Dynamic Programming. Lecture #8 of Algorithms, Data structures and Complexity. Joost-Pieter Katoen Formal Methods and Tools Group

Size: px
Start display at page:

Download "Dynamic Programming. Lecture #8 of Algorithms, Data structures and Complexity. Joost-Pieter Katoen Formal Methods and Tools Group"

Transcription

1 Dynami Programming Leture #8 of Algorithms, Data strutures and Complexity Joost-Pieter Katoen Formal Methods and Tools Group Otober 29, 2002 JPK

2 #8: Dynami Programming ADC (214020) Overview What is dynami programming? Fibonai numbers revisited Subproblem graphs Dynami programming version of a reursive algorithm Multiplying a sequene of matries Optimal binary searh trees JPK1

3 #8: Dynami Programming ADC (214020) What is dynami programming? Main original motivation: [Bellman 1957] replae an exponential-time omputation by a polynomial-time omputation Splitting problems o sub-problems may be very expensive if not ontrolled orretly, many subproblems will be solved repeatedly Dynami programming: basi idea: store results for subproblems rather than reomputing them appliable to problems where a reursive algorithm solves many subproblems repeatedly JPK2

4 #8: Dynami Programming ADC (214020) Fibonai numbers revisited Consider the growth of a rabbit population, e.g.: suppose we have two rabbits, one of eah sex rabbits have bunnies one a month after they are 2 months old they always give birth to twins, one of eah sex they never die and never stop propagating The # rabbits after months is omputed by: for We thus obtain the sequene: JPK3

5 JPK4 fibre #8: Dynami Programming ADC (214020) A naive algorithm fibre if return else return fibre The # arithmeti steps needed to ompute fibre is: The omplexity of fibre is exponential: fibre for

6 #8: Dynami Programming ADC (214020) Subproblem graphs The subproblem graph of a reursive algorithm A for a problem is a direted graph verties are instanes (or: inputs) for this problem iff when A is invoked on it makes a diret reursive all to Subproblem graph A for problem instane of algorithm A is: the portion of the subproblem graph of A that is reahable from vertex If algorithm A always terminates then its subproblem graph is ayli JPK5

7 #8: Dynami Programming ADC (214020) Subproblem tree for Fibonai funtion vertex labels are the parameters of the reursive alls JPK6

8 #8: Dynami Programming ADC (214020) Subproblem graph for Fibonai funtion note that this is a dependeny graph JPK7

9 #8: Dynami Programming ADC (214020) Graph erpretation of dynami programming A natural reursive omputation making reursive alls as needed: is like a memoryless traversal of the subproblem graph of A memoryless traversal = DFS without oloring verties gray if there are and a DAG an have exponentially many paths! Consider the subproblem graph as a dependeny graph paths to a subproblem, this subproblem will be solved times if has edges to The essene of dynami programming is: these problems must be solved prior to solving to exeute the subproblems suh that eah needs to be solved only one and store the subproblem solutions for later use memo-ization JPK8

10 #8: Dynami Programming ADC (214020) Dynami programming version of reursive algorithm A dynami programming version DP(A) of reursive algorithm A: is a depth-first searh traversal of the subproblem graph A solutions found are stored in a ditionary ADT memo-ization Operations for ditionary : reate member retrieve store : reates an empty ditionary of items : heks whether item belongs to the ditionary : retrieves item requires ; to be in : store information item for Implementation of ditionary depends on the appliation JPK9

11 2. Prior to returning solution to store it (i.e., olor #8: Dynami Programming ADC (214020) Dynami programming version of reursive algorithm Convert algorithm A on problem o dynami version DP(A) by: 1. Prior to reursive all on subproblem hek if solution to is stored No? Do the reursive all ( is white), and add edge Yes? Retrieve the solution and perform no reursive all ( to the DFS tree is blak) blak) requires the subproblem graph to be ayli JPK10

12 if #8: Dynami Programming ADC (214020) Dynami programming version of Fibonai funtion fibdp Dit soln fib if fib else member soln // is fib already omputed? fibdp soln // reursive all else retrieve soln // retrieve stored solution if member soln // is fib already omputed? fibdp soln // reursive all else retrieve soln // retrieve stored solution fib store soln fib // store fib return fib worst-ase time omplexity is in ; spae omplexity JPK11

13 #8: Dynami Programming ADC (214020) Topologial sorting revisited A topologial order for DAG is: an assignment topo of dist egers suh that for every edge topo is alled the topologial number of we have topo A reverse topologial order for DAG to the verties of topo is as above but for every edge we have topo topo How to find a (reverse) topologial order: use DFS or analyse problem Appliation of reverse topologial order to dynami programming: a shedule of subproblems an be found suh that on solving a subproblem it is guaranteed that all subproblems on whih it depends have been solved thus: always look-up, no hek neessary JPK12

14 #8: Dynami Programming ADC (214020) Topologial sorting revisited Nr Task Depends on A hoose lothes I B dress A, H C eat breakfast E, F, G D leave B, C E make offee I F make toast I G pour juie I preedene graph transpose of depends on H shower I I wake up does there exist a shedule for this problem? JPK13

15 #8: Dynami Programming ADC (214020) Topologial sorting revisited dependeny graph drawn aording to the reverse topologial order means that task needs to be ompleted prior to task JPK14

16 #8: Dynami Programming ADC (214020) Simplifiations for Fibonai-DP There is a straightforward reverse topologial order for Fibonai: namely just inreasing order of parameter tasks an be sheduled suh that their results are always available when needed Any subproblem only depends on its two predeessor subproblems not neessary to store all results, but last two results suffies JPK15

17 #8: Dynami Programming ADC (214020) Simplified Fibonai-DP fibiter urr for urr ppred pred predppred ppred pred pred urr return urr // shift ppred // shift pred The time omplexity of fibiter is linear: fibiter The spae omplexity is JPK16

18 #8: Dynami Programming ADC (214020) Overview What is dynami programming? Fibonai numbers revisited Subproblem graphs Dynami programming version of a reursive algorithm Multiplying a sequene of matries Optimal binary searh trees JPK17

19 JPK18 #8: Dynami Programming ADC (214020) Matrix multipliation Reall matrix multipliation: element- Multiplying a -matrix and a wise multipliations -matrix requires Matrix multipliation is assoiative:

20 Mults JPK19 #8: Dynami Programming ADC (214020) The matrix multipliation order problem What is the best order to ompute for? where matrix Consider matries has ardinality,,, Multipliation order 1 produt produt 3 + produt = 20,700 = 11,750 = 41,200 = 1,400 What is the minimal number of multipliations? What is the order?

