Analog and Telecommunication Electronics

Size: px
Start display at page:

Download "Analog and Telecommunication Electronics"

Transcription

1 Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 23/05/ ATLCE - F DDC 2014 DDC 1

2 Lesson F2: active power devices Device structure, models, parameters MOS BJT Other devices: IGBT, SCR, TRIAC Operating limits Safe Operating Area Power dissipation Thermal analysis References: Any text on electronic devices and basic circuits 23/05/ ATLCE - F DDC 2014 DDC 2

3 Power BJT devices Fundamental relation: Ic= β Ib Most relevant parameters for power applications: Vcebr C-E breakdown voltage Icmax max collector current β current gain (lower with high currents) Vcesat C-E voltage drop in saturation I c Thermal parameters» Max power, Thermal resistance Use vertical technology More current in the same area (higher density) I b V be V ce 23/05/ ATLCE - F DDC 2014 DDC 3

4 Vertical power BJT structure Low doping in base region Wide depletion layer, high brk voltage Low current gain (5 20) High transit time Ft < 10 MHz B E n p 10^16 n 10^14 Primary breakdown Avalanche in the BC junction Secondary breakdown High current in small area (same problem as diodes)» Multiple small devices with current sharing Critical region is near saturation: High current, voltage drop high power dissipation Need to get deep saturation (problem: low β) n+ 10^19 C 23/05/ ATLCE - F DDC 2014 DDC 4

5 BJT models Ebers-Moll model for BJT Simplified models (active region) BE diode + Ic source Ic = β Ib Linear models» Hybrid»Gm» 23/05/ ATLCE - F DDC 2014 DDC 5

6 Switch or amplifier? Use as amplifier Active region Use as switch ON Saturation Use as switch OFF Cutoff 23/05/ ATLCE - F DDC 2014 DDC 6

7 BJT as a switch Operating points are on the load line 23/05/ ATLCE - F DDC 2014 DDC 7

8 BJT operation The current gain β decreases for high currents Need significant driving power Operation is based on minority carriers Slowdynamic behavior Temperature dependence To increase BVceo, base region long and lightly doped Higher ε Reduced E field Higher recombination probability Lower current gain High voltage devices have low current gain 23/05/ ATLCE - F DDC 2014 DDC 8

9 Saturation model for BJT V source Vcesat (0.1 V) Series resistor Rcesat (few ohms) Lower Vcesat with C-E inversion (lower β) 23/05/ ATLCE - F DDC 2014 DDC 9

10 Critical saturation parameters Low current gain (5 20) Critical region: Near saturation, high Ic, residual Vce High power dissipation Design solution Guarantee deep saturation (high Ib drive) Use Darlington (or similar) connections» Higher current gain (and Vbe!)» Single integrated structure» Npn-npn» Npn-pnp 23/05/ ATLCE - F DDC 2014 DDC 10

11 Cutoff model for BJT Ib = 0 Ic = 0 (ideal) BC junction leakage current: Icbo If base open, enters as Ib, causing Iceo = β Icbo Iceo causes power dissipation Temperature rise higher leakage current further temperature rise Thermal runaway Steer Icbo away from Base R to GND Reverse bias BE (without breakdown!) Avoid high current density areas (hot spot) Multiple devices, with current partition 23/05/ ATLCE - F DDC 2014 DDC 11

12 Power MOS-FET Planar structure Low power devices Current and breakdown voltage ratings function of the channel W & L. Curr. flow Vertical structure Voltage rating function of doping and thickness of N-epitaxial layer (vertical) Current rating is a function of the channel W & L A vertical structure can sustain both high V & I 23/05/ ATLCE - F DDC 2014 DDC 12

13 MOS-FET parasitics The vertical structure creates a pn junction from body (S) to substrate (D) S G D Current can always flow from S to D A 1-quadrant switch 4-quadrant requires at least two MOS 23/05/ ATLCE - F DDC 2014 DDC 13

14 MOS-FET parasitics The vertical structure creates also a parasitic BJT D G S 23/05/ ATLCE - F DDC 2014 DDC 14

15 MOS-FET parameters Basic parameters: Vdsbr D-S Breakdown voltage Idmax Max Drain current Vgsth Threshold voltage Rdson ON equivalent resistance Qg total charge injected into the Gate (for a given Vgs) Pd max power dissipation A power transistor may consist of several cells (thousands) Power MOS DMOS,. (double-diffused metal oxide semiconductor) Power MOSFETs are made using this technology 23/05/ ATLCE - F DDC 2014 DDC 15

16 MOS-FET model Model depends on operating point Low Vgs (subthreshold):» Exponential Medium Vgs:» Square law High Vgs:» linear Figure Typical i D v GS characteristic for a power MOSFET. 23/05/ ATLCE - F DDC 2014 DDC 16

17 MOS-FET output characteristic Warning! Saturation in MOS has a different meaning (called active region in BJT) 23/05/ ATLCE - F DDC 2014 DDC 17

18 MOS-FET switching models ON: Equivalent resistance Ron OFF: Leakage current Ioff Dynamic GS capacitance DS capacitance Parasitic towards substrate 23/05/ ATLCE - F DDC 2014 DDC 18

19 MOS-FET gate charge Before threshold (Vth): Id = 0 Charge Cgs Active region Id > 0 Voltage gain G to D Miller effect on Cgd capacitance multiply Saturation Charge Cgd Verify in lab experiment 23/05/ ATLCE - F DDC 2014 DDC 19

20 MOS-FET vs BJT MOS-FET use majority carriers High switching speed Reduced temperature dependence MOSFET use simpler driving circuit The Gate represents a plate of a capacitor (towards GND); no current after first charging step, but Fast switching circuits able to drive a high-capacitance load ON state BJT modeled as Vcesat (+Ron) MOS modeled as Ron OFF state: both modeled as current source (leakage) 23/05/ ATLCE - F DDC 2014 DDC 20

