Efficient Processing of Multiple DTW Queries in Time Series Databases

Size: px
Start display at page:

Download "Efficient Processing of Multiple DTW Queries in Time Series Databases"

Transcription

1 Efficient Processing of Multiple DTW Queries in Time Series Databases Hardy Kremer 1 Stephan Günnemann 1 Anca-Maria Ivanescu 1 Ira Assent 2 Thomas Seidl 1 1 RWTH Aachen University, Germany 2 Aarhus University, Denmark SSDBM 2011, Portland, Oregon, USA July 20-22, 2011

2 Time Series Similarity Search Time series Sequence of time related values Stock data, sensor data, EEG measurements, climate data,... Similarity search Find time series with similar patterns over time value (t i) [mv] time series from EEG data set point in time (i) with e.g., Euclidean Distance only corresponding Time Points are compared But: In many applications, time series are out-of-sync. Efficient Processing of Multiple DTW Queries 1 / 22

3 Dynamic Time Warping Dynamic Time Warping DTW with k-band DTW: Distance between time series is based on new alignment. Matching by stretching & scaling along time axis. k-band constraint avoids degenerate warpings. Efficient processing Quadratic complexity in length of time series There are many efficient query processing algorithms good for single, ad-hoc queries Efficient Processing of Multiple DTW Queries 2 / 22

4 Multiple Query Processing for DTW Today s applications massive amounts of queries need to be processed in limited time: Sensor networks timely reaction to events Data Mining applications Scalability Interactive Visualization Interactiveness Often, queries may be similar or even share subsequences. E.g., determine the transitive closure in density-based clustering. Definition: Multiple DTW Range Query Input: set of time series queries Q = { q 1,..., q c}, database DB, range ɛ Output: multiple result sets Res i (DB) = {t DB DTW (q, t) ɛ} with i = 1,..., c. Later on: k NN-queries Efficient Processing of Multiple DTW Queries 3 / 22

5 Multiple Query Processing for DTW (2) Definition: Multiple DTW Range Query Input: Output: set of time series queries Q = { q 1,..., q c}, database DB, range ɛ multiple result sets Res i (DB) = {t DB DTW (q, t) ɛ} with i = 1,..., c. Our novel approach... exploits the similarity among queries, for combined pruning. uses a nested hierarchy of query subgroups, for pruning of smaller and more similar query subsets. is combinable with existing single DTW query approaches. guarantees exact results. Efficient Processing of Multiple DTW Queries 4 / 22

6 Overview 1 Preliminaries 2 Processing of Multiple DTW Queries 3 Experiments 4 Conclusion Efficient Processing of Multiple DTW Queries 5 / 22

7 DTW Definition k-band DTW DTW ([s 1,..., s n ], [t 1,..., t m ]) = DTW ([s 1,..., s n 1 ], [t 1,..., t m 1 ]) dist band (s n, t m ) + min DTW ([s 1,..., s n ], [t 1,..., t m 1 ]) DTW ([s 1,..., s n 1 ], [t 1,..., t m ]) with { dist(si, t dist band (s i, t j ) = j ) i j k else DTW (, ) = 0, DTW (x, ) =, DTW (, y) = Distance between points is measured by ground distance dist(s i, t j ) Efficient Processing of Multiple DTW Queries 6 / 22

8 Efficient, exact single query DTW processing DTW is computationally expensive Many approaches use multistep filter-and-refine architecture If filter lower bounds DTW lossless There are filters that achieve substantial speed-ups, e.g. LBKeogh query index (filter) candidates refinement database (exact) result Figure: Multistep filter-and-refine architecture Efficient Processing of Multiple DTW Queries 7 / 22

9 Baseline Solution for Multiple DTW Processing Independent processing of each query of query set Q I.e., each single query passes through filter cascade w.r.t. whole DB DB q 1 Res q1,d1 1 Res q1,d2 1 dist 1 q dist 2 DB q q dist 1 Res q2,d1 dist Res q2,d2 2 q q DTW DTW does not exploit knowledge about whole query set Q. In our approach, queries are processed simultaneously. Efficient Processing of Multiple DTW Queries 8 / 22

10 Overview 1 Preliminaries 2 Processing of Multiple DTW Queries 3 Experiments 4 Conclusion Efficient Processing of Multiple DTW Queries 9 / 22

