DEPENDABLE PROCESSOR DESIGN

Size: px
Start display at page:

Download "DEPENDABLE PROCESSOR DESIGN"

Transcription

1 DEPENDABLE PROCESSOR DESIGN Matteo Carminati Politecnico di Milano - October 31st, 2012 Partially inspired by P. Harrod (ARM) presentation at the Test Spring School Annecy (France)

2 OUTLINE What? Problem Statement Preliminary Definitions Where? Interested Fields Standards Why? Pursued Objectives State of the Art How? Innovative Solutions 2

3 PROBLEM STATEMENT Guarantee a system to: Match specifications Fulfill requirements Meet constraints Provide real-time response What even when faults occur! We want the system to be dependable. 3

4 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY It is that property of a computer system such that reliance can justifiably be placed on the service it delivers. J.C. Laprie [6] Dependability is an abstraction comprising a plethora of quantities. What MAINTAINABILITY TESTABILITY 4

5 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY Probability that the system will operate correctly in a specified operating environment up until time t. R(t) = P(not failed during [0, t]) What MAINTAINABILITY TESTABILITY 5

6 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY Probability that the system will be operational at time t. A(t) = P(not failed at time t) What MAINTAINABILITY TESTABILITY 6

7 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY The absence of undesired and unplanned event that results in a specific level of loss (i.e. accident). What MAINTAINABILITY TESTABILITY 7

8 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY The absence of improper system state alterations. What MAINTAINABILITY TESTABILITY 8

9 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY Probability that the system can be repaired until time t. M(t) = P(repaired during [0, t]) What MAINTAINABILITY TESTABILITY 9

10 DEPENDABILITY RELIABILITY AVAILABILITY SAFETY INTEGRITY The ability to test for certain attributes within a system. Related to maintainability: importance of minimizing time required to identify and locate specific problems What MAINTAINABILITY TESTABILITY 10

11 These quantities have different, sometimes contradictory, goals: their trade-off is to be maximized while designing a new electronic system. What ROBUSTNESS Ability of a system to continue functioning despite the presence of faults, even if the system performance may be altered (always in a safe way), until the faults are corrected. FUNCTIONAL SAFETY Absence of unreasonable risk due to hazards caused by malfunctioning behavior of electronic systems. 11

12 WHAT IS A FAULT? FAULT ERROR FAILURE a defect within the system a deviation from the required operation the system fails to perform its required function Fault Error Detection What Fault Free Latency Repair Recovery Fault Free Outage t 12

13 FAULT TAXONOMY FAULT RANDOM SYSTEMATIC HW HW SW What PERMANENT (hard): shorts, stuck-at, stuck-open INTERMITTENT TRANSIENT (soft): SEE, SBU, MBU, SET 13

14 WHAT IS AN ACCIDENT? Fault Error Failure Fault Error Failure state of the system that in certain environmental situations may lead to an accident What Fault Error Failure Hazard Accident 14

15 SIL - IEC SAFETY INTEGRITY LEVEL The relative level of risk reduction provided by a safety function. Safe Failure Fraction Ratio between the sum of safe hazards plus detected dangerous hazards and the sum of safe hazards plus all dangerous hazards. SFF Hardware Fault Tolerance A HFT on N means that N+1 faults could cause a loss of the safety function. HFT What <60% >60% && <90% >90% && <99% >99% - SIL 1 SIL 2 SIL 3 SIL 1 SIL 2 SIL 3 SIL 4 SIL 2 SIL 3 SIL 4 SIL 4 From [1]. 15

16 FAULT-RELATED PROPERTIES Fault Ignore The fault does not require to be detected nor mitigated. Fault Detection The result can be incorrect, but the fault must be identified. Fault Tolerance The fault is to be mitigated and the provided result correct. What Fault Diagnosis The result must be correct and the faulty unit is to be identified. 16

17 CRITICAL SYSTEMS MISSION Aerospace Railway SAFETY Where Nuclear power stations Medical devices Automotive BUSINESS Account management Transaction systems 17

18 CRITICAL SYSTEMS MISSION Aerospace - DO-178B/DO-254 Railway - EN SAFETY STANDARDS Where Nuclear power stations - IEC Medical devices - IEC Automotive - ISO BUSINESS Account management Transaction systems 18

19 ISO 26262: FOCUS Driver assistant, lane departure Passenger safety air bags Electric/hybrid energy system Where Engine management, power train From [1]. Breaking: ABS, anti-skid,... 19

20 ISO 26262: FOCUS REQUIREMENTS Architecture compliance Measures to achieve system safety in case of random HW failures. Where Process compliance Guidelines for designing processes and HW/SW architectures to avoid systematic failures. 20

21 ISO 26262: FOCUS ASIL AUTOMOTIVE SAFETY INTEGRITY LEVEL IEC ISO Application Example SIL 4 SIL 3 - ASIL D ASIL C Railway signal control Brake-by-wire, EPS,... Battery management Where SIL 2 SIL 1 ASIL B ASIL A Automotive dashboard Rear lights Ex: ASIL D means >99% faults must be detected and the probability of violation of safety goal due to HW random failures shall be less than 10 FIT (1 FIT = 1 failure in1 billion of hours) 21

22 ISO 26262: FOCUS HOW TO ACHIEVE THE ASIL Setting up functional safety management Defining safety goal Where Improving the process Avoid systematic failures Improving the product Detect/tolerate HW random failures Avoid/detect dependent failures 22

23 NON-CRITICAL SYSTEMS Domestic appliance Entertainment devices Where Distribution networks Wellness 23

24 NON-CRITICAL SYSTEMS Domestic appliance Dependability Entertainment devices Where Distribution networks Wellness Performance TRADE-OFF Power 24