21 #8: Dynami Programming ADC (214020) How to parenthesize the produt of matries? Let be the number of different parenthesizations of matries Reursive equation for the number of parenthesizations matries matries is: if if there are exponentially many possible parenthesizations JPK20

22 #8: Dynami Programming ADC (214020) A naive solution Let the first matrix multipliation be at position : Reursively solve the remaining subproblem: Do this for any and selet the one with minimal ost Reurrene relation: show this Subproblem graph has exponentially many verties every subsequene of with elements is a reahable subproblem JPK21

23 #8: Dynami Programming ADC (214020) A naive solution matmult1 bestcost if else dim, seq bestcost bestcost for // outline // one matrix or none ost of multipliation at position seq newseq matmult1 seq with th element deleted dim, newseq bestcost min bestcost ; return bestcost JPK22

24 as #8: Dynami Programming ADC (214020) Alternative problem deomposition Let the last multipliation be at position The two remaining subproblems are: (of dimension (of dimension last step is to multiply and ) ) Identify original problem ) after hoie of, the remaining subproblems are and This reates verties in the subproblem graph To determine the minimal ost we need to hek all possibilities for JPK23

25 JPK24 dim #8: Dynami Programming ADC (214020) Alternative problem deomposition matmult2 bestcost if else bestcost for matmult2 matmult2 dim bestcost min dim dim bestcost dim dim bestcost // solve subproblem // one matrix or none ; // solve subproblem ; // solve subproblem // ost of multipliation at position return bestcost, i.e.,

26 The subproblem graph of #8: Dynami Programming ADC (214020) Subproblem graph example, i.e., subproblem : (0,4) (0,1) (1,4) (0,2) (2,4) (0,3) (3,4) (1,2) (1,3) (2,3) JPK25

27 #8: Dynami Programming ADC (214020) Subproblem graph analysis Verties are identified by with this yields For vertex verties in total two subproblems have to solved: and for allwith thus, the number of edges per vertex is less than Subproblem graph has verties and at most edges worst-ase time-omplexity of a DFS on the subproblem graph is It is feasible to onvert reursive problem o DP version as this boils down to a DFS on the subproblem graph this redues the time-omplexity from to JPK26

28 ost #8: Dynami Programming ADC (214020) Dynami programming version matmult2dp dim bestcost if bestcost else bestcost for if member ost matmult2dp dim ost ; else retrieve ost // look-up solution if member ost matmult2dp dim ost ; else retrieve ost // look-up solution dim dim dim // ost of multipliation at position bestcost min bestcost store ost bestcost ; // store obtained result return bestcost JPK27

29 #8: Dynami Programming ADC (214020) The dependeny graph of Reverse topologial order, i.e., subproblem : (0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) ost if min ost ost if JPK28

30 #8: Dynami Programming ADC (214020) Simplified DP matrix-multipliation order matmultorder ost for for if dim bestcost for ost ost ost dim bestcost dim dim bestcost min bestcost bestcost else bestcost // iterate over the rows // iterate over the olumns // onsider // look-up solution // look-up solution // ost of multipliation at position // store obtained result return ost JPK29

31 #8: Dynami Programming ADC (214020) Example omputation ost if min ost ost if JPK30

32 #8: Dynami Programming ADC (214020) Overview What is dynami programming? Fibonai numbers revisited Subproblem graphs Dynami programming version of a reursive algorithm Multiplying a sequene of matries Optimal binary searh trees JPK31

33 #8: Dynami Programming ADC (214020) Binary searh trees revisited In a binary searh tree (BST) keys are stored suh that: the key at a node is at least all keys in its left subtree the key at a node is at most all keys in its right subtree An inorder traversal of a binary searh tree yields a sorted list of keys two binary searh trees ontaining 2, 3, 5, 6, 7, 9 5 JPK32

34 suh that #8: Dynami Programming ADC (214020) Optimal binary searh trees Keys with probability to be sought Average nodes examined in BST with keys is: where is the number of omparisons made to loate key is the weighted retrieve ost for key in BST How to organise is minimal? how to organise the key values in a BST to minimise the average number of key omparisons? JPK33

35 #8: Dynami Programming ADC (214020) Optimal BSTs Let be the minimum weighted ost for keys if is hosen as root where is the probability to searh some key in This an be simplified to: The problem is now to ompute min Naively, a reursive algorithm yields an exponential time-omplexity JPK34

36 #8: Dynami Programming ADC (214020) DP solution to optimal BSTs float optimalbst prob float ost float bestcost for // iterate over the rows for // iterate over the olumns if bestcost else bestcost for ost ost ost bestcost min bestcost bestcost // store obtained result return ost JPK35

37 #8: Dynami Programming ADC (214020) Dynami programming reipe 1. Takle the problem top-down ; this yields a reursive algorithm 2. Define an appropriate ditionary; transform the reursive solution o a DP algorithm 3. Complexity of DP-algorithm is omplexity DFS on subproblem graph 4. Choose an appropriate data struture for implementing the ditionary 5. If possible, analyse the subproblem graph and find a reverse topologial order; simplify your DP-algorithm aordingly 6. Deide how to get the solution to the problem from the data in the ditionary JPK36

