Weakly Supervised Object Recognition with Convolutional Neural Networks

Size: px
Start display at page:

Download "Weakly Supervised Object Recognition with Convolutional Neural Networks"

Transcription

1 GDR-ISIS, Paris March 20, 2015 Weakly Supervised Object Recognition with Convolutional Neural Networks Ivan Laptev WILLOW, INRIA/ENS/CNRS, Paris Joint work with: Maxime Oquab Leon Bottou Josef Sivic

2 Summary Training input + image-level labels: Person Chair Airplane Reading Riding bike Running Test output More details in

3 Recent Progress: Convolutional Neural Networks Success in character recognition [LeCun 88]. Limited performance on natural images until [Krizhevsky et al. 2012]: break-through in ImageNet object classification. ILSVRC 12: 1.2M images, 1K classes 2012 Method: Top 5 error: GoogLeNet: 6.6% VGG: 6.8% BAIDU 5.3% Human 5.1%

4 Let s look at the data A typical image with chairs and tables on Flickr.com Images of chairs and tables in ImageNet

5 How to use CNNs for cluttered scenes? C1-C2-C3-C4-C5 FC6 FC7 pre-train CNN on ImageNet Convolutional layers Fully Connected layers FCa FCa backgr. person chair chair table Use ImageNet pre-trained CNN Post-train on the new task [Girshick et al. 14], [Oquab et al. 14], [Sermanet et al. 13 ], [Donahue et al. 13], [Zeiler & Fergus 13]...

6 Approach sliding window training / testing

7 Approach 1. Design training/test procedure using sliding windows 2. Train adaptation layers to map labels

8 Results Pascal VOC Oquab, Bottou, Laptev and Sivic CVPR 2014

9 Results [Oquab, Bottou, Laptev and Sivic, CVPR 2014]

10 Results [Oquab, Bottou, Laptev and Sivic, CVPR 2014]

11 How to use CNNs for cluttered scenes? C1-C2-C3-C4-C5 FC6 FC7 Convolutional layers Fully Connected layers FCa FCa backgr. person chair chair table Problem: Annotation of bounding boxes is (a): subjective (b): expensive

12 Motivation: labeling bounding boxes is tedious

13 Are bounding boxes needed for training CNNs? Image-level labels: Bicycle, Person

14 Motivation: image-level labels are plentiful Beautiful red leaves in a back street of Freiburg [Kuznetsova et al., ACL 2013]

15 Motivation: image-level labels are plentiful Public bikes in Warsaw during night

16 Approach: search over object s location at the training time Oquab, Bottou, Laptev and Sivic CVPR 2015 Per-image score C1-C2-C3-C4-C5 FC6 FC dim vector dim vector dim vector FCa FC b Max-pool over image Max motorbike person diningtable pottedplant chair car bus train 1. Efficient window sliding to find object location hypothesis 2. Image-level aggregation (max-pool) 3. Multi-label loss function (allow multiple objects in image) See also [Kokkinos et al. 15, Sermanet et al. 14, Chaftield et al. 14]

17 1. Efficient window sliding to find object location Convolutional feature extraction layers trained on 1512 ImageNet classes (Oquab et al., 2014) Adaptation layers trained on Pascal VOC. C1 C2 C3 C4 C5 FC6 FC7 FCa FCb norm pool 1:8 256 norm pool 1: : : pool 1: dropout 1: dropout 1: dropout 1: :32 20 final-pool Figure 2: Network architecture. The layer legend indicates the number of maps, whether the layer performs cross-map normalization (norm), pooling (pool), dropouts (dropout), and reports its subsampling ratio with respect to the input image. See [21, 26] and Section 3 for full details. Initial work [1, 6, 7, 15, 37] on weakly supervised object localization has focused on learning from images containing prominent and centered objects in images with limited background clut-

18 2. Image-level aggregation using global max-pool Convolutional feature extraction layers trained on 1512 ImageNet classes (Oquab et al., 2014) Adaptation layers trained on Pascal VOC. C1 C2 C3 C4 C5 FC6 FC7 FCa FCb norm pool 1:8 256 norm pool 1: : : pool 1: dropout 1: dropout 1: dropout 1: :32 20 final-pool Figure 2: Network architecture. The layer legend indicates the number of maps, whether the layer performs cross-map normalization (norm), pooling (pool), dropouts (dropout), and reports its subsampling ratio with respect to the input image. See [21, 26] and Section 3 for full details. Initial work [1, 6, 7, 15, 37] on weakly supervised object localization has focused on learning from images containing prominent and centered objects in images with limited background clut-