25 GOALS Design dependable processors to: Reduce the number hazards and accidents Increase system safety Why Meet standards 25

26 STATE OF THE ART ARCHITECTURAL APPROACH A 1oo1 Rs = Ra A B 2oo2 Rs = 1 - (1 - Ra) x (1 - Rb) Why A B 1oo2 Rs = Ra x Rb A B C VOTING 2oo3 Rs = 1 - (1 - RaRb) x (1 - RbRc) x (1 - RaRc) 26

27 STATE OF THE ART DIVERSITY different solutions satisfying the same requirement with the aim of independence - ISO A B A Ch Reduces HW systematic failures Why Prevents, reduces, or detects common cause failures replacing the need for complex measures 27

28 DUAL CORE LOCK-STEP Homogeneous Redundancy CPU master SW COMP CPU checker Achieves ASIL D Example Freescale MPC5746M Why High diagnostic coverage Negligible SW overhead Significant HW overhead Significant power consumption increase Susceptible to common-cause and HW systematic failures Poor diagnostic info and availability 28

29 CHALLENGE & RESPONSE SW cross-exchange between 2 independent units SW1 CPU main SW2 CPU secondary Achieves ASIL C serial interface Why Common-cause failures detection HW/SW systematic failures detection Significant HW and power consumption increase Significant SW and performance overhead Poor transient fault coverage, reusability, and availability Slow error detection latency 29

30 E-GAS CONCEPT SW diversified redundancy with 2 independent units SW1 CPU SW2 Achieves ASIL B main MISR Why Low HW overhead SW systematic failures detection Significant SW and performance overhead Poor transient fault coverage, reusability, and availability Susceptible to common-cause failures Slow error detection latency 30

31 HARDENED BY-DESIGN Each processor functional units is independently hardened hardened CPU Example LEON3 FT SW Why Low HW overhead Low performance overhead Optimized solution Significant design overhead Need to know processor internal description Very low reusability, very specific solution 31

32 TIGHTLY COUPLED 2 CORE Asymmetric Redundancy SW CPU master CPU interface checker optimized supervisor Achieves ASIL D How Low HW and power consumption overhead Negligible SW overhead Common-cause and HW systematic failures detection Fast error detection latency, good availability Very detailed analysis required CPU interface needed 32

33 YOGITECH S FAULT-ROBUST SW CPU master CPU interface main supervisor robust net remote supervisors How From [4]. The supervisor is designed exploiting a white-box approach Meets IEC and ISO requirements One main supervisor for the CPU and a set of remote supervisors, one for each specific region of the system Hardware-centric approach 33

34 MAIN SUPERVISOR system control unit CPU interface main supervisor System Control Unit CPU Checking Unit robust net CPU interface CPU sniffer Data sup. Data addr. sup. Instruct. exec. sup. Mode sup. CPU checking unit How The CPU Checking Unit checks the instructions execution, the program flow, and the data processing The CPU sniffer collects, compacts, codes, and buffers signals from the CPU and forwards them to the supervisors Each supervisor is composed by: a data-path, a sequencer and a checker The System Control Unit decides if the system is in a wrong state and performs necessary actions 34

35 REMOTE SUPERVISORS How robust net remote supervisors Memory Supervisors Peripheral Supervisors Bus Supervisors Custom Supervisors The memory supervisor provides the possibility to store ECC codes and to share it with multiple memories Peripheral supervisors implement a hardware verification component The bus supervisors monitor sources and sinks of the bus and perform data integrity checks 35

36 METHODOLOGY FLOW Safety Requirements Specification supported by automatic tools DESIGN Failure Modes and Effects Analysis Fault Injection How SFF/DC reports Safe Failure Fraction - SFF Diagnostic Coverage - DC 36

37 RESULTS How PHILIPS SJA2510 FlexRay microcontroller <30% HW overhead for CPU protection <10% HW overhead for memory protection A greater level of optimization can be reached if the configuration is more application specific From [4]. 37

38 CONCLUSIONS OLD TREND HW is unreliable by definition HW is stupid: in case of failure it cannot tell what is going on HW/SW redundancy is the only way to guarantee the availability of safety-critical systems NEW TREND Design-for-Uncertainty must become a new paradigm FMEA till the gate level should become a de facto standard New architectures should embed methods to detect and control errors The proposed platform-based solution aims at reducing of HW and SW costs needed to implement fault robust MCUs in adherence with IEC SIL3. This is achieved by implementing an optimized HW CPU fault detection, by providing dedicated HW to replace, support or supplement SW tests and by distributing robustness to the whole SoC. The proposed approach is scalable, flexible, portable and reusable by design. 38

39 BIBLIOGRAPHY 1. P. Harrod, Dependable Processor Design - TSS presentation, C. Bolchini, Dependable Systems - Course slides, M. Bellotti, R. Mariani, How future automotive functional safety requirements will impact microprocessors design - Microelectronics Reliability, R. Mariani, P. Fuhrmann, B. Vittorelli, Fault-robust microcontrollers for automotive applications, IEEE International On-Line Testing Symposium (IOLTS), M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, S. Pezzini, Fault-Tolerant Platforms for Automotive Safety-Critical Applications, International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), J.C. Laprie, Dependable Computing: Concepts, Limits, Challenges, IEEE International Symposium on Fault-Tolerant Computing,

Fault-robust microcontrollers for automotive applications

Fault-robust microcontrollers for automotive applications Fault-robust microcontrollers for automotive applications Riccardo Mariani Peter Fuhrmann Boris Vittorelli YOGITECH SpA Philips Research Laboratories ARM Germany GmbH riccardo.mariani@yogitech.com peter.fuhrmann@philips.com