Dynamic Algorithms Multiple Choice Test

Dynamic Algorithms Multiple Choice Test 3226 Dynami Algorithms Multiple Choie Test Sample test: only 8 questions 32 minutes (Real test has 30 questions 120 minutes) Årskort Name Eah of the following 8 questions has 4 possible answers of whih

More information

Drawing lines. Naïve line drawing algorithm. drawpixel(x, round(y)); double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx; double y = y0;

Drawing lines. Naïve line drawing algorithm. drawpixel(x, round(y)); double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx; double y = y0; Naïve line drawing algorithm // Connet to grid points(x0,y0) and // (x1,y1) by a line. void drawline(int x0, int y0, int x1, int y1) { int x; double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx;

More information

Definitions Homework. Quine McCluskey Optimal solutions are possible for some large functions Espresso heuristic. Definitions Homework

Definitions Homework. Quine McCluskey Optimal solutions are possible for some large functions Espresso heuristic. Definitions Homework EECS 33 There be Dragons here http://ziyang.ees.northwestern.edu/ees33/ Teaher: Offie: Email: Phone: L477 Teh dikrp@northwestern.edu 847 467 2298 Today s material might at first appear diffiult Perhaps

More information

Simple strategy Computes shortest paths from the start note

Simple strategy Computes shortest paths from the start note Leture Notes for I500 Fall 2009 Fundamental Computer Conepts of Informatis by Xiaoqian Zhang (Instrutor: Predrag Radivoja) Last time: dynami programming Today: Elementary graph algorithm (textbook Chapter

More information

This fact makes it difficult to evaluate the cost function to be minimized

This fact makes it difficult to evaluate the cost function to be minimized RSOURC LLOCTION N SSINMNT In the resoure alloation step the amount of resoures required to exeute the different types of proesses is determined. We will refer to the time interval during whih a proess

More information

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking Algorithms for External Memory Leture 6 Graph Algorithms - Weighted List Ranking Leturer: Nodari Sithinava Sribe: Andi Hellmund, Simon Ohsenreither 1 Introdution & Motivation After talking about I/O-effiient

More information

Dynamic Programming. Algorithm : Design & Analysis [16]

Dynamic Programming. Algorithm : Design & Analysis [16] Dynamic Programming Algorithm : Design & Analysis [16] In the last class Shortest Path and Transitive Closure Washall s Algorithm for Transitive Closure All-Pair Shortest Paths Matrix for Transitive Closure

More information

Recursion examples: Problem 2. (More) Recursion and Lists. Tail recursion. Recursion examples: Problem 2. Recursion examples: Problem 3

Recursion examples: Problem 2. (More) Recursion and Lists. Tail recursion. Recursion examples: Problem 2. Recursion examples: Problem 3 Reursion eamples: Problem 2 (More) Reursion and s Reursive funtion to reverse a string publi String revstring(string str) { if(str.equals( )) return str; return revstring(str.substring(1, str.length()))

More information

8 : Learning Fully Observed Undirected Graphical Models

8 : Learning Fully Observed Undirected Graphical Models 10-708: Probabilisti Graphial Models 10-708, Spring 2018 8 : Learning Fully Observed Undireted Graphial Models Leturer: Kayhan Batmanghelih Sribes: Chenghui Zhou, Cheng Ran (Harvey) Zhang When learning

More information

Query Evaluation Overview. Query Optimization: Chap. 15. Evaluation Example. Cost Estimation. Query Blocks. Query Blocks

Query Evaluation Overview. Query Optimization: Chap. 15. Evaluation Example. Cost Estimation. Query Blocks. Query Blocks Query Evaluation Overview Query Optimization: Chap. 15 CS634 Leture 12 SQL query first translated to relational algebra (RA) Atually, some additional operators needed for SQL Tree of RA operators, with

More information

Calculation of typical running time of a branch-and-bound algorithm for the vertex-cover problem

Calculation of typical running time of a branch-and-bound algorithm for the vertex-cover problem Calulation of typial running time of a branh-and-bound algorithm for the vertex-over problem Joni Pajarinen, Joni.Pajarinen@iki.fi Otober 21, 2007 1 Introdution The vertex-over problem is one of a olletion

More information

Outline. CS38 Introduction to Algorithms. Administrative Stuff. Administrative Stuff. Motivation/Overview. Administrative Stuff

Outline. CS38 Introduction to Algorithms. Administrative Stuff. Administrative Stuff. Motivation/Overview. Administrative Stuff Outline CS38 Introdution to Algorithms Leture 1 April 1, 2014 administrative stuff motivation and overview of the ourse stale mathings example graphs, representing graphs graph traversals (BFS, DFS) onnetivity,

More information

1 Disjoint-set data structure.

1 Disjoint-set data structure. CS 124 Setion #4 Union-Fin, Greey Algorithms 2/20/17 1 Disjoint-set ata struture. 1.1 Operations Disjoint-set ata struture enale us to effiiently perform operations suh as plaing elements into sets, querying

More information

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract CS 9 Projet Final Report: Learning Convention Propagation in BeerAdvoate Reviews from a etwork Perspetive Abstrat We look at the way onventions propagate between reviews on the BeerAdvoate dataset, and

More information

Data Structures in Java

Data Structures in Java Data Strutures in Java Leture 8: Trees and Tree Traversals. 10/5/2015 Daniel Bauer 1 Trees in Computer Siene A lot of data omes in a hierarhial/nested struture. Mathematial expressions. Program struture.