19 Initial work [1, 6, 7, 15, 37] on weakly supervised object localization has focused on learning from images containing prominent and centered objects in images with limited background clutter. More recent efforts attempt to learn from images containing multiple objects embedded in complex scenes [2, 9, 28] or from video [30]. These methods typically localize objects with visually consistent appearance in the training data that often contains multiple objects in different spatial 3. Multi-label loss function Convolutional feature extraction layers (to allow trained for on multiple 1512 ImageNet classes objects (Oquab et in al., 2014) image) Adaptation layers trained on Pascal VOC. C1 C2 C3 C4 C5 FC6 FC7 FCa FCb norm pool 1:8 256 norm pool 1: : : pool 1: dropout 1: dropout 1: dropout 1: :32 20 final-pool Figure 2: Network architecture. The layer legend indicates the number of maps, whether the layer performs cross-map normalization (norm), pooling (pool), dropouts (dropout), and reports its subsampling ratio with respect to the input image. See [21, 26] and Section 3 for full details. Cost function: Sum of log-loss functions over K classes:

20 Training with global max-pooling Training input: + image-level labels: Airplane Car Chair Airplane score map Correct label: increase score Learn discriminative object parts Car score map Incorrect label: decrease score Suppress Hard Negatives

21 Training Motorbikes Evolution of localization score maps over training epochs

22 Results for weakly-supervised object recognition in Microsoft COCO dataset

23 Test results in Microsoft COCO: 80 object classes

24 Test results in Microsoft COCO: 80 object classes

25 Test results in Microsoft COCO: 80 object classes

26 Test results in Microsoft COCO: 80 object classes

27 Test results in Microsoft COCO: 80 object classes

28 Test results in Microsoft COCO: 80 object classes

29 Results for weakly-supervised action recognition in Pascal VOC 12 dataset

30 Test results in Pascal VOC 12: 10 action classes

31 Test results in Pascal VOC 12: 10 action classes

32 Test results in Pascal VOC 12: 10 action classes

33 Test results in Pascal VOC 12: 10 action classes

34 Test results in Pascal VOC 12: 10 action classes

35 Test results in Pascal VOC 12: 10 action classes Failure cases

36 [Oquab, Bottou, Laptev and Sivic, CVPR 2015] Results PASCAL VOC 2012 Object classification VGG 89.3

37 Summary Training input + image-level labels: Person Chair Airplane Reading Riding bike Running Test output More details in

38 What s next? a dog sitting beside a red fire hydrant in a dog park. a dog holding a skateboard trotting down a street.

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Weakly supervised object recognition with convolutional neural networks

Weakly supervised object recognition with convolutional neural networks Weakly supervised object recognition with convolutional neural networks Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic To cite this version: Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic. Weakly

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS PASCAL VOC Classification: Local Features vs. Deep Features Shuicheng YAN, NUS PASCAL VOC Why valuable? Multi-label, Real Scenarios! Visual Object Recognition Object Classification Object Detection Object

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation

Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation Lecturer: Yunchao Wei Image Formation and Processing (IFP) Group University of Illinois at Urbanahttps://weiyc.githu Champaign

More information

Return of the Devil in the Details: Delving Deep into Convolutional Nets

Return of the Devil in the Details: Delving Deep into Convolutional Nets Return of the Devil in the Details: Delving Deep into Convolutional Nets Ken Chatfield - Karen Simonyan - Andrea Vedaldi - Andrew Zisserman University of Oxford The Devil is still in the Details 2011 2014

More information

Video Semantic Indexing using Object Detection-Derived Features

Video Semantic Indexing using Object Detection-Derived Features Video Semantic Indexing using Object Detection-Derived Features Kotaro Kikuchi, Kazuya Ueki, Tetsuji Ogawa, and Tetsunori Kobayashi Dept. of Computer Science, Waseda University, Japan Abstract A new feature

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Deconvolutions in Convolutional Neural Networks

Deconvolutions in Convolutional Neural Networks Overview Deconvolutions in Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Deconvolutions in CNNs Applications Network visualization

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 1

More information

arxiv: v3 [cs.cv] 13 Apr 2016 Abstract

arxiv: v3 [cs.cv] 13 Apr 2016 Abstract ProNet: Learning to Propose Object-specific Boxes for Cascaded Neural Networks Chen Sun 1,2 Manohar Paluri 2 Ronan Collobert 2 Ram Nevatia 1 Lubomir Bourdev 3 1 USC 2 Facebook AI Research 3 UC Berkeley