11 Multiple Query Distance Function: Idea For simultaneous processing, we need a distance function between several query objects and a database object. One single calculation for several queries. DB Q multidtw Res Q... q1 DTW Res 1 q2 DTW Res 2 3 q DTW Res 3 No matching query in Q if multidtw (Q, t) > ɛ pruning. Shared Lower Bounding Property for preventing false dismissals: for all Q, t : q Q : multidtw (Q, t) DTW (q, t) Efficient Processing of Multiple DTW Queries 10 / 22

12 Multiple Query Distance Function: Solution We use a compact, single representation of a time series query set, called Multiple Query Bounding Box: multibox(q) = [(L 1, U 1 ),..., (L n, U n )] = [B 1,..., B n ] with L i = min q Q q i and U i = max q Q q i t L U Final multidtw function uses the minimal distance from time series t to a MultiBox B as DTW ground distance: t j U i if t j > U i dist(b i, t j ) = dist((l i, U i ), t j ) = t j L i if t j < L i 0 otherwise Efficient Processing of Multiple DTW Queries 11 / 22

13 Multiple Query Tree one single group = one single query to be processed BUT: we have a relatively large intermediate result set Res Q. smaller, more similar groups could reduce the intermediate result size. We introduce a hierarchy of query sets with: Q, Q Q, p : multidtw (Q, p) multidtw (Q, p) DB Q multidtw Res Q Q multidtw Q multidtw Q multidtw Res Q Res Q... q DTW 5 7 q DTW Res Q... Trade-off: smaller intermediate sets vs. higher computational costs Efficient Processing of Multiple DTW Queries 12 / 22

14 Filter-supported Hierarchical Multiple DTW Query Existing filter techniques are orthogonal to our approach. Flexibility w.r.t. pruning. In each node of the tree we can either go to new query granularity, i.e. by splitting the query group, or use a new lower bound filter.... DB Q multidist 2 Res Q,d2 Q Q Q multidist 2 multidist 2 multidist 2 Res Q,d2 Q multidist 1 Res Q,d1 Q multidist 1 Q multidist 1 Q multidist 1 Res Q,d1 Res Q,d1 Res Q,d1 Res Q,d2 Res Q,d2 q DTW q DTW Efficient Processing of Multiple DTW Queries 13 / 22

15 Multiple DTW knn Query (1) Definition: Multiple DTW k NN Query Input: set of time series queries Q = { q 1,..., q c}, database DB, k Output: multiple result sets Res i (DB) with Res i (DB) = k and t Res i (DB) s DB\Res i (DB) : DTW (q i, t) DTW (q i, s) for all i = 1,..., c. Efficient Processing of Multiple DTW Queries 14 / 22

16 Multiple DTW knn Query (2) k NN Processing For knn queries the ɛ range for pruning is not known a priori. We need one moving threshold per query subgroup for each query we have a current set of k result both are constantly updated... DB Q multidist 2 Res Q,d2 Q Q Q multidist 2 multidist 2 multidist 2 Res Q,d2 Q multidist 1 Res Q,d1 Q multidist 1 Q multidist 1 Q multidist 1 Res Q,d1 Res Q,d1 Res Q,d1 Res Q,d2 Res Q,d2 q DTW q DTW Efficient Processing of Multiple DTW Queries 15 / 22

17 Overview 1 Preliminaries 2 Processing of Multiple DTW Queries 3 Experiments 4 Conclusion Efficient Processing of Multiple DTW Queries 16 / 22

18 Experimental Evaluation: Setup Our approach: Linear scan to process database time series, but usage of an index & dimensionality reduction is also possible Measurements: Wall clock time averaged over 10 queries relative number of exact refinements Multiple Query generator: for each Multiple Query, we select S random seeds for each seed, we generate g queries deviating from the seed by a standard deviation of 10% As default, we use 8 seeds and 5 generated queries per seed, resulting in 40 queries per multiple query. Efficient Processing of Multiple DTW Queries 17 / 22

19 Comparison of the three variants of our method average query time [s] multidtw MQ Tree FSMQ Tree Range Query NN Query refinements [%] multidtw MQ Tree FSMQ Tree Range Query NN Query Random Walk data both MQ-tree and the FSMQ-tree dramatically reduce the number of exact DTW calculations. Filter support has significant influence on efficiency. Efficient Processing of Multiple DTW Queries 18 / 22