21 Four-layer devices Transistors have limitations in switching high currents at high voltages Other devices are specifically designed for such applications: four-layer devices Specific physical structure Can be used only as switches (not for linear amplifiers) A great deal in common with bipolar transistors SCR/Tyristor TRIAC/DIAC 23/05/ ATLCE - F DDC 2014 DDC 21

22 4-layer device operation Circuit with two interconnected BJTs Turning on T2 provides Ic2 as Ib1 to T1, and Ic1 as Ib2. Both devices conducts until the current goes to zero. The two BJTs can be built as a single 4-layer device Tyristor or Silicon Controlled Rectifier (SCR) 23/05/ ATLCE - F DDC 2014 DDC 22

23 SCR in CMOS logic circuits SCR structure intrinsic in CMOS ICs Responsible for latch up Triggered by Input levels out of GND-Vcc range High energy particles pmosfet nmosfet V G DD G S D D S V SS p+ p+ n+ n+ n+ p+ n-substrate T1 p-well T2 23/05/ ATLCE - F DDC 2014 DDC 23

24 The thyristor Four-layer device with a pnpn structure Three terminals: anode, cathode and gate Gate is the control input. Power flow between Anode and Cathode 23/05/ ATLCE - F DDC 2014 DDC 24

25 Thyristor in AC power control Triggered ON by a pulse on the Gate Stays ON as long as V > 0 (remainder of the half cycle) Returns OFF when V = 0 Varying firing time changes output power Single-wave allows control from 0 50% of full power 23/05/ ATLCE - F DDC 2014 DDC 25

26 The Triac and the Diac A bidirectional thyristor Allows full-wave control using a single device Often used with a diac: bidirectional trigger diode to produce the gate drive pulses The DIAC breaks down at a particular voltage and fires the triac 23/05/ ATLCE - F DDC 2014 DDC 26

27 A simple lamp-dimmer using a triac Current pulse to fire the Triac Phase shift network. Provides trigger voltage for Diac 23/05/ ATLCE - F DDC 2014 DDC 27

28 IGBT The Insulated Gate Bipolar Transistor or IGBT combines bipolar and MOS devices MOSFET gate-drive + high Ic and low Vcesat of BJT isolated gate FET for the control input, bipolar power transistor as a switch, in a single device combines high efficiency and fast switching. Used in medium- to high-power applications switching power supply, motor control, induction heating, Large IGBT modules (many devices in parallel), can handle» high current k 100 A» High voltages k 1000 V. 23/05/ ATLCE - F DDC 2014 DDC 28

29 IGBT structure 23/05/ ATLCE - F DDC 2014 DDC 29

30 IGBT characteristic 23/05/ ATLCE - F DDC 2014 DDC 30

31 Lesson F2: active power devices Device structure, models, parameters MOS BJT Operating regions Other devices: IGBT, SCR, TRIAC Operating limits Safe Operating Area Power dissipation Thermal model 23/05/ ATLCE - F DDC 2014 DDC 31

32 Operating limits (any device) Breakdown voltage If higher, insulating layers are broken Max current If higher, wires or conducting paths can melt Max power Power dissipation causes temperature rise (see max temp.) Max temperature Doping distribution is modified changes in parameters Silicon or metal can melt Special application parameters Radiation in space,. 23/05/ ATLCE - F DDC 2014 DDC 32

33 Safe Operating Area Any electronic devices can handle limited power, voltage, current For active devices, the region of acceptable V,I is the Safe Operating Area (SOA), defined by Powerlimit (V x I > Pdmax)» Excess power cause temperature rise, with melting» Secondary breakdown: local heating and thermal runaway Voltage (V < Vbrk)» Excess voltage causes breakdown and insulator perforation Current (I < Imax)» Excess current cause heating and metal evaporation 23/05/ ATLCE - F DDC 2014 DDC 33

34 Safe Operating Area boundaries (BJT) Too high current Too high V x I (power) - not uniform current flow - high local power dissipation Active & Safe Operating Area (SOA) Too high voltage 23/05/ ATLCE - F DDC 2014 DDC 34

35 SOA for BJT (TIP31) Includes dynamic behavior Pdmax depends on pulse Duty Cycle Log axis I x V = K (straight line) V CE = 5V Saturation not in this diagram 23/05/ ATLCE - F DDC 2014 DDC 35

36 SOA for MOS (IRF640) Dynamic behavior Log axis No secondary breakdown Id limited by Rds 23/05/ ATLCE - F DDC 2014 DDC 36

37 Power dissipation All electric devices dissipate a power Pd = V I Power dissipation increases temperature Any device has temperature limits, therefore power limits The effects of power dissipation can be modeled using thermal equivalent circuits Power current Temperature node voltage Heat conduction capability thermal resistance θr ( /W) Diode/MOS/BJT power dissipated on the junctions Heat must be brought outside, through a path including» Junction-case defined by manufacturer» Case-ambient controlled using heat sinks 23/05/ ATLCE - F DDC 2014 DDC 37

38 Power derating Manufacturers specify Max power dissipation Pdmax Max junction operating temperature Tjmax Power dissipation causes temperature rise Allowed power dissipation decreases with Ta Ta = Tjmax Pd = 0 23/05/ ATLCE - F DDC 2014 DDC 38

39 Evaluation of temperature rise Electric network model for thermal behaviour Thermal parameter electric model Power Pd current source Temperature T node voltage Heat conduction θ thermal resistance θr ( /W) Electric equivalent circuit Tj Ta = Pd θja 23/05/ ATLCE - F DDC 2014 DDC 39

40 From junction to ambient The thermal path from junctin to ambient consists of: Junction-Case: θ JC» Thermal resistance defined by the package Case-heatsink: θ CS» Case and fixture Heatsink-ambient: θ SA» Heatsink and operating condition (air flow) Designer can control θ CS and θ SA, and select θ JC 23/05/ ATLCE - F DDC 2014 DDC 40

41 Thermal specification Power devices specified for No heatsink, Ta specified, Tc? infinite heatsink, Tc = Ta Example datasheet TIP31 23/05/ ATLCE - F DDC 2014 DDC 41