More information

arxiv: v2 [cs.cv] 27 Nov 2015

arxiv: v2 [cs.cv] 27 Nov 2015 Weakly Supervised Deep Detection Networks Hakan Bilen Andrea Vedaldi Department of Engineering Science, University of Oxford arxiv:1511.02853v2 [cs.cv] 27 Nov 2015 Abstract Weakly supervised learning of

More information

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Intro to Deep Learning Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Why this class? Deep Features Have been able to harness the big data in the most efficient and effective

More information

arxiv: v1 [cs.cv] 4 Jun 2015

arxiv: v1 [cs.cv] 4 Jun 2015 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks arxiv:1506.01497v1 [cs.cv] 4 Jun 2015 Shaoqing Ren Kaiming He Ross Girshick Jian Sun Microsoft Research {v-shren, kahe, rbg,

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN Visual Computing Systems Today s task: object detection Image classification: what is the object in this image?

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks

Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks Nikiforos Pittaras 1, Foteini Markatopoulou 1,2, Vasileios Mezaris 1, and Ioannis Patras 2 1 Information Technologies

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley Towards Large-Scale Semantic Representations for Actionable Exploitation Prof. Trevor Darrell UC Berkeley traditional surveillance sensor emerging crowd sensor Desired capabilities: spatio-temporal reconstruction

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

arxiv: v1 [cs.cv] 18 Jun 2014

arxiv: v1 [cs.cv] 18 Jun 2014 Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Technical report Kaiming He 1 Xiangyu Zhang 2 Shaoqing Ren 3 Jian Sun 1 1 Microsoft Research 2 Xi an Jiaotong University 3

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Detection and Localization with Multi-scale Models

Detection and Localization with Multi-scale Models Detection and Localization with Multi-scale Models Eshed Ohn-Bar and Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego {eohnbar, mtrivedi}@ucsd.edu Abstract

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Traffic Multiple Target Detection on YOLOv2

Traffic Multiple Target Detection on YOLOv2 Traffic Multiple Target Detection on YOLOv2 Junhong Li, Huibin Ge, Ziyang Zhang, Weiqin Wang, Yi Yang Taiyuan University of Technology, Shanxi, 030600, China wangweiqin1609@link.tyut.edu.cn Abstract Background

More information

arxiv: v1 [cs.cv] 1 Apr 2017

arxiv: v1 [cs.cv] 1 Apr 2017 Multiple Instance Detection Network with Online Instance Classifier Refinement Peng Tang Xinggang Wang Xiang Bai Wenyu Liu School of EIC, Huazhong University of Science and Technology {pengtang,xgwang,xbai,liuwy}@hust.edu.cn

More information

Actions and Attributes from Wholes and Parts

Actions and Attributes from Wholes and Parts Actions and Attributes from Wholes and Parts Georgia Gkioxari UC Berkeley gkioxari@berkeley.edu Ross Girshick Microsoft Research rbg@microsoft.com Jitendra Malik UC Berkeley malik@berkeley.edu Abstract

More information

Mind the regularized GAP, for human action classification and semi-supervised localization based on visual saliency.

Mind the regularized GAP, for human action classification and semi-supervised localization based on visual saliency. Mind the regularized GAP, for human action classification and semi-supervised localization based on visual saliency. Marc Moreaux123, Natalia Lyubova1, Isabelle Ferrane 2 and Frederic Lerasle3 1 Softbank

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Learning and Recognizing Visual Object Categories Without First Detecting Features

Learning and Recognizing Visual Object Categories Without First Detecting Features Learning and Recognizing Visual Object Categories Without First Detecting Features Daniel Huttenlocher 2007 Joint work with D. Crandall and P. Felzenszwalb Object Category Recognition Generic classes rather

More information

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9-1 Administrative A2 due Wed May 2 Midterm: In-class Tue May 8. Covers material through Lecture 10 (Thu May 3). Sample midterm released on piazza. Midterm review session: Fri May 4 discussion

More information

Bounding Out-of-Sample Objects A weakly-supervised approach

Bounding Out-of-Sample Objects A weakly-supervised approach Bounding Out-of-Sample Objects A weakly-supervised approach Li Quan Khoo Stanford University (SCPD) lqkhoo@stanford.edu Abstract In the context of image processing, the most salient parts of the image

More information

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia CPSC340 State-of-the-art Neural Networks Nando de Freitas November, 2012 University of British Columbia Outline of the lecture This lecture provides an overview of two state-of-the-art neural networks:

More information

DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition

DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition ECS 289G 10/06/2016 Authors: Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng and Trevor Darrell

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Image and Video Understanding

Image and Video Understanding Image and Video Understanding 2VO 70.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material

More information

Learning to Segment Object Candidates

Learning to Segment Object Candidates Learning to Segment Object Candidates Pedro O. Pinheiro Ronan Collobert Piotr Dollár pedro@opinheiro.com locronan@fb.com pdollar@fb.com Facebook AI Research Abstract Recent object detection systems rely

More information

Fewer is More: Image Segmentation Based Weakly Supervised Object Detection with Partial Aggregation

Fewer is More: Image Segmentation Based Weakly Supervised Object Detection with Partial Aggregation GE, WANG, QI: FEWER IS MORE 1 Fewer is More: Image Segmentation Based Weakly Supervised Object Detection with Partial Aggregation Ce Ge nwlgc@bupt.edu.cn Jingyu Wang wangjingyu@bupt.edu.cn Qi Qi qiqi@ebupt.com

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Ranking Figure-Ground Hypotheses for Object Segmentation

Ranking Figure-Ground Hypotheses for Object Segmentation Ranking Figure-Ground Hypotheses for Object Segmentation João Carreira, Fuxin Li, Cristian Sminchisescu Faculty of Mathematics and Natural Science, INS, University of Bonn http://sminchisescu.ins.uni-bonn.de/

More information

Subspace Alignment Based Domain Adaptation for RCNN Detector

Subspace Alignment Based Domain Adaptation for RCNN Detector RAJ, NAMBOODIRI, TUYTELAARS: ADAPTING RCNN DETECTOR 1 Subspace Alignment Based Domain Adaptation for RCNN Detector Anant Raj anantraj@iitk.ac.in Vinay P. Namboodiri vinaypn@iitk.ac.in Tinne Tuytelaars

More information

arxiv: v2 [cs.cv] 28 Jul 2017

arxiv: v2 [cs.cv] 28 Jul 2017 Exploiting Web Images for Weakly Supervised Object Detection Qingyi Tao Hao Yang Jianfei Cai Nanyang Technological University, Singapore arxiv:1707.08721v2 [cs.cv] 28 Jul 2017 Abstract In recent years,

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Rare Chinese Character Recognition by Radical Extraction Network

Rare Chinese Character Recognition by Radical Extraction Network 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) Banff Center, Banff, Canada, October 5-8, 2017 Rare Chinese Character Recognition by Radical Extraction Network Ziang Yan, Chengzhe

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION Shin Matsuo Wataru Shimoda Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka,

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Find that! Visual Object Detection Primer

Find that! Visual Object Detection Primer Find that! Visual Object Detection Primer SkTech/MIT Innovation Workshop August 16, 2012 Dr. Tomasz Malisiewicz tomasz@csail.mit.edu Find that! Your Goals...imagine one such system that drives information

More information

arxiv: v2 [cs.cv] 22 Sep 2014

arxiv: v2 [cs.cv] 22 Sep 2014 arxiv:47.6v2 [cs.cv] 22 Sep 24 Analyzing the Performance of Multilayer Neural Networks for Object Recognition Pulkit Agrawal, Ross Girshick, Jitendra Malik {pulkitag,rbg,malik}@eecs.berkeley.edu University

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

Learning Deep Features for Visual Recognition

Learning Deep Features for Visual Recognition 7x7 conv, 64, /2, pool/2 1x1 conv, 64 3x3 conv, 64 1x1 conv, 64 3x3 conv, 64 1x1 conv, 64 3x3 conv, 64 1x1 conv, 128, /2 3x3 conv, 128 1x1 conv, 512 1x1 conv, 128 3x3 conv, 128 1x1 conv, 512 1x1 conv,

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

Robust Scene Classification with Cross-level LLC Coding on CNN Features

Robust Scene Classification with Cross-level LLC Coding on CNN Features Robust Scene Classification with Cross-level LLC Coding on CNN Features Zequn Jie 1, Shuicheng Yan 2 1 Keio-NUS CUTE Center, National University of Singapore, Singapore 2 Department of Electrical and Computer

More information

Segmenting Objects in Weakly Labeled Videos

Segmenting Objects in Weakly Labeled Videos Segmenting Objects in Weakly Labeled Videos Mrigank Rochan, Shafin Rahman, Neil D.B. Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, Canada {mrochan, shafin12, bruce, ywang}@cs.umanitoba.ca