20 Number of individual queries per multiple query average query time [s] LB_Keogh FSMQ rel. improv number of queries per multiple query relative improvement [%] refinements [%] LB_Keogh FSMQ number of queries per multiple query EEG real world data, knn queries the runtime of the single query solution increases much faster. Efficient Processing of Multiple DTW Queries 19 / 22

21 Scalabilty: Time Series Length average query times [s] LB_Keogh FSMQ rel. improv ,600 time series length relative improvement [%] refinements [%] LB_Keogh FSMQ ,600 time series length EEG real world data, knn queries Filter LBKEogh has problems with the large scatter in EEG data. Grouping by similarity is the method of choice here. Efficient Processing of Multiple DTW Queries 20 / 22

22 Overview 1 Preliminaries 2 Processing of Multiple DTW Queries 3 Experiments 4 Conclusion Efficient Processing of Multiple DTW Queries 21 / 22

23 Conclusion In this talk, I discussed an approach that... processes multiple DTW queries... exploits the similarity among queries.... uses a nested hierarchy of query subgroups.... is orthogonal to existing single DTW query approaches.... guarantees exact results.... outperforms the baseline solution. Efficient Processing of Multiple DTW Queries 22 / 22

24 Conclusion In this talk, I discussed an approach that... processes multiple DTW queries... exploits the similarity among queries.... uses a nested hierarchy of query subgroups.... is orthogonal to existing single DTW query approaches.... guarantees exact results.... outperforms the baseline solution. Thank you for your attention. Questions? Efficient Processing of Multiple DTW Queries 22 / 22

Efficient Similarity Search in Scientific Databases with Feature Signatures

Efficient Similarity Search in Scientific Databases with Feature Signatures DATA MANAGEMENT AND DATA EXPLORATION GROUP Prof. Dr. rer. nat. Thomas Seidl DATA MANAGEMENT AND DATA EXPLORATION GROUP Prof. Dr. rer. nat. Thomas Seidl Efficient Similarity Search in Scientific Databases

More information

Generalizing the Optimality of Multi-Step k-nearest Neighbor Query Processing

Generalizing the Optimality of Multi-Step k-nearest Neighbor Query Processing Generalizing the Optimality of Multi-Step k-nearest Neighbor Query Processing SSTD 2007 Boston, U.S.A. Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz Institute for Computer Science University

More information

AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery

AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery : Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery Hong Cheng Philip S. Yu Jiawei Han University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center {hcheng3, hanj}@cs.uiuc.edu,

More information

Chapter 5: Outlier Detection

Chapter 5: Outlier Detection Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 5: Outlier Detection Lecture: Prof. Dr.

More information

doc. RNDr. Tomáš Skopal, Ph.D. Department of Software Engineering, Faculty of Information Technology, Czech Technical University in Prague

doc. RNDr. Tomáš Skopal, Ph.D. Department of Software Engineering, Faculty of Information Technology, Czech Technical University in Prague Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond course: Searching the Web and Multimedia Databases (BI-VWM) Tomáš Skopal, 2011 SS2010/11 doc. RNDr. Tomáš Skopal, Ph.D. Department of

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

Evaluation of Lower Bounding Methods of Dynamic Time Warping (DTW)

Evaluation of Lower Bounding Methods of Dynamic Time Warping (DTW) Evaluation of Lower Bounding Methods of Dynamic Time Warping (DTW) Happy Nath Department of CSE, NIT Silchar Cachar,India Ujwala Baruah Department of CSE, NIT Silchar Cachar,India ABSTRACT This paper presents

More information

Predictive Indexing for Fast Search

Predictive Indexing for Fast Search Predictive Indexing for Fast Search Sharad Goel, John Langford and Alex Strehl Yahoo! Research, New York Modern Massive Data Sets (MMDS) June 25, 2008 Goel, Langford & Strehl (Yahoo! Research) Predictive

More information

Evaluating Clustering in Subspace Projections of High Dimensional Data

Evaluating Clustering in Subspace Projections of High Dimensional Data Evaluating Clustering in Subspace Projections of High Dimensional Data Emmanuel Müller Stephan Günnemann Ira Assent Thomas Seidl Data Management and Data Exploration Group RWTH Aachen University, Germany

More information

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC MIKE GOWANLOCK NORTHERN ARIZONA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING & CYBER SYSTEMS BEN KARSIN UNIVERSITY OF HAWAII AT MANOA DEPARTMENT

