisms. CS439: Principles of Computer Systems February 28, 2018

Virtual Memory: Mechanisms. CS439: Principles of Computer Systems February 28, 2018 Virtual Memory: Mechanisms CS439: Principles of Computer Systems February 28, 2018 Last Time Physical addresses in physical memory Virtual/logical addresses in process address space Relocation Algorithms

More information

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis Multi-level Translation CS 57 Lecture 9 Paging Michael Swift Problem: what if you have a sparse address space e.g. out of GB, you use MB spread out need one PTE per page in virtual address space bit AS

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 13

ECE 571 Advanced Microprocessor-Based Design Lecture 13 ECE 571 Advanced Microprocessor-Based Design Lecture 13 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 March 2017 Announcements More on HW#6 When ask for reasons why cache

More information

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck Main memory management CMSC 411 Computer Systems Architecture Lecture 16 Memory Hierarchy 3 (Main Memory & Memory) Questions: How big should main memory be? How to handle reads and writes? How to find

More information

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18 PROCESS VIRTUAL MEMORY CS124 Operating Systems Winter 2015-2016, Lecture 18 2 Programs and Memory Programs perform many interactions with memory Accessing variables stored at specific memory locations

More information

EN1640: Design of Computing Systems Topic 06: Memory System

EN1640: Design of Computing Systems Topic 06: Memory System EN164: Design of Computing Systems Topic 6: Memory System Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University Spring

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Virtual Memory - Objectives

Virtual Memory - Objectives ECE232: Hardware Organization and Design Part 16: Virtual Memory Chapter 7 http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy Virtual Memory - Objectives

More information

Virtual Memory. Study Chapters something I understand. Finally! A lecture on PAGE FAULTS! doing NAND gates. I wish we were still

Virtual Memory. Study Chapters something I understand. Finally! A lecture on PAGE FAULTS! doing NAND gates. I wish we were still Virtual Memory I wish we were still doing NAND gates Study Chapters 7.4-7.8 Finally! A lecture on something I understand PAGE FAULTS! L23 Virtual Memory 1 You can never be too rich, too good looking, or

More information

238P: Operating Systems. Lecture 5: Address translation. Anton Burtsev January, 2018

238P: Operating Systems. Lecture 5: Address translation. Anton Burtsev January, 2018 238P: Operating Systems Lecture 5: Address translation Anton Burtsev January, 2018 Two programs one memory Very much like car sharing What are we aiming for? Illusion of a private address space Identical

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

Memory hierarchy review. ECE 154B Dmitri Strukov

Memory hierarchy review. ECE 154B Dmitri Strukov Memory hierarchy review ECE 154B Dmitri Strukov Outline Cache motivation Cache basics Six basic optimizations Virtual memory Cache performance Opteron example Processor-DRAM gap in latency Q1. How to deal

More information

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance 6.823, L11--1 Cache Performance and Memory Management: From Absolute Addresses to Demand Paging Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Performance 6.823,

More information

CS 537 Lecture 6 Fast Translation - TLBs

CS 537 Lecture 6 Fast Translation - TLBs CS 537 Lecture 6 Fast Translation - TLBs Michael Swift 9/26/7 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift Faster with TLBS Questions answered in this lecture: Review

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information