More information

Divide-and-conquer algorithms 1

Divide-and-conquer algorithms 1 * 1 Multipliation Divide-and-onquer algorithms 1 The mathematiian Gauss one notied that although the produt of two omplex numbers seems to! involve four real-number multipliations it an in fat be done

More information

Folding. Hardware Mapped vs. Time multiplexed. Folding by N (N=folding factor) Node A. Unfolding by J A 1 A J-1. Time multiplexed/microcoded

Folding. Hardware Mapped vs. Time multiplexed. Folding by N (N=folding factor) Node A. Unfolding by J A 1 A J-1. Time multiplexed/microcoded Folding is verse of Unfolding Node A A Folding by N (N=folding fator) Folding A Unfolding by J A A J- Hardware Mapped vs. Time multiplexed l Hardware Mapped vs. Time multiplexed/mirooded FI : y x(n) h

More information

Parametric Abstract Domains for Shape Analysis

Parametric Abstract Domains for Shape Analysis Parametri Abstrat Domains for Shape Analysis Xavier RIVAL (INRIA & Éole Normale Supérieure) Joint work with Bor-Yuh Evan CHANG (University of Maryland U University of Colorado) and George NECULA (University

More information

L11 Balanced Trees. Alice E. Fischer. Fall Alice E. Fischer L11 Balanced Trees... 1/34 Fall / 34

L11 Balanced Trees. Alice E. Fischer. Fall Alice E. Fischer L11 Balanced Trees... 1/34 Fall / 34 L11 Balaned Trees Alie E. Fisher Fall 2018 Alie E. Fisher L11 Balaned Trees... 1/34 Fall 2018 1 / 34 Outline 1 AVL Trees 2 Red-Blak Trees Insertion Insertion 3 B-Trees Alie E. Fisher L11 Balaned Trees...

More information

A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR

A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR Malaysian Journal of Computer Siene, Vol 10 No 1, June 1997, pp 36-41 A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR Md Rafiqul Islam, Harihodin Selamat and Mohd Noor Md Sap Faulty of Computer Siene and

More information

Semi-Supervised Affinity Propagation with Instance-Level Constraints

Semi-Supervised Affinity Propagation with Instance-Level Constraints Semi-Supervised Affinity Propagation with Instane-Level Constraints Inmar E. Givoni, Brendan J. Frey Probabilisti and Statistial Inferene Group University of Toronto 10 King s College Road, Toronto, Ontario,

More information

Chapter 2: Introduction to Maple V

Chapter 2: Introduction to Maple V Chapter 2: Introdution to Maple V 2-1 Working with Maple Worksheets Try It! (p. 15) Start a Maple session with an empty worksheet. The name of the worksheet should be Untitled (1). Use one of the standard

More information

On - Line Path Delay Fault Testing of Omega MINs M. Bellos 1, E. Kalligeros 1, D. Nikolos 1,2 & H. T. Vergos 1,2

On - Line Path Delay Fault Testing of Omega MINs M. Bellos 1, E. Kalligeros 1, D. Nikolos 1,2 & H. T. Vergos 1,2 On - Line Path Delay Fault Testing of Omega MINs M. Bellos, E. Kalligeros, D. Nikolos,2 & H. T. Vergos,2 Dept. of Computer Engineering and Informatis 2 Computer Tehnology Institute University of Patras,

More information

Total 100

Total 100 CS331 SOLUTION Problem # Points 1 10 2 15 3 25 4 20 5 15 6 15 Total 100 1. ssume you are dealing with a ompiler for a Java-like language. For eah of the following errors, irle whih phase would normally

More information

Analysis of input and output configurations for use in four-valued CCD programmable logic arrays

Analysis of input and output configurations for use in four-valued CCD programmable logic arrays nalysis of input and output onfigurations for use in four-valued D programmable logi arrays J.T. utler H.G. Kerkhoff ndexing terms: Logi, iruit theory and design, harge-oupled devies bstrat: s in binary,

More information

Pipelined Multipliers for Reconfigurable Hardware

Pipelined Multipliers for Reconfigurable Hardware Pipelined Multipliers for Reonfigurable Hardware Mithell J. Myjak and José G. Delgado-Frias Shool of Eletrial Engineering and Computer Siene, Washington State University Pullman, WA 99164-2752 USA {mmyjak,

More information

-z c = c T - c T B B-1 A 1 - c T B B-1 b. x B B -1 A 0 B -1 b. (a) (b) Figure 1. Simplex Tableau in Matrix Form

-z c = c T - c T B B-1 A 1 - c T B B-1 b. x B B -1 A 0 B -1 b. (a) (b) Figure 1. Simplex Tableau in Matrix Form 3. he Revised Simple Method he LP min, s.t. A = b ( ),, an be represented by Figure (a) below. At any Simple step, with known and -, the Simple tableau an be represented by Figure (b) below. he minimum

More information

LAB 4: Operations on binary images Histograms and color tables

LAB 4: Operations on binary images Histograms and color tables LAB 4: Operations on binary images Histograms an olor tables Computer Vision Laboratory Linköping University, Sween Preparations an start of the lab system You will fin a ouple of home exerises (marke

More information

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013)

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013) daned Computer Graphis (Spring 23) CS 283, Leture 5: Mesh Simplifiation Rai Ramamoorthi http://inst.ees.berkeley.edu/~s283/sp3 To Do ssignment, Due Feb 22 Start reading and working on it now. This leture

More information

Facility Location: Distributed Approximation

Facility Location: Distributed Approximation Faility Loation: Distributed Approximation Thomas Mosibroda Roger Wattenhofer Distributed Computing Group PODC 2005 Where to plae ahes in the Internet? A distributed appliation that has to dynamially plae

More information

Automatic Physical Design Tuning: Workload as a Sequence Sanjay Agrawal Microsoft Research One Microsoft Way Redmond, WA, USA +1-(425)

Automatic Physical Design Tuning: Workload as a Sequence Sanjay Agrawal Microsoft Research One Microsoft Way Redmond, WA, USA +1-(425) Automati Physial Design Tuning: Workload as a Sequene Sanjay Agrawal Mirosoft Researh One Mirosoft Way Redmond, WA, USA +1-(425) 75-357 sagrawal@mirosoft.om Eri Chu * Computer Sienes Department University