More information

Proximity and Data Pre-processing

Proximity and Data Pre-processing Proximity and Data Pre-processing Slide 1/47 Proximity and Data Pre-processing Huiping Cao Proximity and Data Pre-processing Slide 2/47 Outline Types of data Data quality Measurement of proximity Data

More information

CLUSTERING ALGORITHMS

CLUSTERING ALGORITHMS CLUSTERING ALGORITHMS Number of possible clusterings Let X={x 1,x 2,,x N }. Question: In how many ways the N points can be Answer: Examples: assigned into m groups? S( N, m) 1 m! m i 0 ( 1) m 1 m i i N

More information

Multi-Step Density-Based Clustering

Multi-Step Density-Based Clustering Multi-Step Density-Based Clustering Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle Institute for Informatics, University of Munich Oettingenstr. 67, 80538 Munich, Germany {brecheis,kriegel,pfeifle}@dbs.ifi.lmu.de

More information

Exploiting Parallelism to Support Scalable Hierarchical Clustering

Exploiting Parallelism to Support Scalable Hierarchical Clustering Exploiting Parallelism to Support Scalable Hierarchical Clustering Rebecca Cathey, Eric Jensen, Steven Beitzel, Ophir Frieder, David Grossman Information Retrieval Laboratory http://ir.iit.edu Background

More information

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Devina Desai ddevina1@csee.umbc.edu Tim Oates oates@csee.umbc.edu Vishal Shanbhag vshan1@csee.umbc.edu Machine Learning

More information

Knowledge Discovery in Databases II Summer Term 2017

Knowledge Discovery in Databases II Summer Term 2017 Ludwig Maximilians Universität München Institut für Informatik Lehr und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases II Summer Term 2017 Lecture 3: Sequence Data Lectures : Prof.

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

Towards Approximate Computing: Programming with Relaxed Synchronization

Towards Approximate Computing: Programming with Relaxed Synchronization Towards Approximate Computing: Programming with Relaxed Synchronization Lakshminarayanan Renganarayana Vijayalakshmi Srinivasan Ravi Nair (presenting) Dan Prener IBM T.J. Watson Research Center October

More information

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data Lecture Information Retrieval for Music and Motion Meinard Müller and Andreas Baak Summer Term 2008 Motion Capture Data Digital 3D representations of motions Computer animation Sports Gait analysis 2 Motion

More information

Searching and mining sequential data

Searching and mining sequential data Searching and mining sequential data! Panagiotis Papapetrou Professor, Stockholm University Adjunct Professor, Aalto University Disclaimer: some of the images in slides 62-69 have been taken from UCR and

More information

Introduction to Computer Science

Introduction to Computer Science DM534 Introduction to Computer Science Clustering and Feature Spaces Richard Roettger: About Me Computer Science (Technical University of Munich and thesis at the ICSI at the University of California at

More information

Tree Based Index (TBI) System. Getting Started with TBI

Tree Based Index (TBI) System. Getting Started with TBI Tree Based Index (TBI) System Getting Started with TBI Jia Xu 1 Zhenjie Zhang 2 Anthony K. H. Tung 2 Ge Yu 1 1 {xujia,yuge}@ise.neu.edu.cn 2 {zhenjie,atung}@comp.nus.edu.sg May 5, 2010 1 System Introduction

More information

Processing Rank-Aware Queries in P2P Systems

Processing Rank-Aware Queries in P2P Systems Processing Rank-Aware Queries in P2P Systems Katja Hose, Marcel Karnstedt, Anke Koch, Kai-Uwe Sattler, and Daniel Zinn Department of Computer Science and Automation, TU Ilmenau P.O. Box 100565, D-98684

More information

Data Mining and Machine Learning: Techniques and Algorithms

Data Mining and Machine Learning: Techniques and Algorithms Instance based classification Data Mining and Machine Learning: Techniques and Algorithms Eneldo Loza Mencía eneldo@ke.tu-darmstadt.de Knowledge Engineering Group, TU Darmstadt International Week 2019,

More information

DeLiClu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair Ranking

DeLiClu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair Ranking In Proc. 10th Pacific-Asian Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD'06), Singapore, 2006 DeLiClu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Data Mining Algorithms

Data Mining Algorithms for the original version: -JörgSander and Martin Ester - Jiawei Han and Micheline Kamber Data Management and Exploration Prof. Dr. Thomas Seidl Data Mining Algorithms Lecture Course with Tutorials Wintersemester