42 Power BJT datasheet (TIP31) 23/05/ ATLCE - F DDC 2014 DDC 42

43 Power MOS datasheet IRF640 23/05/ ATLCE - F DDC 2014 DDC 43

44 Heatsink datasheet example 23/05/ ATLCE - F DDC 2014 DDC 44

45 Dynamic thermal response 23/05/ ATLCE - F DDC 2014 DDC 45

46 Lesson F2: summary Describe the structure of BJT and MOS power transistors. Plot output V(I) characteristic of a MOS or BJT power device, and identify the different operating regions. What is secondary breakdown? Draw a model for power BJT. Describe differences between low and high power MOS-FETs. Which parameters defines the boundary of SOA? How can we evaluate the actual temperature of a power semiconductor junction? Define the infinite heatsink concept. 23/05/ ATLCE - F DDC 2014 DDC 46

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis AY 2015-16 26/04/2016-1

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F4 - Actuator driving» Driving BJT switches» Driving MOS-FET» SOA and protection» Smart switches 30/05/2014-1 ATLCE - F4-2011

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics F1 - Power devices: diodes» Switches» pn Junction» Diode models» Dynamic behavior» Zener diodes AY 2015-16 26/04/2016-1

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I QUESTION BANK 2017 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Basic Electronic Devices (16EC401) Year

More information

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE QUESTION BANK- EDC SEMESTER - III UNIT I : SEMICONDUCTOR DIODS PART A

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE QUESTION BANK- EDC SEMESTER - III UNIT I : SEMICONDUCTOR DIODS PART A RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE QUESTION BANK- EDC SEMESTER - III UNIT I : SEMICONDUCTOR DIODS 1. Define Electronics. 2. What is meant by forbidden energy gap. 3. Classify

More information

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING QUESTION BANK EE T34 - Electronic Devices and Circuits II YEAR / III SEMESTER RGCET 1 UNIT-I 1. How

More information

Latch-Up. Parasitic Bipolar Transistors

Latch-Up. Parasitic Bipolar Transistors Latch-Up LATCH-UP CIRCUIT Latch-up is caused by an SCR (Silicon Controlled Rectifier) circuit. Fabrication of CMOS integrated circuits with bulk silicon processing creates a parasitic SCR structure. The

More information

Page 1 ATLCE - G2 17/06/2013. Analog and Telecommunication Electronics 2013 DDC 1. Politecnico di Torino - ICT School

Page 1 ATLCE - G2 17/06/2013. Analog and Telecommunication Electronics 2013 DDC 1. Politecnico di Torino - ICT School Politecnico di Torino - CT School Lesson G2: Linear voltage regulators Analog and Telecommunication Electronics G2 - Linear voltage regulators» Shunt regulators» Series regulator» ntegrated regulators»ldo

More information

Power IC 용 ESD 보호기술. 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea

Power IC 용 ESD 보호기술. 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea Power IC 용 ESD 보호기술 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea yskoo@dankook.ac.kr 031-8005-3625 Outline Introduction Basic Concept of ESD Protection Circuit ESD Technology Issue

More information

ESD 충북대학교 전자정보대학 김영석

ESD 충북대학교 전자정보대학 김영석 ESD 충북대학교 2011.9 1 ElectroStatic Charge Generation When 2 Surfaces in Contact then Separate Some Atom Electrons Move Causing Imbalance One Surface Has Positive Charge & One Surface Has Negative Charge

More information

Understanding Solid-state relays

Understanding Solid-state relays Understanding Solid-state relays Automation.com, August 2009 By TJ Landrum, Product Manager, Eaton Solid-state relays (SSR) are able to perform many of the same tasks as electromechanical relay (EMR)s.

More information

Modeling of High Voltage Devices for ESD Event Simulation in SPICE

Modeling of High Voltage Devices for ESD Event Simulation in SPICE The World Leader in High Performance Signal Processing Solutions Modeling of High Voltage Devices for ESD Event Simulation in SPICE Yuanzhong (Paul) Zhou, Javier A. Salcedo Jean-Jacques Hajjar Analog Devices

More information

Single Channel Protector in a SOT-23 Package and a MSOP Package ADG465

Single Channel Protector in a SOT-23 Package and a MSOP Package ADG465 Data Sheet Single Channel Protector in a SOT-23 Package and a MSOP Package FEATURES Fault and overvoltage protection up to ±40 V Signal paths open circuit with power off Signal path resistance of RON with

More information

ESD Protection Circuits: Basics to nano-metric ASICs

ESD Protection Circuits: Basics to nano-metric ASICs ESD Protection Circuits: Basics to nano-metric ASICs Manoj Sachdev University of Waterloo msachdev@ece.uwaterloo.ca September 2007 1 Outline Group Introduction ESD Basics Basic ESD Protection Circuits

More information

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 TABLE OF CONTENTS 1.0 PURPOSE... 1 2.0 INTRODUCTION... 1 3.0 ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 3.1 PRODUCT DEFINITION PHASE... 3 3.2 CHIP ARCHITECTURE PHASE... 4 3.3 MODULE AND FULL IC DESIGN PHASE...

More information

Super E-Line Applications in Automotive Electronics Replacement of Large Packaged Transistors with an Enhanced TO92 Product David Bradbury

Super E-Line Applications in Automotive Electronics Replacement of Large Packaged Transistors with an Enhanced TO92 Product David Bradbury Super E-Line Applications in Automotive Electronics Replacement of Large Packaged Transistors with an Enhanced TO92 Product David Bradbury Car buyers are now demanding greater and greater sophistication

More information

ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits

ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits Recent Patents on Engineering 2007, 1, 000-000 1 ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits Ming-Dou Ker* and Yuan-Wen

More information

NPN GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT MAXIMUM RATINGS (TA = 25 C) DEVICE MARKING THERMAL CHARACTERISTICS

NPN GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT MAXIMUM RATINGS (TA = 25 C) DEVICE MARKING THERMAL CHARACTERISTICS This NPN transistor is designed for general purpose amplifier applications. This device is housed in the SOT-416/SC 90 package which is designed for low power surface mount applications, where board space