More information

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Prof. Dr.-Ing. Stefan Kowalewski Chair Informatik 11, Embedded Software Laboratory RWTH Aachen University Summer Semester

More information

Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309

Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309 June 25th, 2007 Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309 Christopher Temple Automotive Systems Technology Manager Overview Functional Safety Basics Functional

More information

Enabling Increased Safety with Fault Robustness in Microcontroller Applications

Enabling Increased Safety with Fault Robustness in Microcontroller Applications Enabling Increased Safety with Fault Robustness in Microcontroller Applications Wayne Lyons ARM 110 Fulbourn Road Cambridge CB1 9NJ, England Abstract All safety-critical or high-reliability applications

More information

Understanding SW Test Libraries (STL) for safetyrelated integrated circuits and the value of white-box SIL2(3) ASILB(D) YOGITECH faultrobust STL

Understanding SW Test Libraries (STL) for safetyrelated integrated circuits and the value of white-box SIL2(3) ASILB(D) YOGITECH faultrobust STL Understanding SW Test Libraries (STL) for safetyrelated integrated circuits and the value of white-box SIL2(3) ASILB(D) YOGITECH faultrobust STL Riccardo Mariani White Paper n. 001/2014 Riccardo Mariani

More information

Using an innovative SoC-level FMEA methodology to design in compliance with IEC61508

Using an innovative SoC-level FMEA methodology to design in compliance with IEC61508 Using an innovative SoC-level FMEA methodology to design in compliance with IEC61508 Riccardo Mariani, Gabriele Boschi, Federico Colucci YOGITECH SpA Pisa, Italy http://www.yogitech.com Abstract This paper

More information

New ARMv8-R technology for real-time control in safetyrelated

New ARMv8-R technology for real-time control in safetyrelated New ARMv8-R technology for real-time control in safetyrelated applications James Scobie Product manager ARM Technical Symposium China: Automotive, Industrial & Functional Safety October 31 st 2016 November

More information

What functional safety module designers need from IC developers

What functional safety module designers need from IC developers What functional safety module designers need from IC developers Embedded Platforms Conference Microcontrollers and Peripherals Nov 9 th 2016 14:50 15:30 TOM MEANY Introduction This presentation gives a

More information

Riccardo Mariani, Intel Fellow, IOTG SEG, Chief Functional Safety Technologist

Riccardo Mariani, Intel Fellow, IOTG SEG, Chief Functional Safety Technologist Riccardo Mariani, Intel Fellow, IOTG SEG, Chief Functional Safety Technologist Internet of Things Group 2 Internet of Things Group 3 Autonomous systems: computing platform Intelligent eyes Vision. Intelligent

More information

Functional Safety Design Packages for STM32 & STM8 MCUs

Functional Safety Design Packages for STM32 & STM8 MCUs Functional Safety Design Packages for STM32 & STM8 MCUs Achieve functional safety certifications with ST MCUs With its Functional Safety Design Packages based on robust built-in MCU safety features, ST

More information

Fault-Injection testing and code coverage measurement using Virtual Prototypes on the context of the ISO standard

Fault-Injection testing and code coverage measurement using Virtual Prototypes on the context of the ISO standard Fault-Injection testing and code coverage measurement using Virtual Prototypes on the context of the ISO 26262 standard NMI Automotive Electronics Systems 2013 Event Victor Reyes Technical Marketing System

More information

Failure Diagnosis and Prognosis for Automotive Systems. Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010

Failure Diagnosis and Prognosis for Automotive Systems. Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010 Failure Diagnosis and Prognosis for Automotive Systems Tom Fuhrman General Motors R&D IFIP Workshop June 25-27, 2010 Automotive Challenges and Goals Driver Challenges Goals Energy Rising cost of petroleum

More information

Deriving safety requirements according to ISO for complex systems: How to avoid getting lost?

Deriving safety requirements according to ISO for complex systems: How to avoid getting lost? Deriving safety requirements according to ISO 26262 for complex systems: How to avoid getting lost? Thomas Frese, Ford-Werke GmbH, Köln; Denis Hatebur, ITESYS GmbH, Dortmund; Hans-Jörg Aryus, SystemA GmbH,

More information

FUNCTIONAL SAFETY AND THE GPU. Richard Bramley, 5/11/2017

FUNCTIONAL SAFETY AND THE GPU. Richard Bramley, 5/11/2017 FUNCTIONAL SAFETY AND THE GPU Richard Bramley, 5/11/2017 How good is good enough What is functional safety AGENDA Functional safety and the GPU Safety support in Nvidia GPU Conclusions 2 HOW GOOD IS GOOD

More information

Functional Safety Architectural Challenges for Autonomous Drive

Functional Safety Architectural Challenges for Autonomous Drive Functional Safety Architectural Challenges for Autonomous Drive Ritesh Tyagi: August 2018 Topics Market Forces Functional Safety Overview Deeper Look Fail-Safe vs Fail-Operational Architectural Considerations

More information

ICS 180 Spring Embedded Systems. Introduction: What are Embedded Systems and what is so interesting about them?

ICS 180 Spring Embedded Systems. Introduction: What are Embedded Systems and what is so interesting about them? ICS 180 Spring 1999 Embedded Systems Introduction: What are Embedded Systems and what is so interesting about them? A. Veidenbaum Information and Computer Science University of California, Irvine. Outline

More information

HART Temperature Transmitter for up to SIL 2 applications

HART Temperature Transmitter for up to SIL 2 applications HART Temperature Transmitter for up to SIL 2 applications Inor Process AB 04/2010 86B520S001 R1.0 1 Introduction... 3 1.1 Field of application... 3 1.2 User benefits... 3 1.3 Manufacturer s safety instructions...