More information

Extracting Partition Statistics from Semistructured Data

Extracting Partition Statistics from Semistructured Data Extrating Partition Statistis from Semistrutured Data John N. Wilson Rihard Gourlay Robert Japp Mathias Neumüller Department of Computer and Information Sienes University of Strathlyde, Glasgow, UK {jnw,rsg,rpj,mathias}@is.strath.a.uk

More information

A Novel Validity Index for Determination of the Optimal Number of Clusters

A Novel Validity Index for Determination of the Optimal Number of Clusters IEICE TRANS. INF. & SYST., VOL.E84 D, NO.2 FEBRUARY 2001 281 LETTER A Novel Validity Index for Determination of the Optimal Number of Clusters Do-Jong KIM, Yong-Woon PARK, and Dong-Jo PARK, Nonmembers

More information

1. Introduction. 2. The Probable Stope Algorithm

1. Introduction. 2. The Probable Stope Algorithm 1. Introdution Optimization in underground mine design has reeived less attention than that in open pit mines. This is mostly due to the diversity o underground mining methods and omplexity o underground

More information

Parallelizing Frequent Web Access Pattern Mining with Partial Enumeration for High Speedup

Parallelizing Frequent Web Access Pattern Mining with Partial Enumeration for High Speedup Parallelizing Frequent Web Aess Pattern Mining with Partial Enumeration for High Peiyi Tang Markus P. Turkia Department of Computer Siene Department of Computer Siene University of Arkansas at Little Rok

More information

Exploring the Commonality in Feature Modeling Notations

Exploring the Commonality in Feature Modeling Notations Exploring the Commonality in Feature Modeling Notations Miloslav ŠÍPKA Slovak University of Tehnology Faulty of Informatis and Information Tehnologies Ilkovičova 3, 842 16 Bratislava, Slovakia miloslav.sipka@gmail.om

More information

Menu. X + /X=1 and XY+X /Y = X(Y + /Y) = X

Menu. X + /X=1 and XY+X /Y = X(Y + /Y) = X Menu K-Maps and Boolean Algera >Don t ares >5 Variale Look into my... 1 Karnaugh Maps - Boolean Algera We have disovered that simplifiation/minimization is an art. If you see it, GREAT! Else, work at it,

More information

Discrete sequential models and CRFs. 1 Case Study: Supervised Part-of-Speech Tagging

Discrete sequential models and CRFs. 1 Case Study: Supervised Part-of-Speech Tagging 0-708: Probabilisti Graphial Models 0-708, Spring 204 Disrete sequential models and CRFs Leturer: Eri P. Xing Sribes: Pankesh Bamotra, Xuanhong Li Case Study: Supervised Part-of-Speeh Tagging The supervised

More information

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 1 Dynamic Programming 1 Introduction An algorithm design paradigm like divide-and-conquer Programming : A tabular method (not writing computer code) Divide-and-Conquer (DAC):

More information

Solutions to Tutorial 2 (Week 9)

Solutions to Tutorial 2 (Week 9) The University of Syney Shool of Mathematis an Statistis Solutions to Tutorial (Week 9) MATH09/99: Disrete Mathematis an Graph Theory Semester, 0. Determine whether eah of the following sequenes is the

More information

HEXA: Compact Data Structures for Faster Packet Processing

HEXA: Compact Data Structures for Faster Packet Processing Washington University in St. Louis Washington University Open Sholarship All Computer Siene and Engineering Researh Computer Siene and Engineering Report Number: 27-26 27 HEXA: Compat Data Strutures for

More information

Chapter 3 Dynamic programming

Chapter 3 Dynamic programming Chapter 3 Dynamic programming 1 Dynamic programming also solve a problem by combining the solutions to subproblems. But dynamic programming considers the situation that some subproblems will be called

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

The Happy Ending Problem

The Happy Ending Problem The Happy Ending Problem Neeldhara Misra STATUTORY WARNING This doument is a draft version 1 Introdution The Happy Ending problem first manifested itself on a typial wintery evening in 1933 These evenings

More information

COMP 181. Prelude. Intermediate representations. Today. Types of IRs. High-level IR. Intermediate representations and code generation

COMP 181. Prelude. Intermediate representations. Today. Types of IRs. High-level IR. Intermediate representations and code generation Prelude COMP 181 Intermediate representations and ode generation November, 009 What is this devie? Large Hadron Collider What is a hadron? Subatomi partile made up of quarks bound by the strong fore What

More information

Large Exploration for HW/SW partitioning of Multirate and Aperiodic Real-Time Systems

Large Exploration for HW/SW partitioning of Multirate and Aperiodic Real-Time Systems Large Exploration for HW/SW partitioning of Multirate and Aperiodi Real-Time Systems Abdenour Azzedine, Jean-hilippe Diguet, Jean-Lu illippe Université de Bretagne SUD; LESTER lab.; Lorient, Frane jean-philippe.diguet@univ-ubs.fr

More information

Interconnection Styles

Interconnection Styles Interonnetion tyles oftware Design Following the Export (erver) tyle 2 M1 M4 M5 4 M3 M6 1 3 oftware Design Following the Export (Client) tyle e 2 e M1 M4 M5 4 M3 M6 1 e 3 oftware Design Following the Export

More information

Improved flooding of broadcast messages using extended multipoint relaying

Improved flooding of broadcast messages using extended multipoint relaying Improved flooding of broadast messages using extended multipoint relaying Pere Montolio Aranda a, Joaquin Garia-Alfaro a,b, David Megías a a Universitat Oberta de Catalunya, Estudis d Informàtia, Mulimèdia

More information

Implementing Load-Balanced Switches With Fat-Tree Networks

Implementing Load-Balanced Switches With Fat-Tree Networks Implementing Load-Balaned Swithes With Fat-Tree Networks Hung-Shih Chueh, Ching-Min Lien, Cheng-Shang Chang, Jay Cheng, and Duan-Shin Lee Department of Eletrial Engineering & Institute of Communiations