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology ELE 455/555 Computer System Engineering Section 1 Review and Foundations Class 3 MOSFETs MOSFET Terminology Metal Oxide Semiconductor Field Effect Transistor 4 terminal device Source, Gate, Drain, Body

More information

DEI1600 SURGE BLOCKING MODULE (SBM)

DEI1600 SURGE BLOCKING MODULE (SBM) Device Engineering Incorporated 385 East Alamo Drive Chandler, AZ 855 Phone: (480) 303-08 Fax: (480) 303-084 E-mail: admin@deiaz.com DEI1600 SURGE BLOCKING MODULE (SBM) FEATURES 1600V bidirectional surge

More information

Fundamentals of Thyristor Overvoltage Circuit Protection

Fundamentals of Thyristor Overvoltage Circuit Protection Fundamentals of Thyristor Overvoltage Circuit Protection Thyristor Surge Protection Technology The Problem of Overvoltages Electronic components have been designed to function properly when used within

More information

Data Sheet IHD 260/660 Dual Channel SCALE IGBT Driver Core

Data Sheet IHD 260/660 Dual Channel SCALE IGBT Driver Core Data Sheet IHD 260/660 Dual Channel SCALE IGBT Driver Core A successor to the IHD 215/280/680 dual-gate driver cores for 1200V and 1700V IGBTs The IHD 260 and IHD 660 (short IHDx60) are highly-integrated

More information

TD62384APG,TD62384AFG TD62385APG,TD62385AFG

TD62384APG,TD62384AFG TD62385APG,TD62385AFG TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC TD62384APG,TD62384AFG TD62385APG,TD62385AFG 8CH LOW INPUT ACTIVE DARLINGTON SINK DRIVER The TD62384APG / AFG and TD62385APG / AFG are non inverting

More information

MP5013A 5 V, 5 A Programmable Current-Limit Switch with Over-Voltage Clamp and Slew-Rate Control in TSOT23-8

MP5013A 5 V, 5 A Programmable Current-Limit Switch with Over-Voltage Clamp and Slew-Rate Control in TSOT23-8 The Future of Analog IC Technology MP5013A 5 V, 5 A Programmable Current-Limit Switch with Over-Voltage Clamp and Slew-Rate Control in TSOT23-8 DESCRIPTION The MP5013A is a protection device designed to

More information

SEMESTER-2 (SYLLABUS)

SEMESTER-2 (SYLLABUS) GOVERNMENT COLLEGE (A) RAJAMAHENDRAVARAM (Affiliated to Adikavi Nannaya University, Rajamahendravaram) CBCS Pattern w.e.f. 2016-17 Admitted Batch ELECTRONICS - SEMESTER-2 (SYLLABUS) PAPER II - ELECTRONIC

More information

ESD Protection Device Simulation and Design

ESD Protection Device Simulation and Design ESD Protection Device Simulation and Design Introduction Electrostatic Discharge (ESD) is one of the major reliability issues in Integrated Circuits today ESD is a high current (1A) short duration (1ns

More information

Integrated Simulation Solution for Advanced Power Devices

Integrated Simulation Solution for Advanced Power Devices Integrated Simulation Solution for Advanced Power Devices Objectives of this Presenation Presentation of simulation results for non-silicon power device types SiC Based Power Devices GaN Based Power Devices

More information

MP5013E 5V, 2A, Programmable Current- Limit Switch with Over-Voltage Clamp and Slew Rate Control in a TSOT23-8

MP5013E 5V, 2A, Programmable Current- Limit Switch with Over-Voltage Clamp and Slew Rate Control in a TSOT23-8 MP5013E 5V, 2A, Programmable Current- Limit Switch with Over-Voltage Clamp and Slew Rate Control in a TSOT23-8 DESCRIPTION The MP5013E is a protection device designed to protect circuitry on the output

More information

Multi-function Tester (TC-V2.12k)

Multi-function Tester (TC-V2.12k) August 2015 Table of Contents 1 Overview... 3 1.1 Introduction... 3 1.2 Features... 3 2 Operating Instructions... 4 2.1 Key operational definitions... 4 2.2 Power on... 5 2.3 Detect transistor... 5 2.4

More information

Lecture 20: Package, Power, and I/O

Lecture 20: Package, Power, and I/O Introduction to CMOS VLSI Design Lecture 20: Package, Power, and I/O David Harris Harvey Mudd College Spring 2004 1 Outline Packaging Power Distribution I/O Synchronization Slide 2 2 Packages Package functions

More information

ESD Protection Design for Mixed-Voltage I/O Interfaces -- Overview

ESD Protection Design for Mixed-Voltage I/O Interfaces -- Overview ESD Protection Design for Mixed-Voltage Interfaces -- Overview Ming-Dou Ker and Kun-Hsien Lin Abstract Electrostatic discharge (ESD) protection design for mixed-voltage interfaces has been one of the key

More information

HM9708 HM9708. Battery-Powered Equipment Motherboard USB Power Switch USB Device Power Switch Hot-Plug Power Supplies Battery-Charger Circuits DC+ VIN

HM9708 HM9708. Battery-Powered Equipment Motherboard USB Power Switch USB Device Power Switch Hot-Plug Power Supplies Battery-Charger Circuits DC+ VIN 200mΩ Power Distribution Switches Features 200mΩ Typ. High-Side MOSFET 0.8A Current Limit (V IN =3.0V) Wide Input Voltage Range: 2V ~ 5.5V Soft Start Thermal Protection Small SOT-23-5 Package Minimizes

More information

TD62382AP,TD62382AF TD62382AP/AF 8CH LOW INPUT ACTIVE SINK DRIVER FEATURES PIN CONNECTION (TOP VIEW) SCHEMATICS (EACH DRIVER)

TD62382AP,TD62382AF TD62382AP/AF 8CH LOW INPUT ACTIVE SINK DRIVER FEATURES PIN CONNECTION (TOP VIEW) SCHEMATICS (EACH DRIVER) TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC TD62382AP,TD62382AF TD62382AP/AF 8CH LOW INPUT ACTIVE SINK DRIVER The TD62382AP / AF are non inverting transistor array which are comprised