More information

Type 9160 / Transmitter supply unit / Isolating repeater. Safety manual

Type 9160 / Transmitter supply unit / Isolating repeater. Safety manual Type 9160 / 9163 Transmitter supply unit / Isolating repeater Safety manual Safety manual English Content 1 General information... 3 1.1 Manufacturer... 3 1.2 Information regarding the Safety Manual...

More information

ELEC 5260/6260/6266 Embedded Computing Systems

ELEC 5260/6260/6266 Embedded Computing Systems ELEC 5260/6260/6266 Embedded Computing Systems Spring 2019 Victor P. Nelson Text: Computers as Components, 4 th Edition Prof. Marilyn Wolf (Georgia Tech) Course Web Page: http://www.eng.auburn.edu/~nelsovp/courses/elec5260_6260/

More information

FMEDA-Based Fault Injection and Data Analysis in Compliance with ISO SPEAKER. Dept. of Electrical Engineering, National Taipei University

FMEDA-Based Fault Injection and Data Analysis in Compliance with ISO SPEAKER. Dept. of Electrical Engineering, National Taipei University FMEDA-Based Fault Injection and Data Analysis in Compliance with ISO-26262 Kuen-Long Lu 1, 2,Yung-Yuan Chen 1, and Li-Ren Huang 2 SPEAKER 1 Dept. of Electrical Engineering, National Taipei University 2

More information

Software Techniques for Dependable Computer-based Systems. Matteo SONZA REORDA

Software Techniques for Dependable Computer-based Systems. Matteo SONZA REORDA Software Techniques for Dependable Computer-based Systems Matteo SONZA REORDA Summary Introduction State of the art Assertions Algorithm Based Fault Tolerance (ABFT) Control flow checking Data duplication

More information

HART Temperature Transmitter for up to SIL 2 applications

HART Temperature Transmitter for up to SIL 2 applications HART Temperature Transmitter for up to SIL 2 applications Inor Process AB 05/2014 86B520S001 R1.3 1 Introduction... 3 1.1 Field of application... 3 1.2 User benefits... 3 1.3 Manufacturer s safety instructions...

More information

KESO Functional Safety and the Use of Java in Embedded Systems

KESO Functional Safety and the Use of Java in Embedded Systems KESO Functional Safety and the Use of Java in Embedded Systems Isabella S1lkerich, Bernhard Sechser Embedded Systems Engineering Kongress 05.12.2012 Lehrstuhl für Informa1k 4 Verteilte Systeme und Betriebssysteme

More information

Hardware Safety Integrity. Hardware Safety Design Life-Cycle

Hardware Safety Integrity. Hardware Safety Design Life-Cycle Hardware Safety Integrity Architecture esign and Safety Assessment of Safety Instrumented Systems Budapest University of Technology and Economics epartment of Measurement and Information Systems Hardware

More information

How Microcontrollers help GPUs in Autonomous Drive

How Microcontrollers help GPUs in Autonomous Drive How Microcontrollers help GPUs in Autonomous Drive GTC 2017 Munich, 2017-10-12 Hans Adlkofer, VP Automotive System department Outline 1 Main Safety concepts 2 Sensor Fusion architecture and functionalities

More information

Safety Architecture Patterns

Safety Architecture Patterns Tutorial: Safety Architecture Patterns Philip Koopman, Ph.D. These tutorials are a simplified introduction, and are not sufficient on their own to achieve system safety. You are responsible for the safety

More information

Software architecture in ASPICE and Even-André Karlsson

Software architecture in ASPICE and Even-André Karlsson Software architecture in ASPICE and 26262 Even-André Karlsson Agenda Overall comparison (3 min) Why is the architecture documentation difficult? (2 min) ASPICE requirements (8 min) 26262 requirements (12

More information

Executive summary. by Michel Bonnet, Maximilien Laforge, and Jean-Baptiste Samuel

Executive summary. by Michel Bonnet, Maximilien Laforge, and Jean-Baptiste Samuel 998-2095-02-21-14AR0 by Michel Bonnet, Maximilien Laforge, and Jean-Baptiste Samuel Executive summary Improper integration of Intelligent Electronic Devices (IED) into medium / high voltage electrical

More information

New developments about PL and SIL. Present harmonised versions, background and changes.

New developments about PL and SIL. Present harmonised versions, background and changes. Safety evevt 2017 Functional safety New developments about PL and SIL. Present harmonised versions, background and changes. siemens.com ISO/ TC 199 and IEC/ TC 44 joint working group 1 - Merging project

More information

FUNCTIONAL SAFETY FOR INDUSTRIAL AUTOMATION

FUNCTIONAL SAFETY FOR INDUSTRIAL AUTOMATION FUNCTIONAL SAFETY FOR INDUSTRIAL AUTOMATION 2017.11 The term Functional Safety has become a topic of great interest. Functional Safety generally means that malfunctions of the operating systems or applications

More information

Low voltage switchgear and controlgear functional safety aspects

Low voltage switchgear and controlgear functional safety aspects Low voltage switchgear and controlgear functional safety aspects Guidance how to use low voltage switchgear and controlgear in functional safety applications Picture Siemens AG A message from the CAPIEL

More information

The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems

The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems The Safe State: Design Patterns and Degradation Mechanisms for Fail- Operational Systems Alexander Much 2015-11-11 Agenda About EB Automotive Motivation Comparison of different architectures Concept for

More information

Application of Functional Safety in All-Electric Control Systems. Dr. Carsten Mahler Prof. Dr. Markus Glaser 24 October 2018