More information

An Alternative Approach to the Fuzzifier in Fuzzy Clustering to Obtain Better Clustering Results

An Alternative Approach to the Fuzzifier in Fuzzy Clustering to Obtain Better Clustering Results An Alternative Approah to the Fuzziier in Fuzzy Clustering to Obtain Better Clustering Results Frank Klawonn Department o Computer Siene University o Applied Sienes BS/WF Salzdahlumer Str. 46/48 D-38302

More information

Multi-Piece Mold Design Based on Linear Mixed-Integer Program Toward Guaranteed Optimality

Multi-Piece Mold Design Based on Linear Mixed-Integer Program Toward Guaranteed Optimality INTERNATIONAL CONFERENCE ON MANUFACTURING AUTOMATION (ICMA200) Multi-Piee Mold Design Based on Linear Mixed-Integer Program Toward Guaranteed Optimality Stephen Stoyan, Yong Chen* Epstein Department of

More information

Gradient based progressive probabilistic Hough transform

Gradient based progressive probabilistic Hough transform Gradient based progressive probabilisti Hough transform C.Galambos, J.Kittler and J.Matas Abstrat: The authors look at the benefits of exploiting gradient information to enhane the progressive probabilisti

More information

CA Agile Requirements Designer 2.x Implementation Proven Professional Exam (CAT-720) Study Guide Version 1.0

CA Agile Requirements Designer 2.x Implementation Proven Professional Exam (CAT-720) Study Guide Version 1.0 Exam (CAT-720) Study Guide Version 1.0 PROPRIETARY AND CONFIDENTIAL INFORMATION 2017 CA. All rights reserved. CA onfidential & proprietary information. For CA, CA Partner and CA Customer use only. No unauthorized

More information

Computational Biology 6.095/6.895 Database Search Lecture 5 Prof. Piotr Indyk

Computational Biology 6.095/6.895 Database Search Lecture 5 Prof. Piotr Indyk Computational Biology 6.095/6.895 Database Searh Leture 5 Prof. Piotr Indyk Previous letures Leture -3: Global alignment in O(mn) Dynami programming Leture -2: Loal alignment, variants, in O(mn) Leture

More information

CA Release Automation 5.x Implementation Proven Professional Exam (CAT-600) Study Guide Version 1.1

CA Release Automation 5.x Implementation Proven Professional Exam (CAT-600) Study Guide Version 1.1 Exam (CAT-600) Study Guide Version 1.1 PROPRIETARY AND CONFIDENTIAL INFORMATION 2016 CA. All rights reserved. CA onfidential & proprietary information. For CA, CA Partner and CA Customer use only. No unauthorized

More information

Machine Vision. Laboratory Exercise Name: Student ID: S

Machine Vision. Laboratory Exercise Name: Student ID: S Mahine Vision 521466S Laoratory Eerise 2011 Name: Student D: General nformation To pass these laoratory works, you should answer all questions (Q.y) with an understandale handwriting either in English

More information

ICCGLU. A Fortran IV subroutine to solve large sparse general systems of linear equations. J.J. Dongarra, G.K. Leaf and M. Minkoff.

ICCGLU. A Fortran IV subroutine to solve large sparse general systems of linear equations. J.J. Dongarra, G.K. Leaf and M. Minkoff. http://www.netlib.org/linalg/ig-do 1 of 8 12/7/2009 11:14 AM ICCGLU A Fortran IV subroutine to solve large sparse general systems of linear equations. J.J. Dongarra, G.K. Leaf and M. Minkoff July, 1982

More information

Optimizing Correlated Path Queries in XML Languages. Technical Report CS November 2002

Optimizing Correlated Path Queries in XML Languages. Technical Report CS November 2002 Optimizing Correlated Path Queries in XML Languages Ning Zhang and M. Tamer Özsu Tehnial Report CS-2002-36 November 2002 Shool Of Computer Siene, University of Waterloo, {nzhang,tozsu}@uwaterloo.a 1 Abstrat

More information

A {k, n}-secret Sharing Scheme for Color Images

A {k, n}-secret Sharing Scheme for Color Images A {k, n}-seret Sharing Sheme for Color Images Rastislav Luka, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos The Edward S. Rogers Sr. Dept. of Eletrial and Computer Engineering, University

More information

Methods for Multi-Dimensional Robustness Optimization in Complex Embedded Systems

Methods for Multi-Dimensional Robustness Optimization in Complex Embedded Systems Methods for Multi-Dimensional Robustness Optimization in Complex Embedded Systems Arne Hamann, Razvan Rau, Rolf Ernst Institute of Computer and Communiation Network Engineering Tehnial University of Braunshweig,

More information

A Partial Sorting Algorithm in Multi-Hop Wireless Sensor Networks

A Partial Sorting Algorithm in Multi-Hop Wireless Sensor Networks A Partial Sorting Algorithm in Multi-Hop Wireless Sensor Networks Abouberine Ould Cheikhna Department of Computer Siene University of Piardie Jules Verne 80039 Amiens Frane Ould.heikhna.abouberine @u-piardie.fr

More information

Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent Settings

Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent Settings Taming Deentralized PMDPs: Towards ffiient Poliy omputation for Multiagent Settings. Nair and M. Tambe omputer Siene Dept. University of Southern alifornia Los Angeles A 90089 nair,tambe @us.edu M. Yokoo

More information

Sparse Certificates for 2-Connectivity in Directed Graphs

Sparse Certificates for 2-Connectivity in Directed Graphs Sparse Certifiates for 2-Connetivity in Direted Graphs Loukas Georgiadis Giuseppe F. Italiano Aikaterini Karanasiou Charis Papadopoulos Nikos Parotsidis Abstrat Motivated by the emergene of large-sale