More information

Digital Fundamentals. Integrated Circuit Technologies

Digital Fundamentals. Integrated Circuit Technologies Digital Fundamentals Integrated Circuit Technologies 1 Objectives Determine the noise margin of a device from data sheet parameters Calculate the power dissipation of a device Explain how propagation delay

More information

MP5007 5V, 1A- 5A Programmable Current Limit Switch

MP5007 5V, 1A- 5A Programmable Current Limit Switch The Future of Analog IC Technology DESCRIPTION The MP5007 is a protection device designed to protect circuitry on the output (source) from transients on input (V CC ). It also protects V CC from undesired

More information

High-side Power Distribution Switch NCT3521U

High-side Power Distribution Switch NCT3521U High-side Power Distribution Switch NCT3521U -Table of Content- 1. GENERAL DESCRIPTION...1 2. FEATURES...1 3. APPLICATIONS...2 4. PIN CONFIGURATION AND DESCRIPTION...2 5. TYPICAL APPLICATION CIRCUIT...3

More information

SAMPLE. MOVs are sometimes referred

SAMPLE. MOVs are sometimes referred attenuate (weaken or reduce) a spike or transient pulse. Recall that in a capacitive circuit the voltage lags the current, and in an inductive circuit the current lags the voltage. Inductance added METAL-OXIDE

More information

TD62M8600FG TD62M8600FG 8CH LOW SATURATION VOLTAGE SOURCE DRIVER FEATURES SCHEMATICS PIN CONNECTION (TOP VIEW)

TD62M8600FG TD62M8600FG 8CH LOW SATURATION VOLTAGE SOURCE DRIVER FEATURES SCHEMATICS PIN CONNECTION (TOP VIEW) TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT MULTI CHIP TD62M8600FG TD62M8600FG 8CH LOW SATURATION VOLTAGE SOURCE DRIVER TD62M8600FG is Multi Chip IC incorporates 8 low saturation discrete transistors equipped

More information

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 United States Patent (19) I I USOO5519242A 11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 54 ELECTROSTATIC DISCHARGE 5,357,126 10/1994 Jimenez... 257/173 PROTECTION CIRCUIT FOR A NMOS

More information

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia Lecture 4a CMOS Fabrication, Layout and Simulation R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Fabrication Fabrication is the process used to create devices and wires. Transistors

More information

ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process

ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process Chun-Yu Lin 1, Li-Wei Chu 1, Ming-Dou Ker 1, Ming-Hsiang Song 2, Chewn-Pu Jou 2, Tse-Hua Lu 2, Jen-Chou Tseng

More information

Lecture (05) PN Diode. Special Purpose diodes

Lecture (05) PN Diode. Special Purpose diodes Lecture (05) PN Diode applications III, Special Purpose diodes By: Dr. Ahmed ElShafee ١ Agenda Diode limiters Diode Clampers Zener Diode Zener Diode Applications ٢ Diode limiters Figure shows a diode positive

More information

B.Sc. (Computer Science) (Part 1) EXAMINATION, 2009 COMPUTER PROGRAMMING FUNDAMENTAL

B.Sc. (Computer Science) (Part 1) EXAMINATION, 2009 COMPUTER PROGRAMMING FUNDAMENTAL 1 COMPUTER PROGRAMMING FUNDAMENTAL Attempt any five questions. All questions carry equal marks. 1. Differentiate algorithm and program. How a program is developed? Discribe the importance of algorithm

More information

ANNA UNIVERSITY QB ( )

ANNA UNIVERSITY QB ( ) ANNA UNIVERSITY QB (2003--2008) UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. Draw the V-I characteristics of SCR and mark the holding current and latching current in the characteristics. Nov/Dec04 2. What

More information

HL2430/2432/2434/2436

HL2430/2432/2434/2436 Features Digital Unipolar Hall sensor High chopping frequency Supports a wide voltage range - 2.5 to 24V - Operation from unregulated supply Applications Flow meters Valve and solenoid status BLDC motors

More information

MIC2544A/2548A. General Description. Features. Applications. Typical Application. Programmable Current Limit High-Side Switch

MIC2544A/2548A. General Description. Features. Applications. Typical Application. Programmable Current Limit High-Side Switch Programmable Current Limit High-Side Switch General Description The MIC2544A and MIC2548A are integrated, high-side power switches optimized for low loss DC power switching and other power management applications,

More information

Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process

Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process 2.1 Introduction Standard CMOS technologies have been increasingly used in RF IC applications mainly

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences 130 Spring 003 UNIVRSITY OF CALIFORNIA College of ngineering Department of lectrical ngineering and Computer Sciences Term Project Due by 5 PM on Thursday, 4/4/03 Prof. King NOT: YOU MUST WORK ONLY WITH

More information

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering SPECIAL-PURPOSE DIODES 1 CONTENTS 3-1 zener diodes 3-2 zener diodes applications 3-3 varactor diodes 3-4 optical diodes 3-5 other types of diodes 3-6 trouble shooting 2 OBJECTIVES Discuss the basic characteristics

More information

Multi-function Tester (TC-V2.12k)

Multi-function Tester (TC-V2.12k) 1 Overview 1.1 Introduction 1-160x128 TFT display 2 - Multi function key 3 - Transistor test area 4 - Zener Diode test area 5 - IR receiver window 6 - Micro USB Charging Interface 7 - Charge indicator

More information

Application Note AN-1163

Application Note AN-1163 Application Note AN-1163 IR5001 Active ORing Controller for solar panels and +48V applications By Paul L. Schimel PE Paul.schimel@irf.com Table of Contents Page Description, Board Features...2 Connections

More information

HF81 X Capacitor Bleeder

HF81 X Capacitor Bleeder HF81 X Capacitor Bleeder The Future of Analog IC Technology DESCRIPTION HF81 is an innovative two-terminal IC that automatically discharges an X capacitor while eliminating power losses and allowing power

More information

The project for the course is described in detail on the course website. A rich source of information about other projects is available here:

The project for the course is described in detail on the course website. A rich source of information about other projects is available here: Laboratory 15 Practical Advice for Microcontroller-based Design Projects (modified from lab text by Alciatore) The project for the course is described in detail on the course website. A rich source of

More information

Prepared by: Jim Lepkowski ON Semiconductor

Prepared by: Jim Lepkowski ON Semiconductor Application Hints for Transient Voltage Suppression Diode Circuits Prepared by: Jim Lepkowski ON Semiconductor APPLICATION NOTE INTRODUCTION Transient Voltage Suppression (TVS) diodes provide a simple

More information

AZC002-02N Low Capacitance ESD Protection Array For High Speed Data Interfaces Features IEC (ESD) ±15kV (air), ±8kV (contact)

AZC002-02N Low Capacitance ESD Protection Array For High Speed Data Interfaces Features IEC (ESD) ±15kV (air), ±8kV (contact) Features ESD Protect for 2 high-speed I/O channels Provide ESD protection for each channel to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) (5/50ns) Level-3, 20A for I/O, 40A for

More information

Type Version Ordering Code Package PEB 2025-N V 1.5 Q67100-H6300 P-LCC-28-R (SMD) PEB 2025-P V 1.5 Q67100-H6241 P-DIP-22

Type Version Ordering Code Package PEB 2025-N V 1.5 Q67100-H6300 P-LCC-28-R (SMD) PEB 2025-P V 1.5 Q67100-H6241 P-DIP-22 ISDN Exchange Power Controller (IEPC) PEB 2025 CMOS IC Features Supplies power to up to four transmission lines CCITT recommendations compatible for power feed at the S interface Each line is individually

More information

Smart Inrush Current Limiter Enables Higher Efficiency In AC-DC Converters

Smart Inrush Current Limiter Enables Higher Efficiency In AC-DC Converters ISSUE: May 2016 Smart Inrush Current Limiter Enables Higher Efficiency In AC-DC Converters by Benoît Renard, STMicroelectronics, Tours, France Inrush current limiting is required in a wide spectrum of

More information

Overvoltage Protection in Automotive Systems

Overvoltage Protection in Automotive Systems HOME PRODUCTS SOLUTIONS DESIGN APPNOTES SUPPORT BUY COMPANY MEMBERS App Notes > CIRCUIT PROTECTION SENSOR SIGNAL CONDITIONERS APP 760: Jun 18, 2001 Keywords: overvoltage, over voltage, protection, automotive,

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics C1 - PLL linear analysis» PLL basics» Application examples» Linear analysis» Phase error 26/03/2014-1 ATLCE - C1-2014 DDC 2014

More information

UNIT II SPECIAL SEMICONDUCTOR DEVICES

UNIT II SPECIAL SEMICONDUCTOR DEVICES UNIT II SPECIAL SEMICONDUCTOR DEVICES 1 2 3 4 5 6 7 8 9 10 11 12 13 A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed

More information

Low cost, 3 Step Dimming Control, Linear AC LED Driver. Features. Applications. Fig. 1 Typical application with 3 Step dimming

Low cost, 3 Step Dimming Control, Linear AC LED Driver. Features. Applications. Fig. 1 Typical application with 3 Step dimming Low cost, 3 Step Dimming Control, Linear AC LED Driver General Description The is a non-isolated linear LED driver for general purpose LED lighting applications. It is capable of driving LEDs in multiple

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT DC1059A DUAL IDEAL DIODE POWERPATH TM DEMOBOARD

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT DC1059A DUAL IDEAL DIODE POWERPATH TM DEMOBOARD DESCRIPTION WARNING: READ THIS MANUAL FIRST BEFORE OPERATING THE DEMOBOARD. THERE ARE ILLEGAL POWER CONFIGURATIONS OR VOLTAGE LEVELS THAT CAN POTENTIALLY DAMAGE THE DEMOBOARD. From the factory: 1) MINIMUM

More information

MICRO BURN IN PRODUCTS LISTED IN MODEL NUMBER ORDER FOLLOWED BY A BRIEF DESCRIPTION

MICRO BURN IN PRODUCTS LISTED IN MODEL NUMBER ORDER FOLLOWED BY A BRIEF DESCRIPTION MICRO BURN IN PRODUCTS LISTED IN MODEL NUMBER ORDER FOLLOWED BY A BRIEF DESCRIPTION MODEL 102P 102R DESCRIPTION Floor Stand (Plane) Floor Stand (Modified) HTRB Burn-In System (diode) Component Burn-In

More information

Electronic Devices. Special Purpose Diodes. Chapter Three. Dr. Hisham Alrawashdeh

Electronic Devices. Special Purpose Diodes. Chapter Three. Dr. Hisham Alrawashdeh Electronic Devices Chapter Three Special Purpose Diodes Dr. Hisham Alrawashdeh Chapter Three Special Purpose Diodes Introduction Chapter 2 was devoted to general-purpose and rectifier diodes, which are

More information

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates)

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) ΗΜΥ 408 ΨΗΦΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΕ FPGAs Χειμερινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) (ack: Jurriaan Schmitz, Semiconductor Components) ΧΑΡΗΣ

More information

Bi-CMOS LSI PC and Server Fan Motor Driver

Bi-CMOS LSI PC and Server Fan Motor Driver Ordering number : ENA1748A Overview The is a motor driver for PC and server fans. Feature Direct PWM three-phsae sensorless motor driver Specifications Absolute Maximum Ratings at Ta = 25 C Bi-CMOS LSI

More information

Parameter Symbol Conditions Ratings Unit

Parameter Symbol Conditions Ratings Unit Ordering number : EN397F LB136M Monolithic Digital IC Low-Saturation Bidirectional Motor Driver for Low-Voltage Drive Overview The LB136M is a low-saturation two-channel bidirectional motor driver IC for

More information

Zener Diode & Special Purpose Diodes

Zener Diode & Special Purpose Diodes Zener Diode & Special Purpose Diodes Zener Diode: The diodes designed to work in breakdown region are called zener diode. If the reverse voltage exceeds the breakdown voltage, the zener diode will normally