Application of Functional Safety in All-Electric Control Systems. Dr. Carsten Mahler Prof. Dr. Markus Glaser 24 October 2018 Application of Functional Safety in All-Electric Control Systems Dr. Carsten Mahler Prof. Dr. Markus Glaser 24 October 2018 Introduction Oil Price (Brent) 2009 2018 Current market situation Most severe

More information

Functional safety in BATTERY MANAGEMENT SYSTEMS

Functional safety in BATTERY MANAGEMENT SYSTEMS Functional safety in BATTERY MANAGEMENT SYSTEMS LiTHIUM BALANCE history 2014 2015 2016 2011 2012 1 st OEM cust. in production 300 projects completed ISO 9001 certified 400 projects completed 500 projects

More information

Report. Certificate Z Rev. 00. SIMATIC Safety System

Report. Certificate Z Rev. 00. SIMATIC Safety System Report to the Certificate Z10 067803 0020 Rev. 00 Safety-Related Programmable System SIMATIC Safety System Manufacturer: Siemens AG Gleiwitzer Str. 555 D-90475 Nürnberg Revision 1.1 dated 2019-02-07 Testing

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: 9106 HART Transparent Repeater and 9107 HART Transparent Driver Customer: PR electronics A/S Rønde Denmark Contract No.: PR electronics 06/03-19

More information

Type Switching repeater. Safety manual

Type Switching repeater. Safety manual Type 9170 Switching repeater Safety manual Safety manual English Content 1 General information... 3 1.1 Manufacturer... 3 1.2 Information regarding the Safety Manual... 3 1.3 Area of application... 3 1.4

More information

Part 2: Basic concepts and terminology

Part 2: Basic concepts and terminology Part 2: Basic concepts and terminology Course: Dependable Computer Systems 2012, Stefan Poledna, All rights reserved part 2, page 1 Def.: Dependability (Verlässlichkeit) is defined as the trustworthiness

More information

A Design of Fail-safe Gateway-embedded System for In-vehicle Networks

A Design of Fail-safe Gateway-embedded System for In-vehicle Networks A Design of Fail-safe Gateway-embedded System for In-vehicle Networks Sukhyun Seo, Junsu Kim, *Su Min Kim Department of Electronics Engineering, Korea Polytechnic University, 15073 Siheung, Republic of

More information

Mobrey Hydratect 2462

Mobrey Hydratect 2462 Mobrey Hydratect 2462 Functional Safety Manual Functional Safety Manual Functional Safety Manual Table of Contents Contents 1Section 1: Introduction 1.1 Scope and purpose of the safety manual..................................

More information

88 Dugald Campbell. Making Industrial Systems Safer Meeting the IEC standards

88 Dugald Campbell. Making Industrial Systems Safer Meeting the IEC standards 88 Dugald Campbell Making Industrial Systems Safer Meeting the IEC 60730 standards Introduction With the introduction of the International Electrotechnical Commission s IEC 60730 standards series, household

More information

Hardware safety integrity (HSI) in IEC 61508/ IEC 61511

Hardware safety integrity (HSI) in IEC 61508/ IEC 61511 1 Hardware safety integrity (HSI) in IEC 61508/ IEC 61511 ESReDA 2006 June 7-8, 2006 Mary Ann Lundteigen mary.a.lundteigen@ntnu.no mary.a.lundteigen@sintef.no 2 Overview 1. Objective 2. Some concepts &

More information

Dependability. IC Life Cycle

Dependability. IC Life Cycle Dependability Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr IC Life Cycle User s Requirements Design Re-Cycling In-field Operation Production 2 1 IC Life Cycle User s

More information

TSW Reliability and Fault Tolerance

TSW Reliability and Fault Tolerance TSW Reliability and Fault Tolerance Alexandre David 1.2.05 Credits: some slides by Alan Burns & Andy Wellings. Aims Understand the factors which affect the reliability of a system. Introduce how software

More information

Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry

Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry A Time-Triggered Middleware for Safety- Critical Automotive Applications Ayhan Mehmet, Maximilian Rosenblattl, Wilfried

More information

Functional safety manual RB223

Functional safety manual RB223 SD00011R/09/EN/13.13 71238251 Products Solutions Services Functional safety manual RB223 Passive barrier Application Galvanic isolation of active 0/4 to 20 ma signals from transmitters, valves and adjusters,

More information

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés RELIABILITY and RELIABLE DESIGN Giovanni Centre Systèmes Intégrés Outline Introduction to reliable design Design for reliability Component redundancy Communication redundancy Data encoding and error correction

More information

FSO Webnair FSO Safety Functions Module. ABB Group February 11, 2015 Slide 1

FSO Webnair FSO Safety Functions Module. ABB Group February 11, 2015 Slide 1 FSO Webnair FSO Safety Functions Module February 11, 2015 Slide 1 Competence Requirements for ABB Commissioner / Service Engineer of ACS880 Drives with FSO The integrated Safety Function Module (FSO; option

More information

Applications & Tools. Technology CPU 317TF-2 DP: Example for determining the Safety Integrity Level (SIL) according to IEC

Applications & Tools. Technology CPU 317TF-2 DP: Example for determining the Safety Integrity Level (SIL) according to IEC Cover Technology CPU 317TF-2 DP: Example for determining the Safety Integrity Level (SIL) according to IEC 62061 Technology CPU Application Description January 2013 Applications & Tools Answers for industry.