More information

Gray Codes for Reflectable Languages

Gray Codes for Reflectable Languages Gray Codes for Refletable Languages Yue Li Joe Sawada Marh 8, 2008 Abstrat We lassify a type of language alled a refletable language. We then develop a generi algorithm that an be used to list all strings

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

P-admissible Solution Space

P-admissible Solution Space P-admissible Solution Spae P-admissible solution spae or Problem P: 1. the solution spae is inite, 2. every solution is easible, 3. evaluation or eah oniguration is possible in polynomial time and so is

More information

Algorithms, Mechanisms and Procedures for the Computer-aided Project Generation System

Algorithms, Mechanisms and Procedures for the Computer-aided Project Generation System Algorithms, Mehanisms and Proedures for the Computer-aided Projet Generation System Anton O. Butko 1*, Aleksandr P. Briukhovetskii 2, Dmitry E. Grigoriev 2# and Konstantin S. Kalashnikov 3 1 Department

More information

Graph-Based vs Depth-Based Data Representation for Multiview Images

Graph-Based vs Depth-Based Data Representation for Multiview Images Graph-Based vs Depth-Based Data Representation for Multiview Images Thomas Maugey, Antonio Ortega, Pasal Frossard Signal Proessing Laboratory (LTS), Eole Polytehnique Fédérale de Lausanne (EPFL) Email:

More information

Scheduling Multiple Independent Hard-Real-Time Jobs on a Heterogeneous Multiprocessor

Scheduling Multiple Independent Hard-Real-Time Jobs on a Heterogeneous Multiprocessor Sheduling Multiple Independent Hard-Real-Time Jobs on a Heterogeneous Multiproessor Orlando Moreira NXP Semiondutors Researh Eindhoven, Netherlands orlando.moreira@nxp.om Frederio Valente Universidade

More information

Introductory Programming, IMM, DTU Systematic Software Test. Software test (afprøvning) Motivation. Structural test and functional test

Introductory Programming, IMM, DTU Systematic Software Test. Software test (afprøvning) Motivation. Structural test and functional test Introdutory Programming, IMM, DTU Systemati Software Test Peter Sestoft a Programs often ontain unintended errors how do you find them? Strutural test Funtional test Notes: Systemati Software Test, http://www.dina.kvl.dk/

More information

1 The Knuth-Morris-Pratt Algorithm

1 The Knuth-Morris-Pratt Algorithm 5-45/65: Design & Analysis of Algorithms September 26, 26 Leture #9: String Mathing last hanged: September 26, 27 There s an entire field dediated to solving problems on strings. The book Algorithms on

More information

Multiple-Criteria Decision Analysis: A Novel Rank Aggregation Method

Multiple-Criteria Decision Analysis: A Novel Rank Aggregation Method 3537 Multiple-Criteria Deision Analysis: A Novel Rank Aggregation Method Derya Yiltas-Kaplan Department of Computer Engineering, Istanbul University, 34320, Avilar, Istanbul, Turkey Email: dyiltas@ istanbul.edu.tr

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College October 24, 2016 Outline Outline 1 Chapter 7: Trees Outline Chapter 7: Trees 1 Chapter 7: Trees The Binary Search Property

More information

A Support-Based Algorithm for the Bi-Objective Pareto Constraint

A Support-Based Algorithm for the Bi-Objective Pareto Constraint A Support-Based Algorithm for the Bi-Ojetive Pareto Constraint Renaud Hartert and Pierre Shaus UCLouvain, ICTEAM, Plae Sainte Bare 2, 1348 Louvain-la-Neuve, Belgium {renaud.hartert, pierre.shaus,}@ulouvain.e

More information

Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies

Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies ACM Symposium on Solid Modeling and Appliations (2004) P. Brunet, N. Patrikalakis (Editors) Plumber: a method for a multi-sale deomposition of 3D shapes into tubular primitives and bodies M. Mortara G.

More information

A Support-Based Algorithm for the Bi-Objective Pareto Constraint

A Support-Based Algorithm for the Bi-Objective Pareto Constraint Proeedings of the Twenty-Eighth AAAI Conferene on Artifiial Intelligene A Support-Based Algorithm for the Bi-Ojetive Pareto Constraint Renaud Hartert and Pierre Shaus UCLouvain, ICTEAM, Plae Sainte Bare

More information

CA Test Data Manager 4.x Implementation Proven Professional Exam (CAT-681) Study Guide Version 1.0

CA Test Data Manager 4.x Implementation Proven Professional Exam (CAT-681) Study Guide Version 1.0 Implementation Proven Professional Study Guide Version 1.0 PROPRIETARY AND CONFIDENTIAL INFORMATION 2017 CA. All rights reserved. CA onfidential & proprietary information. For CA, CA Partner and CA Customer

More information

Compilation Lecture 11a. Register Allocation Noam Rinetzky. Text book: Modern compiler implementation in C Andrew A.

Compilation Lecture 11a. Register Allocation Noam Rinetzky. Text book: Modern compiler implementation in C Andrew A. Compilation 0368-3133 Leture 11a Text book: Modern ompiler implementation in C Andrew A. Appel Register Alloation Noam Rinetzky 1 Registers Dediated memory loations that an be aessed quikly, an have omputations

More information

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results CCCG 2018, Winnipeg, Canada, August 8 10, 2018 Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inonlusive Results Luis A. Garia Andres Gutierrrez Isaa Ruiz Andrew Winslow Abstrat We

More information

Outline: Software Design

Outline: Software Design Outline: Software Design. Goals History of software design ideas Design priniples Design methods Life belt or leg iron? (Budgen) Copyright Nany Leveson, Sept. 1999 A Little History... At first, struggling

More information

CS269I: Incentives in Computer Science Lecture #19: Time-Inconsistent Planning

CS269I: Incentives in Computer Science Lecture #19: Time-Inconsistent Planning CS269I: Inentives in Computer Siene Leture #9: Time-Inonsistent Planning Tim Roughgarden Deember 5, 26 Utility Theory and Behavioral Eonomis In almost all of the models that we ve studied in this ourse,