More information

MICROSOFT BUSINESS INTELLIGENCE

MICROSOFT BUSINESS INTELLIGENCE SSIS MICROSOFT BUSINESS INTELLIGENCE 1) Introduction to Integration Services Defining sql server integration services Exploring the need for migrating diverse Data the role of business intelligence (bi)

More information

Lesson 3. Prof. Enza Messina

Lesson 3. Prof. Enza Messina Lesson 3 Prof. Enza Messina Clustering techniques are generally classified into these classes: PARTITIONING ALGORITHMS Directly divides data points into some prespecified number of clusters without a hierarchical

More information

A Bandwidth- Efficient Nearest Neighbor Search for Dynamic Time Warping Distance in Distributed Environment

A Bandwidth- Efficient Nearest Neighbor Search for Dynamic Time Warping Distance in Distributed Environment A Bandwidth- Efficient Nearest Neighbor Search for Dynamic Time Warping Distance in Distributed Environment Intel Team Topic 3 Pernghwa, Chin- Chi, Yen- Hua, Kung- Ting Problem DescripIon Time series are

More information

TrajStore: an Adaptive Storage System for Very Large Trajectory Data Sets

TrajStore: an Adaptive Storage System for Very Large Trajectory Data Sets TrajStore: an Adaptive Storage System for Very Large Trajectory Data Sets Philippe Cudré-Mauroux Eugene Wu Samuel Madden Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Mining Data Streams. Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction. Summarization Methods. Clustering Data Streams

Mining Data Streams. Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction. Summarization Methods. Clustering Data Streams Mining Data Streams Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction Summarization Methods Clustering Data Streams Data Stream Classification Temporal Models CMPT 843, SFU, Martin Ester, 1-06

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Reverse k-nearest Neighbor Search in Dynamic and General Metric Databases

Reverse k-nearest Neighbor Search in Dynamic and General Metric Databases 12th Int. Conf. on Extending Database Technology (EDBT'9), Saint-Peterburg, Russia, 29. Reverse k-nearest Neighbor Search in Dynamic and General Metric Databases Elke Achtert Hans-Peter Kriegel Peer Kröger

More information

ProUD: Probabilistic Ranking in Uncertain Databases

ProUD: Probabilistic Ranking in Uncertain Databases Proc. 20th Int. Conf. on Scientific and Statistical Database Management (SSDBM'08), Hong Kong, China, 2008. ProUD: Probabilistic Ranking in Uncertain Databases Thomas Bernecker, Hans-Peter Kriegel, Matthias

More information

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES CONFERENCES Short Name SIGMOD Full Name Special Interest Group on Management Of Data CONTINUOUS NEAREST NEIGHBOR SEARCH Yufei Tao, Dimitris Papadias, Qiongmao Shen Hong Kong University of Science and Technology

More information

Extending High-Dimensional Indexing Techniques Pyramid and iminmax(θ) : Lessons Learned

Extending High-Dimensional Indexing Techniques Pyramid and iminmax(θ) : Lessons Learned Extending High-Dimensional Indexing Techniques Pyramid and iminmax(θ) : Lessons Learned Karthik Ganesan Pillai, Liessman Sturlaugson, Juan M. Banda, and Rafal A. Angryk Montana State University, Bozeman,

More information

Pay-As-You-Go Entity Resolution

Pay-As-You-Go Entity Resolution Pay-As-You-Go Entity Resolution Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina, Member, IEEE Abstract Entity resolution (ER) is the problem of identifying which records in a database refer

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Scalable Clustering Methods: BIRCH and Others Reading: Chapter 10.3 Han, Chapter 9.5 Tan Cengiz Gunay, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei.

More information

Bumptrees for Efficient Function, Constraint, and Classification Learning

Bumptrees for Efficient Function, Constraint, and Classification Learning umptrees for Efficient Function, Constraint, and Classification Learning Stephen M. Omohundro International Computer Science Institute 1947 Center Street, Suite 600 erkeley, California 94704 Abstract A

More information

Constrained Skyline Query Processing against Distributed Data Sites

Constrained Skyline Query Processing against Distributed Data Sites Constrained Skyline Query Processing against Distributed Data Divya.G* 1, V.Ranjith Naik *2 1,2 Department of Computer Science Engineering Swarnandhra College of Engg & Tech, Narsapuram-534280, A.P., India.