More information

Formal Methods and their role in Software and System Development. Riccardo Sisto, Politecnico di Torino

Formal Methods and their role in Software and System Development. Riccardo Sisto, Politecnico di Torino Formal Methods and their role in Software and System Development Riccardo Sisto, Politecnico di Torino What are Formal Methods? Rigorous (mathematical) methods for modelling and analysing (computer-based)

More information

RazorMotion - The next level of development and evaluation is here. Highly automated driving platform for development and evaluation

RazorMotion - The next level of development and evaluation is here. Highly automated driving platform for development and evaluation RazorMotion - The next level of development and evaluation is here Highly automated driving platform for development and evaluation RazorMotion Highly automated driving platform for development and evaluation

More information

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d)

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d) Distributed Systems Fö 9/10-1 Distributed Systems Fö 9/10-2 FAULT TOLERANCE 1. Fault Tolerant Systems 2. Faults and Fault Models. Redundancy 4. Time Redundancy and Backward Recovery. Hardware Redundancy

More information

ISO26262 This Changes Everything!

ISO26262 This Changes Everything! Subset of material used at this year s DVCon Europe ISO26262 This Changes Everything! John Brennan, Viktor Preis Cadence Design Systems, Inc. Accellera Systems Initiative 1 Four disruptive trends in Automotive

More information

Transient Fault Detection and Reducing Transient Error Rate. Jose Lugo-Martinez CSE 240C: Advanced Microarchitecture Prof.

Transient Fault Detection and Reducing Transient Error Rate. Jose Lugo-Martinez CSE 240C: Advanced Microarchitecture Prof. Transient Fault Detection and Reducing Transient Error Rate Jose Lugo-Martinez CSE 240C: Advanced Microarchitecture Prof. Steven Swanson Outline Motivation What are transient faults? Hardware Fault Detection

More information

Is This What the Future Will Look Like?

Is This What the Future Will Look Like? Is This What the Future Will Look Like? Implementing fault tolerant system architectures with AUTOSAR basic software Highly automated driving adds new requirements to existing safety concepts. It is no

More information

FUNCTIONAL SAFETY CERTIFICATE

FUNCTIONAL SAFETY CERTIFICATE FUNCTIONAL SAFETY CERTIFICATE This is to certify that the GSS (GSA******-*) Series Global Safety Limit Switch Manufactured by Honeywell International Inc. 315 East Stephenson Street, Freeport, Illinois,

More information

CS 470 Spring Fault Tolerance. Mike Lam, Professor. Content taken from the following:

CS 470 Spring Fault Tolerance. Mike Lam, Professor. Content taken from the following: CS 47 Spring 27 Mike Lam, Professor Fault Tolerance Content taken from the following: "Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapter 8) Various online

More information

Hardware Design and Simulation for Verification

Hardware Design and Simulation for Verification Hardware Design and Simulation for Verification by N. Bombieri, F. Fummi, and G. Pravadelli Universit`a di Verona, Italy (in M. Bernardo and A. Cimatti Eds., Formal Methods for Hardware Verification, Lecture

More information

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 Redundancy in fault tolerant computing D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 1 Redundancy Fault tolerance computing is based on redundancy HARDWARE REDUNDANCY Physical

More information

Issues in Programming Language Design for Embedded RT Systems

Issues in Programming Language Design for Embedded RT Systems CSE 237B Fall 2009 Issues in Programming Language Design for Embedded RT Systems Reliability and Fault Tolerance Exceptions and Exception Handling Rajesh Gupta University of California, San Diego ES Characteristics

More information

SIRIUS Safety Integrated. Modular safety system 3RK3

SIRIUS Safety Integrated. Modular safety system 3RK3 Functional Example CD-FE-I-048-V10-EN SIRIUS Safety Integrated Modular safety system 3RK3 Emergency Stop with monitored Start and Protective Door with automatic start according to category 4 in EN 954-1.

More information

Proline Prowirl 72, 73

Proline Prowirl 72, 73 Functional Safety Manual Vortex flow measuring system with 4 20 ma output signal Application Monitoring of maximum and/or minimum flow in systems which are required to comply with particular safety system

More information

Virtual Hardware ECU How to Significantly Increase Your Testing Throughput!

Virtual Hardware ECU How to Significantly Increase Your Testing Throughput! Virtual Hardware ECU How to Significantly Increase Your Testing Throughput! Elektrobit Tech Day Jason Niatas Synopsys Inc. July 27, 2017 2017 Synopsys, Inc. 1 Agenda Automotive electronic evolution and

More information

Safety Manual. VEGABAR series ma/hart - two-wire and slave sensors With SIL qualification. Document ID: 48369

Safety Manual. VEGABAR series ma/hart - two-wire and slave sensors With SIL qualification. Document ID: 48369 Safety Manual VEGABAR series 80 4 20 ma/hart - two-wire and slave sensors With SIL qualification Document ID: 48369 Contents Contents 1 Document language... 3 2 Scope... 4 2.1 Instrument version... 4 2.2

More information

The evolution of the cookbook

The evolution of the cookbook The evolution of the cookbook Angela E. Summers, Ph.D., P.E Michela Gentile, Ph.D. Mary Kay O Connor Process Safety Center 2006 International Symposium Beyond Regulatory Compliance, Making Safety Second

More information

Original operating instructions Safety relay with relay outputs G1501S / / 2016

Original operating instructions Safety relay with relay outputs G1501S / / 2016 Original operating instructions Safety relay with relay outputs G50S UK 8023637 / 00 02 / 206 Contents Preliminary note...4. Symbols used...4 2 Safety instructions...5 3 Items supplied...6 4 Functions

More information

Energize to Trip Requirement for SIL 3 according to IEC 61511

Energize to Trip Requirement for SIL 3 according to IEC 61511 Safety Manual 09/2014 Energize to Trip Requirement for SIL 3 according to IEC 61511 SIMATIC S7-400F/FH http://support.automation.siemens.com/ww/view/en/109106504 Warranty and Liability Warranty and Liability