More information

IEC (EFT) 40A

IEC (EFT) 40A Features ESD Protect for high-speed I/O channels Provide ESD protection for each channel to IEC 61000-4- (ESD) ±1kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (/0ns) IEC 61000-4- (Lightning) 1A (8/0µs)

More information

DEI1604 SURGE BlOCKING MODULE (SBM)

DEI1604 SURGE BlOCKING MODULE (SBM) Device Engineering Incorporated 385 East Alamo Drive Chandler, AZ 855 Phone: (480) 30308 Fax: (480) 303084 Email: admin@deiaz.com DEI1604 SURGE BlOCKING MODULE (SBM) 1. FEATURES Bidirectional surge protection

More information

Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology

Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 16, NO. 2, MAY 2003 319 Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology Ming-Dou Ker,

More information

SUBJECT: Recommended mounted & precaution for RD07&RD02 series with SLP package

SUBJECT: Recommended mounted & precaution for RD07&RD02 series with SLP package APPLICATION NOTE Silicon RF Power Semiconductors Document NO. Date : 5 th Dec. 2003 Rev. date : 22 th.jun. 2010 Prepared : K.Nakamura Confirmed : S.Kametani (Taking charge of Silicon RF by MIYOSHI Electronics)

More information

The PCI Series. Precise power control for complex SCR applications. Phase Angle Fired SCR Power Controls AMPS VAC

The PCI Series. Precise power control for complex SCR applications. Phase Angle Fired SCR Power Controls AMPS VAC The PCI Series Phase Angle Fired SCR Power Controls 25-1200 AMPS 120-600 VAC Precise power control for complex SCR applications. ROBICON 1996 Distributed Worldwide by www.mcgoff-bethune.com Applications

More information

VCC -0.3 ~ 7 V. Maximum input voltage CP, CN, SHD, VOUT -0.3 ~ 7 V Power dissipation Pd 675 (*1) mw Operating temperature range

VCC -0.3 ~ 7 V. Maximum input voltage CP, CN, SHD, VOUT -0.3 ~ 7 V Power dissipation Pd 675 (*1) mw Operating temperature range 1/4 Structure Function Product Silicon Monolithic Integrated Circuit Voltage Regulated Charge Pump IC BU90030G Function - Input voltage range 2.0V~4.0V - PFM operation - Output voltage 4.0V (typ) - 1.5MHz(typ)

More information

Laboratory 15. Practical Advice for Microcontroller-based Design Projects.

Laboratory 15. Practical Advice for Microcontroller-based Design Projects. Laboratory 15 Practical Advice for Microcontroller-based Design Projects link: The project for the course is described in detail on the course website. Here is the direct www.engr.colostate.edu/~dga/mech307/project.html

More information

MC74C Digit BCD Display Controller/Driver. General Description. Ordering Code: Connection Diagram. Features. Version 1.0

MC74C Digit BCD Display Controller/Driver. General Description. Ordering Code: Connection Diagram. Features. Version 1.0 6-Digit BCD Display Controller/Driver General Description The display controllers are interface elements, with memory, that drive a 6-digit, 8-segment LED display. The display controllers receive data

More information

Low Current, High Performance NPN Silicon Bipolar Transistor. Technical Data AT AT-32033

Low Current, High Performance NPN Silicon Bipolar Transistor. Technical Data AT AT-32033 Low Current, High Performance NPN Silicon Bipolar Transistor Technical Data AT-311 AT-333 Features High Performance Bipolar Transistor Optimized for Low Current, Low Voltage Operation 9 MHz Performance:

More information

ECE 261: Full Custom VLSI Design

ECE 261: Full Custom VLSI Design ECE 261: Full Custom VLSI Design Prof. James Morizio Dept. Electrical and Computer Engineering Hudson Hall Ph: 201-7759 E-mail: jmorizio@ee.duke.edu URL: http://www.ee.duke.edu/~jmorizio Course URL: http://www.ee.duke.edu/~jmorizio/ece261/261.html

More information

S.V.UNIVERSITY, TIRUPATI B.Sc- ELECTRONICS-SYLLABUS SEMESTER: II W.E.F PAPER 2 ELECTRONIC DEVICES&CIRCUITS

S.V.UNIVERSITY, TIRUPATI B.Sc- ELECTRONICS-SYLLABUS SEMESTER: II W.E.F PAPER 2 ELECTRONIC DEVICES&CIRCUITS S.V.UNIVERSITY, TIRUPATI B.Sc- ELECTRONICS-SYLLABUS SEMESTER: II W.E.F. 2015-16 PAPER 2 ELECTRONIC DEVICES&CIRCUITS 3-2-110 (60hrs) UNIT I(12hrs) JUNCTION DIODES PN junction diode P-N junction theory-depletion

More information

CHAPTER 5. Voltage Regulator

CHAPTER 5. Voltage Regulator CHAPTER 5 Voltage Regulator In your robot, the energy is derived from batteries. Specifically, there are two sets of batteries wired up to act as voltage sources; a 9V battery, and two 1.5V batteries in

More information

PT V Single coil Hall Driver IC with FG output

PT V Single coil Hall Driver IC with FG output DC Brushless Motor PT3936 24V Single coil with FG output Applications Single coil DC brushless motor Support pre-driver application Package: SOT89-5pin P/N: PT3936-S SOT89 Features Built-in hall sensor

More information

HF81 X Capacitor Bleeder

HF81 X Capacitor Bleeder HF81 X Capacitor Bleeder The Future of Analog IC Technology DESCRIPTION HF81 is an innovative two-terminal IC that automatically discharges an X capacitor while eliminating power losses and allowing power

More information

BIPOLAR ANALOG INTEGRATED CIRCUIT

BIPOLAR ANALOG INTEGRATED CIRCUIT DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT µpc29m33a,µpc29m5a THREE-TERMINAL LOW DROPOUT VOLTAGE REGULATOR DESCRIPTION The µpc29m33a, µpc29m5a of low dropout voltage three terminal positive regulators