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/25/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

More information

Introduction to Similarity Search in Multimedia Databases

Introduction to Similarity Search in Multimedia Databases Introduction to Similarity Search in Multimedia Databases Tomáš Skopal Charles University in Prague Faculty of Mathematics and Phycics SIRET research group http://siret.ms.mff.cuni.cz March 23 rd 2011,

More information

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks in Band-Limited Distributed Camera Networks Allen Y. Yang, Subhransu Maji, Mario Christoudas, Kirak Hong, Posu Yan Trevor Darrell, Jitendra Malik, and Shankar Sastry Fusion, 2009 Classical Object Recognition

More information

Clustering from Data Streams

Clustering from Data Streams Clustering from Data Streams João Gama LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt 1 Introduction 2 Clustering Micro Clustering 3 Clustering Time Series Growing the Structure Adapting

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Erik Velldal & Stephan Oepen Language Technology Group (LTG) September 23, 2015 Agenda Last week Supervised vs unsupervised learning.

More information

Automatic Cluster Number Selection using a Split and Merge K-Means Approach

Automatic Cluster Number Selection using a Split and Merge K-Means Approach Automatic Cluster Number Selection using a Split and Merge K-Means Approach Markus Muhr and Michael Granitzer 31st August 2009 The Know-Center is partner of Austria's Competence Center Program COMET. Agenda

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

Facet: Multiple View Methods

Facet: Multiple View Methods Facet: Multiple View Methods Large Data Visualization Torsten Möller Overview Combining views Partitioning Coordinating Multiple Side-by-Side Views Encoding Channels Shared Data Shared Navigation Synchronized

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Hierarchical Local Maps for Robust Approximate Nearest Neighbor Computation

Hierarchical Local Maps for Robust Approximate Nearest Neighbor Computation Hierarchical Local Maps for Robust Approximate Nearest Neighbor Computation Pratyush Bhatt and Anoop Namboodiri Center for Visual Information Technology, IIIT, Hyderabad, 500032, India {bhatt@research.,

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Hierarchical GEMINI - Hierarchical linear subspace indexing method

Hierarchical GEMINI - Hierarchical linear subspace indexing method Hierarchical GEMINI - Hierarchical linear subspace indexing method GEneric Multimedia INdexIng DB in feature space Range Query Linear subspace sequence method DB in subspace Generic constraints Computing

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

Clustering in Ratemaking: Applications in Territories Clustering

Clustering in Ratemaking: Applications in Territories Clustering Clustering in Ratemaking: Applications in Territories Clustering Ji Yao, PhD FIA ASTIN 13th-16th July 2008 INTRODUCTION Structure of talk Quickly introduce clustering and its application in insurance ratemaking

More information

Fast Design Space Subsetting. University of Florida Electrical and Computer Engineering Department Embedded Systems Lab

Fast Design Space Subsetting. University of Florida Electrical and Computer Engineering Department Embedded Systems Lab Fast Design Space Subsetting University of Florida Electrical and Computer Engineering Department Embedded Systems Lab Motivation & Greater Impact Energy & Data Centers Estimated¹ energy by servers data

More information

Clustering (COSC 488) Nazli Goharian. Document Clustering.

Clustering (COSC 488) Nazli Goharian. Document Clustering. Clustering (COSC 488) Nazli Goharian nazli@ir.cs.georgetown.edu 1 Document Clustering. Cluster Hypothesis : By clustering, documents relevant to the same topics tend to be grouped together. C. J. van Rijsbergen,

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Murhaf Fares & Stephan Oepen Language Technology Group (LTG) September 27, 2017 Today 2 Recap Evaluation of classifiers Unsupervised

More information

Notes. Reminder: HW2 Due Today by 11:59PM. Review session on Thursday. Midterm next Tuesday (10/09/2018)

Notes. Reminder: HW2 Due Today by 11:59PM. Review session on Thursday. Midterm next Tuesday (10/09/2018) 1 Notes Reminder: HW2 Due Today by 11:59PM TA s note: Please provide a detailed ReadMe.txt file on how to run the program on the STDLINUX. If you installed/upgraded any package on STDLINUX, you should

More information

Oblivious Routing on Geometric Networks

Oblivious Routing on Geometric Networks Oblivious Routing on Geometric Networks Costas Busch, Malik Magdon-Ismail and Jing Xi {buschc,magdon,xij2}@cs.rpi.edu July 20, 2005. Outline Oblivious Routing: Background and Our Contribution The Algorithm:

More information

This paper proposes: Mining Frequent Patterns without Candidate Generation

This paper proposes: Mining Frequent Patterns without Candidate Generation Mining Frequent Patterns without Candidate Generation a paper by Jiawei Han, Jian Pei and Yiwen Yin School of Computing Science Simon Fraser University Presented by Maria Cutumisu Department of Computing

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

Data Structures for Approximate Proximity and Range Searching

Data Structures for Approximate Proximity and Range Searching Data Structures for Approximate Proximity and Range Searching David M. Mount University of Maryland Joint work with: Sunil Arya (Hong Kong U. of Sci. and Tech) Charis Malamatos (Max Plank Inst.) 1 Introduction

More information

Market basket analysis

Market basket analysis Market basket analysis Find joint values of the variables X = (X 1,..., X p ) that appear most frequently in the data base. It is most often applied to binary-valued data X j. In this context the observations

More information

ADS: The Adaptive Data Series Index

ADS: The Adaptive Data Series Index Noname manuscript No. (will be inserted by the editor) ADS: The Adaptive Data Series Index Kostas Zoumpatianos Stratos Idreos Themis Palpanas the date of receipt and acceptance should be inserted later

More information

A Fast Algorithm for Data Mining. Aarathi Raghu Advisor: Dr. Chris Pollett Committee members: Dr. Mark Stamp, Dr. T.Y.Lin

A Fast Algorithm for Data Mining. Aarathi Raghu Advisor: Dr. Chris Pollett Committee members: Dr. Mark Stamp, Dr. T.Y.Lin A Fast Algorithm for Data Mining Aarathi Raghu Advisor: Dr. Chris Pollett Committee members: Dr. Mark Stamp, Dr. T.Y.Lin Our Work Interested in finding closed frequent itemsets in large databases Large

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search Pivoting M-tree: A Metric Access Method for Efficient Similarity Search Tomáš Skopal Department of Computer Science, VŠB Technical University of Ostrava, tř. 17. listopadu 15, Ostrava, Czech Republic tomas.skopal@vsb.cz

More information

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects Part 7: Collision Detection Virtuelle Realität Wintersemester 2007/08 Prof. Bernhard Jung Overview Bounding Volumes Separating Axis Theorem Using Bounding Volume Hierarchies Efficient Collision Detection

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Fast Reliability Search in Uncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo

Fast Reliability Search in Uncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo Fast Reliability earch in ncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo ystems Group, ETH Zurich Yahoo Labs, pain Aalto niversity, Finland ncertain Graphs 0.2 0.1 T ocial

More information

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Clustering Billions of Images with Large Scale Nearest Neighbor Search Clustering Billions of Images with Large Scale Nearest Neighbor Search Ting Liu, Charles Rosenberg, Henry A. Rowley IEEE Workshop on Applications of Computer Vision February 2007 Presented by Dafna Bitton

More information

Cluster Analysis for Microarray Data

Cluster Analysis for Microarray Data Cluster Analysis for Microarray Data Seventh International Long Oligonucleotide Microarray Workshop Tucson, Arizona January 7-12, 2007 Dan Nettleton IOWA STATE UNIVERSITY 1 Clustering Group objects that

More information

arxiv: v3 [cs.db] 1 Dec 2017

arxiv: v3 [cs.db] 1 Dec 2017 Efficient Error-tolerant Search on Knowledge Graphs Zhaoyang Shao University of Alberta zhaoyang@ualberta.ca Davood Rafiei University of Alberta drafiei@ualberta.ca Themis Palpanas Paris Descartes University

More information

TAPER: A Two-Step Approach for All-strong-pairs. Correlation Query in Large Databases

TAPER: A Two-Step Approach for All-strong-pairs. Correlation Query in Large Databases IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2X TAPER: A Two-Step Approach for All-strong-pairs Correlation Query in Large Databases Hui Xiong, Student Member, IEEE, Shashi Shekhar,

More information

Ranked Subsequence Matching in Time-Series Databases

Ranked Subsequence Matching in Time-Series Databases Ranked Subsequence Matching in TimeSeries Databases ABSTRACT WookShin Han Department of Computer Engineering Kyungpook National University Republic of Korea wshan@knu.ac.kr YangSae Moon Department of Computer