More information

8 Instruction Selection

8 Instruction Selection 8 Instrution Seletion The IR ode instrutions were designed to do exatly one operation: load/store, add, subtrat, jump, et. The mahine instrutions of a real CPU often perform several of these primitive

More information

XML Data Streams. XML Stream Processing. XML Stream Processing. Yanlei Diao. University of Massachusetts Amherst

XML Data Streams. XML Stream Processing. XML Stream Processing. Yanlei Diao. University of Massachusetts Amherst XML Stream Proessing Yanlei Diao University of Massahusetts Amherst XML Data Streams XML is the wire format for data exhanged online. Purhase orders http://www.oasis-open.org/ommittees/t_home.php?wg_abbrev=ubl

More information

An Interactive-Voting Based Map Matching Algorithm

An Interactive-Voting Based Map Matching Algorithm Eleventh International Conferene on Mobile Data Management An Interative-Voting Based Map Mathing Algorithm Jing Yuan* University of Siene and Tehnology of China Hefei, China yuanjing@mail.ust.edu.n Yu

More information

Adaptive Implicit Surface Polygonization using Marching Triangles

Adaptive Implicit Surface Polygonization using Marching Triangles Volume 20 (2001), Number 2 pp. 67 80 Adaptive Impliit Surfae Polygonization using Marhing Triangles Samir Akkouhe Eri Galin L.I.G.I.M L.I.G.I.M Eole Centrale de Lyon Université Claude Bernard Lyon 1 B.P.

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Efficient and scalable trie-based algorithms for computing set containment relations

Efficient and scalable trie-based algorithms for computing set containment relations Effiient and salale trie-ased algorithms for omputing set ontainment relations Yongming Luo #1, George H. L. Flether #2, Jan Hidders 3, Paul De Bra #4 # Eindhoven University of Tehnology, The Netherlands

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Test I Solutions

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Test I Solutions Department of Eletrial Engineering and Computer iene MAACHUETT INTITUTE OF TECHNOLOGY 6.035 Fall 2016 Test I olutions 1 I Regular Expressions and Finite-tate Automata For Questions 1, 2, and 3, let the

More information

Manipulation of Graphs, Algebras and Pictures. Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday

Manipulation of Graphs, Algebras and Pictures. Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday Eletroni Communiations of the EASST Volume 26 (2010) Manipulation of Graphs, Algebras and Pitures Essays Dediated to Hans-Jörg Kreowski on the Oasion of His 60th Birthday Autonomous Units for Solving the

More information

From indoor GIS maps to path planning for autonomous wheelchairs

From indoor GIS maps to path planning for autonomous wheelchairs From indoor GIS maps to path planning for autonomous wheelhairs Jérôme Guzzi and Gianni A. Di Caro Abstrat This work fouses on how to ompute trajetories for an autonomous wheelhair based on indoor GIS

More information

Z Combinatorial Filters: Sensor Beams, Obstacles, and Possible Paths

Z Combinatorial Filters: Sensor Beams, Obstacles, and Possible Paths Z Combinatorial Filters: Sensor Beams, Obstales, and Possible Paths BENJAMIN TOVAR, Northwestern University FRED COHEN, University of Rohester LEONARDO BOBADILLA, University of Illinois JUSTIN CZARNOWSKI,

More information

PathRings. Manual. Version 1.0. Yongnan Zhu December 16,

PathRings. Manual. Version 1.0. Yongnan Zhu   December 16, PathRings Version 1.0 Manual Yongnan Zhu E-mail: yongnan@umb.edu Deember 16, 2014-1 - PathRings This tutorial introdues PathRings, the user interfae and the interation. For better to learn, you will need

More information

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real 14.3 Interval trees We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real numbers ], with Interval ]represents the set Open and half-open intervals

More information

Bayesian Belief Networks for Data Mining. Harald Steck and Volker Tresp. Siemens AG, Corporate Technology. Information and Communications

Bayesian Belief Networks for Data Mining. Harald Steck and Volker Tresp. Siemens AG, Corporate Technology. Information and Communications Bayesian Belief Networks for Data Mining Harald Stek and Volker Tresp Siemens AG, Corporate Tehnology Information and Communiations 81730 Munih, Germany fharald.stek, Volker.Trespg@mhp.siemens.de Abstrat

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

mahines. HBSP enhanes the appliability of the BSP model by inorporating parameters that reet the relative speeds of the heterogeneous omputing omponen

mahines. HBSP enhanes the appliability of the BSP model by inorporating parameters that reet the relative speeds of the heterogeneous omputing omponen The Heterogeneous Bulk Synhronous Parallel Model Tiani L. Williams and Rebea J. Parsons Shool of Computer Siene University of Central Florida Orlando, FL 32816-2362 fwilliams,rebeag@s.uf.edu Abstrat. Trends

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Revision Statement while return growth rate asymptotic notation complexity Compare algorithms Linear search Binary search Preconditions: sorted,

Revision Statement while return growth rate asymptotic notation complexity Compare algorithms Linear search Binary search Preconditions: sorted, [1] Big-O Analysis AVERAGE(n) 1. sum 0 2. i 0. while i < n 4. number input_number(). sum sum + number 6. i i + 1 7. mean sum / n 8. return mean Revision Statement no. of times executed 1 1 2 1 n+1 4 n

More information

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any urrent or future media, inluding reprinting/republishing this material for advertising

More information

Z Combinatorial Filters: Sensor Beams, Obstacles, and Possible Paths

Z Combinatorial Filters: Sensor Beams, Obstacles, and Possible Paths Z Combinatorial Filters: Sensor Beams, Obstales, and Possible Paths BENJAMIN TOVAR, Northwestern University FRED COHEN, University of Rohester LEONARDO BOBADILLA, University of Illinois JUSTIN CZARNOWSKI,

More information