More information

Safety modules. 8/4 inputs PROFIsafe S20-PSDI8/4

Safety modules. 8/4 inputs PROFIsafe S20-PSDI8/4 8/4 inputs PROFIsafe 2 Bosch Rexroth AG Electric Drives and Controls 8/4 inputs PROFIsafe SIL 3 to EN 61508 SILCL 3 to EN 62061 Category 4 / PL e according to EN ISO 13849-1 PROFIsafe Electronic device

More information

T72 - Process Safety and Safety Instrumented Systems

T72 - Process Safety and Safety Instrumented Systems T72 - Process Safety and Safety Instrumented Systems Comprehensive Solutions Portfolio for Fail-Safe to TMR Safety Applications PUBLIC Copyright 2018 Rockwell Automation, Inc. All Rights Reserved. 1 Agenda

More information

Industrial Embedded Systems - Design for Harsh Environment - Dr. Alexander Walsch

Industrial Embedded Systems - Design for Harsh Environment - Dr. Alexander Walsch Industrial Embedded Systems - Design for Harsh Environment - Dr. Alexander Walsch alexander.walsch@ge.com WS 2011/12 Technical University Munich (TUM) Introduction - Our Backgrounds O&G Energy Sensor systems

More information

A tool based estimation computation method of MCU random failure rate &functional safety metrics

A tool based estimation computation method of MCU random failure rate &functional safety metrics A tool based estimation computation method of MCU random failure rate &functional safety metrics Yogitech / Texas Instruments Riccardo Mariani YOGITECH, CTO Hoiman Low TI Safety MCU, FSCAE July / 2015

More information

Report. Certificate M6A SIMATIC S7 Distributed Safety

Report. Certificate M6A SIMATIC S7 Distributed Safety Report to the Certificate M6A 17 05 67803 014 Safety-Related Programmable Systems SIMATIC S7 Distributed Safety Manufacturer: Siemens AG DF FA AS Gleiwitzer Str. 555 D-90475 Nürnberg Revision 3.1 dated

More information

Certified Automotive Software Tester Sample Exam Paper Syllabus Version 2.0

Certified Automotive Software Tester Sample Exam Paper Syllabus Version 2.0 Surname, Name: Gender: male female Company address: Telephone: Fax: E-mail-address: Invoice address: Training provider: Trainer: Certified Automotive Software Tester Sample Exam Paper Syllabus Version

More information

Original operating instructions Safety relay with relay outputs with and without delay G1502S / / 2016

Original operating instructions Safety relay with relay outputs with and without delay G1502S / / 2016 Original operating instructions Safety relay with relay outputs with and without delay UK G50S 803638 / 00 0 / 06 Contents Preliminary note...4. Symbols used...4 Safety instructions...5 3 Items supplied...6

More information

Service & Support. Functional Safety One Position switch. Safe Machine Concepts without Detours. benefit from the Safety Evaluation Tool.

Service & Support. Functional Safety One Position switch. Safe Machine Concepts without Detours. benefit from the Safety Evaluation Tool. Cover Sheet Functional Safety One Position switch SIRIUS 3SE5 FAQ November 2010 Safe Machine Concepts without Detours benefit from the Safety Evaluation Tool. Service & Support Answers for industry. Question

More information

Redundancy. For maximum plant availability.

Redundancy. For maximum plant availability. Redundancy For maximum plant availability. 1 Safety net in case of an incident Redundant systems maximize availability and secure productivity Malfunctions and failures in important operating components

More information

Dependability tree 1

Dependability tree 1 Dependability tree 1 Means for achieving dependability A combined use of methods can be applied as means for achieving dependability. These means can be classified into: 1. Fault Prevention techniques

More information

CTFL -Automotive Software Tester Sample Exam Paper Syllabus Version 2.0

CTFL -Automotive Software Tester Sample Exam Paper Syllabus Version 2.0 Surname, Forename: Gender: male female Company address: Telephone: Fax: E-mail-address: Invoice address: Training provider: Trainer: CTFL -Automotive Software Tester Sample Exam Paper Syllabus Version

More information

Driver Assistance Pushes New Flash Functionalities

Driver Assistance Pushes New Flash Functionalities Driver Assistance Pushes New Flash Functionalities Anil Gupta Technical Executive Winbond Electronics Corporation Santa Clara, CA 1 Automotive and ADAS terminology ECC use to increase reliability of Flash

More information

Increasing of Reliability of FPGA Implemented Microcontroller Using the Error Self Correcting Techniques

Increasing of Reliability of FPGA Implemented Microcontroller Using the Error Self Correcting Techniques Journal of Communication and Computer 12 (2015) 219-227 doi: 10.17265/1548-7709/2015.05.001 D DAVID PUBLISHING Increasing of Reliability of FPGA Implemented Microcontroller Using the Error Self Correcting

More information

Automotive Functional Safety

Automotive Functional Safety Automotive Functional Safety Complexity, Confidence, Compliance, Certification Farmington, 2018-03-22 23.03.2018 150 years TÜV SÜD 150 years of inspiring trust Inspiring trust since 1866 The year 2016

More information

Self-checking combination and sequential networks design

Self-checking combination and sequential networks design Self-checking combination and sequential networks design Tatjana Nikolić Faculty of Electronic Engineering Nis, Serbia Outline Introduction Reliable systems Concurrent error detection Self-checking logic

More information

Components & Characteristics of an Embedded System Embedded Operating System Application Areas of Embedded d Systems. Embedded System Components