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/28/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

More information

Clustering and Dimensionality Reduction

Clustering and Dimensionality Reduction Clustering and Dimensionality Reduction Some material on these is slides borrowed from Andrew Moore's excellent machine learning tutorials located at: Data Mining Automatically extracting meaning from

More information

Modeling with Uncertainty Interval Computations Using Fuzzy Sets

Modeling with Uncertainty Interval Computations Using Fuzzy Sets Modeling with Uncertainty Interval Computations Using Fuzzy Sets J. Honda, R. Tankelevich Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, U.S.A. Abstract A new method

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes

Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes Patricia Iglesias, Emmanuel Müller, Oretta Irmler, Klemens Böhm International Conference on Scientific and Statistical

More information

Prototype Selection for Handwritten Connected Digits Classification

Prototype Selection for Handwritten Connected Digits Classification 2009 0th International Conference on Document Analysis and Recognition Prototype Selection for Handwritten Connected Digits Classification Cristiano de Santana Pereira and George D. C. Cavalcanti 2 Federal

More information

Multiresolution Motif Discovery in Time Series

Multiresolution Motif Discovery in Time Series Tenth SIAM International Conference on Data Mining Columbus, Ohio, USA Multiresolution Motif Discovery in Time Series NUNO CASTRO PAULO AZEVEDO Department of Informatics University of Minho Portugal April

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Course Content. Objectives of Lecture? CMPUT 391: Spatial Data Management Dr. Jörg Sander & Dr. Osmar R. Zaïane. University of Alberta

Course Content. Objectives of Lecture? CMPUT 391: Spatial Data Management Dr. Jörg Sander & Dr. Osmar R. Zaïane. University of Alberta Database Management Systems Winter 2002 CMPUT 39: Spatial Data Management Dr. Jörg Sander & Dr. Osmar. Zaïane University of Alberta Chapter 26 of Textbook Course Content Introduction Database Design Theory

More information

HYRISE In-Memory Storage Engine

HYRISE In-Memory Storage Engine HYRISE In-Memory Storage Engine Martin Grund 1, Jens Krueger 1, Philippe Cudre-Mauroux 3, Samuel Madden 2 Alexander Zeier 1, Hasso Plattner 1 1 Hasso-Plattner-Institute, Germany 2 MIT CSAIL, USA 3 University

More information

RUBIK: Efficient Threshold Queries on Massive Time Series

RUBIK: Efficient Threshold Queries on Massive Time Series RUBIK: Efficient Threshold Queries on Massive Time Series Eleni Tzirita Zacharatou, Farhan Tauheed, Thomas Heinis, Anastasia Ailamaki École Polytechnique Fédérale de Lausanne, Switzerland Oracle Labs Zurich,

More information

Flat Clustering. Slides are mostly from Hinrich Schütze. March 27, 2017

Flat Clustering. Slides are mostly from Hinrich Schütze. March 27, 2017 Flat Clustering Slides are mostly from Hinrich Schütze March 7, 07 / 79 Overview Recap Clustering: Introduction 3 Clustering in IR 4 K-means 5 Evaluation 6 How many clusters? / 79 Outline Recap Clustering:

More information

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Haim Kaplan and Renato Werneck Einstein

More information

Database and Knowledge-Base Systems: Data Mining. Martin Ester

Database and Knowledge-Base Systems: Data Mining. Martin Ester Database and Knowledge-Base Systems: Data Mining Martin Ester Simon Fraser University School of Computing Science Graduate Course Spring 2006 CMPT 843, SFU, Martin Ester, 1-06 1 Introduction [Fayyad, Piatetsky-Shapiro

More information

A Novel Approach for Minimum Spanning Tree Based Clustering Algorithm

A Novel Approach for Minimum Spanning Tree Based Clustering Algorithm IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 5, No. 2, April 2011 CSES International 2011 ISSN 0973-4406 A Novel Approach for Minimum Spanning Tree Based Clustering Algorithm

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

QUANTIZER DESIGN FOR EXPLOITING COMMON INFORMATION IN LAYERED CODING. Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose

QUANTIZER DESIGN FOR EXPLOITING COMMON INFORMATION IN LAYERED CODING. Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose QUANTIZER DESIGN FOR EXPLOITING COMMON INFORMATION IN LAYERED CODING Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose Department of Electrical and Computer Engineering University of California,

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information