More information

STBC ma standalone linear Li-Ion battery charger with thermal regulation. Description. Features. Applications

STBC ma standalone linear Li-Ion battery charger with thermal regulation. Description. Features. Applications 800 ma standalone linear Li-Ion battery charger with thermal regulation Description Datasheet - production data Features Programmable charge current up to 800 ma No external MOSFET, sense resistors or

More information

White Paper. AC Surge Protection. Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems

White Paper. AC Surge Protection. Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems White Paper AC Surge Protection Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems Richard Odenberg, Research & Advanced Applications, Founder of Transtector

More information

General Purpose, Low Noise NPN Silicon Bipolar Transistor. Technical Data AT AT-41533

General Purpose, Low Noise NPN Silicon Bipolar Transistor. Technical Data AT AT-41533 General Purpose, Low Noise NPN Silicon Bipolar Transistor Technical Data AT-411 AT-433 Features General Purpose NPN Bipolar Transistor 9 MHz Performance: AT-411: 1 db NF,. db G A AT-433: 1 db NF, 14. db

More information

AZC002-04S Low Capacitance ESD Protection Array For High Speed Data Interfaces Features IEC (ESD) ±15kV (air), ±8kV (contact)

AZC002-04S Low Capacitance ESD Protection Array For High Speed Data Interfaces Features IEC (ESD) ±15kV (air), ±8kV (contact) Features ESD Protect for 4 high-speed I/O channels Provide ESD protection for each channel to IEC 000-4- (ESD) ±kv (air), ±8kV (contact) IEC 000-4-4 (EFT) (/0ns) Level-3, 0A for I/O, 40A for Power IEC

More information

Bootstrap Circuitry Selection for Half-Bridge Configurations

Bootstrap Circuitry Selection for Half-Bridge Configurations Application Report Bootstrap Circuitry Selection for Half-Bridge Configurations Mamadou Diallo, High Power Drivers ABSTRACT Driving MOSFETs in half-bridge configurations present many challenges for designers.

More information

VMIVME bit High-Voltage Digital Input and/or Output Board with P2 I/O and Built-in-Test FUNCTIONAL CHARACTERISTICS

VMIVME bit High-Voltage Digital Input and/or Output Board with P2 I/O and Built-in-Test FUNCTIONAL CHARACTERISTICS 32-bit High-oltage Digital Input and/or Output Board with P2 I/O and Built-in-Test 32 bits of high-voltage outputs High-voltage outputs High-current sink (600 ma) High breakdown voltage (60 minimum) Output

More information

Texas Instruments Solution for Undershoot Protection for Bus Switches

Texas Instruments Solution for Undershoot Protection for Bus Switches Application Report SCDA007 - APRIL 2000 Texas Instruments Solution for Undershoot Protection for Bus Switches Nadira Sultana and Chris Graves Standard Linear & Logic ABSTRACT Three solutions for undershoot

More information

Electromagnetic Compatibility ( EMC )

Electromagnetic Compatibility ( EMC ) Electromagnetic Compatibility ( EMC ) Introduction about Components 6-2 -1 Agenda Ferrite Core Isolation Transformers Opto-Isolators Transient and Surge Suppression Devices Varistors Gas-Tube Surge Suppressors

More information

UOTFT: Universal Organic TFT Model for Circuit Design

UOTFT: Universal Organic TFT Model for Circuit Design UOTFT: Universal Organic TFT Model for Circuit Design S. Mijalković, D. Green, A. Nejim Silvaco Europe, St Ives, Cambridgeshire, UK A. Rankov, E. Smith, T. Kugler, C. Newsome, J. Halls Cambridge Display

More information

MOS FET Relay. Ordering Information. Application Examples G3VM- XN(F)/4N(F)

MOS FET Relay. Ordering Information. Application Examples G3VM- XN(F)/4N(F) MOS FET Relay G3VM- XN(F)/4N(F) SSR for Switching Analog Signals, with an I/O Dielectric Strength of 2.5 kvac Using Optical Isolation Switches minute analog signals. Linear voltage and current characteristics.

More information

RClamp TM 0504M RailClamp Low Capacitance TVS Diode Array PRELIMINARY Features

RClamp TM 0504M RailClamp Low Capacitance TVS Diode Array PRELIMINARY Features Description RailClamps are surge rated diode arrays designed to protect high speed data interfaces. The RClamp series has been specifically designed to protect sensitive components which are connected

More information

AZC099-04S 4 IEC (ESD)

AZC099-04S 4 IEC (ESD) Features ESD Protect for 4 high-speed I/O channels Provide ESD protection for each channel to IEC 000-4- (ESD) ±kv (air), ±8kV (contact) IEC 000-4-4 (EFT) (/0ns) Level-3, 0A for I/O, 40A for Power IEC

More information

TYPICAL APPLICATIO. LT1641-1/LT Positive High Voltage Hot Swap Controllers DESCRIPTIO FEATURES APPLICATIO S

TYPICAL APPLICATIO. LT1641-1/LT Positive High Voltage Hot Swap Controllers DESCRIPTIO FEATURES APPLICATIO S Positive High Voltage Hot Swap Controllers FEATURES Allows Safe Board Insertion and Removal from a Live Backplane Controls Supply Voltage from 9V to 0V Programmable Analog Foldback Current Limiting High

More information

TSH181 General Purpose Hall Effect Latch

TSH181 General Purpose Hall Effect Latch TO-92S Pin Definition: 1. V DD 2. GND 3. Output Description TSH181, Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage

More information

SP724 Series 3pF 8kV Rail Clamp Array

SP724 Series 3pF 8kV Rail Clamp Array SP74 Series pf 8kV Rail Clamp Array RoHS Pb GREEN Description Pinout Functional Block Diagram V+ IN V- SP74 (SOT-) TOP VIEW, 4 AND 6 IN. The NOTES: design of the SP74 SCR/Diode ESD Protection Arrays are

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60747-15 First edition 2003-06 Discrete semiconductor devices Part 15: Isolated power semiconductor devices Dispositifs à semiconducteurs Partie 15: Dispositifs à semiconducteurs

More information