Components & Characteristics of an Embedded System Embedded Operating System Application Areas of Embedded d Systems. Embedded System Components Components & Characteristics of an Embedded System Embedded Operating System Application Areas of Embedded d Systems Automotive Industrial Automation Building Automation etc. 1 2 Embedded System Components

More information

Design and Synthesis for Test

Design and Synthesis for Test TDTS 80 Lecture 6 Design and Synthesis for Test Zebo Peng Embedded Systems Laboratory IDA, Linköping University Testing and its Current Practice To meet user s quality requirements. Testing aims at the

More information

EXPERIENCES FROM MODEL BASED DEVELOPMENT OF DRIVE-BY-WIRE CONTROL SYSTEMS

EXPERIENCES FROM MODEL BASED DEVELOPMENT OF DRIVE-BY-WIRE CONTROL SYSTEMS EXPERIENCES FROM MODEL BASED DEVELOPMENT OF DRIVE-BY-WIRE CONTROL SYSTEMS Per Johannessen 1, Fredrik Törner 1 and Jan Torin 2 1 Volvo Car Corporation, Department 94221, ELIN, SE-405 31 Göteborg, SWEDEN;

More information

ELEC 5260/6260/6266 Embedded Computing Systems

ELEC 5260/6260/6266 Embedded Computing Systems ELEC 5260/6260/6266 Embedded Computing Systems Spring 2018 Victor P. Nelson Text: Computers as Components, 4 th Edition Prof. Marilyn Wolf (Georgia Tech) Course Web Page: http://www.eng.auburn.edu/~nelsovp/courses/elec5260_6260/

More information

SAFETY & MESUREMENT SERIE SG-BODY BIG

SAFETY & MESUREMENT SERIE SG-BODY BIG safety BODY PROTECTION LIGHT CURTAINS SERIE SG-BODY BIG reflector The new SG BODY BIG safety light curtain series thanks to its new housing together with the innovative design optical-electronic platform

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 18 Chapter 7 Case Studies Part.18.1 Introduction Illustrate practical use of methods described previously Highlight fault-tolerance

More information

16-Channel Digital Output Module 120Vac/dc

16-Channel Digital Output Module 120Vac/dc Triguard SC300E MDO16FNS 16-Channel Digital Output Module 120Vac/dc (MDO16FNS) Issue 4 October 2005 INTRODUCTION PURPOSE The 120Vac/dc Digital Output Module MDO16FNS provides the output control interface

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Limit Switch Box Customer: EUROTEC Antriebszubehör GmbH Kressbronn Germany Contract No.: EUROTEC 10/01-84 Report No.: EUROTEC 10/01-84 R001 Version

More information

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, MN USA

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, MN USA Failure Modes, Effects and Diagnostic Analysis Project: 8732C Magnetic Flow Transmitter Customer: Rosemount Inc. Chanhassen, MN USA Contract No.: Ros 03/07-26 Report No.: Ros 03/07-26 R001 Version V1,

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Solenoid Drivers IM72-11Ex/L and IM72-22Ex/L Customer: Hans Turck GmbH & Co. KG Mühlheim Germany Contract No.: TURCK 04/10-20 Report No.: TURCK 04/10-20

More information

T57 - Process Safety and Critical Control What Solution Best Meets Your Needs?

T57 - Process Safety and Critical Control What Solution Best Meets Your Needs? PUBLIC - 5058-CO900H T57 - Process Safety and Critical Control What Solution Best Meets Your Needs? PUBLIC PUBLIC Agenda Introduction To Process Safety Process Safety and Machine Safety Things to Consider

More information

FlexRay The Hardware View

FlexRay The Hardware View A White Paper Presented by IPextreme FlexRay The Hardware View Stefan Schmechtig / Jens Kjelsbak February 2006 FlexRay is an upcoming networking standard being established to raise the data rate, reliability,

More information

ISO compliant verification of functional requirements in the model-based software development process

ISO compliant verification of functional requirements in the model-based software development process requirements in the model-based software development process Hans J. Holberg SVP Marketing & Sales, BTC Embedded Systems AG An der Schmiede 4, 26135 Oldenburg, Germany hans.j.holberg@btc-es.de Dr. Udo

More information

Report. Certificate M6A SIMATIC Safety System

Report. Certificate M6A SIMATIC Safety System Report to the Certificate M6A 067803 0019 Safety-Related Programmable Systems SIMATIC Safety System Manufacturer: Siemens AG Gleiwitzer Str. 555 D-90475 Nürnberg Revision 2.1 dated 2018-09-25 Testing Body:

More information

UM1741. STM32F0 Series safety manual. User manual. Introduction

UM1741. STM32F0 Series safety manual. User manual. Introduction User manual STM32F0 Series safety manual Introduction This document describes how to use the microcontrollers of the STM32F0 Series in the context of a safety-related system, specifying the user's responsibilities

More information

Fault Tolerance. The Three universe model

Fault Tolerance. The Three universe model Fault Tolerance High performance systems must be fault-tolerant: they must be able to continue operating despite the failure of a limited subset of their hardware or software. They must also allow graceful

More information

On Design for Reliability

On Design for Reliability On Design for Reliability of Electronics in Nanosatellite Olga Mamoutova (presenter) Andrey Antonov Peter the Great St. Petersburg State Polytechnic University, Russia Dpt. of Computer Systems & Software

More information

Best Practices Process & Technology. Sachin Dhiman, Senior Technical Consultant, LDRA

Best Practices Process & Technology. Sachin Dhiman, Senior Technical Consultant, LDRA Best Practices Process & Technology Sachin Dhiman, Senior Technical Consultant, LDRA Best Quality Software Product Requirements Design Coding Testing 2 Product Requirement Feature Requirement Security

More information