More information

arxiv: v1 [cs.cv] 4 Feb 2016

arxiv: v1 [cs.cv] 4 Feb 2016 Self-Transfer Learning for Fully Weakly Supervised Object Localization Sangheum Hwang and Hyo-Eun Kim Lunit Inc., Seoul, Korea {shwang, hekim}@lunit.io arxiv:1602.01625v1 [cs.cv] 4 Feb 2016 Abstract Recent

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Learning the Structure of Deep Architectures Using l 1 Regularization

Learning the Structure of Deep Architectures Using l 1 Regularization KULKARNI ET AL.: LEARNING THE STRUCTURE OF DEEP ARCHITECTURES 1 Learning the Structure of Deep Architectures Using l 1 Regularization Praveen Kulkarni 1 Praveen.Kulkarni@technicolor.com Joaquin Zepeda

More information

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Suyash Shetty Manipal Institute of Technology suyash.shashikant@learner.manipal.edu Abstract In

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

Understanding Convolutional Networks with APPLE : Automatic Patch Pattern Labeling for Explanation

Understanding Convolutional Networks with APPLE : Automatic Patch Pattern Labeling for Explanation Understanding Convolutional Networks with APPLE : Automatic Patch Pattern Labeling for Explanation Sandeep Konam, Ian Quah, Stephanie Rosenthal, Manuela Veloso Carnegie Mellon University 5000 Forbes Avenue,

More information

Faster R-CNN Features for Instance Search

Faster R-CNN Features for Instance Search Faster R-CNN Features for Instance Search Amaia Salvador, Xavier Giró-i-Nieto, Ferran Marqués Universitat Politècnica de Catalunya (UPC) Barcelona, Spain {amaia.salvador,xavier.giro}@upc.edu Shin ichi

More information

arxiv: v1 [cs.cv] 14 Dec 2015

arxiv: v1 [cs.cv] 14 Dec 2015 Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun Microsoft Research {jifdai,kahe,jiansun}@microsoft.com arxiv:1512.04412v1 [cs.cv] 14 Dec 2015 Abstract

More information

Bag-of-features. Cordelia Schmid

Bag-of-features. Cordelia Schmid Bag-of-features for category classification Cordelia Schmid Visual search Particular objects and scenes, large databases Category recognition Image classification: assigning a class label to the image

More information

Unsupervised Object Discovery and Co-Localization by Deep Descriptor Transformation

Unsupervised Object Discovery and Co-Localization by Deep Descriptor Transformation Unsupervised Object Discovery and Co-Localization by Deep Descriptor Transformation Xiu-Shen Wei a,1, Chen-Lin Zhang b,1, Jianxin Wu b,, Chunhua Shen c,, Zhi-Hua Zhou b a Megvii Research Nanjing, Megvii

More information

LSDA: Large Scale Detection through Adaptation

LSDA: Large Scale Detection through Adaptation LSDA: Large Scale Detection through Adaptation Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, EECS, UC Berkeley, EE, Tsinghua University {jhoffman, sguada, tzeng, jdonahue}@eecs.berkeley.edu

More information

Learning Deep Representations for Visual Recognition

Learning Deep Representations for Visual Recognition Learning Deep Representations for Visual Recognition CVPR 2018 Tutorial Kaiming He Facebook AI Research (FAIR) Deep Learning is Representation Learning Representation Learning: worth a conference name

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

arxiv: v1 [cs.cv] 6 Sep 2017

arxiv: v1 [cs.cv] 6 Sep 2017 Soft Proposal Networks for Weakly Supervised Object Localization Yi Zhu 1, Yanzhao Zhou 1, Qixiang Ye 1, Qiang Qiu 2 and Jianbin Jiao 1 1 University of Chinese Academy of Sciences 2 Duke University {zhuyi215,

More information

arxiv: v2 [cs.cv] 19 Dec 2014

arxiv: v2 [cs.cv] 19 Dec 2014 Fisher Kernel for Deep Neural Activations Donggeun Yoo, Sunggyun Park, Joon-Young Lee, and In So Kweon arxiv:42.628v2 [cs.cv] 9 Dec 204 KAIST Daejeon, 305-70, Korea. dgyoo@rcv.kaist.ac.kr, sunggyun@kaist.ac.kr,

More information

Faster R-CNN Implementation using CUDA Architecture in GeForce GTX 10 Series

Faster R-CNN Implementation using CUDA Architecture in GeForce GTX 10 Series INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH Faster R-CNN Implementation using CUDA Architecture in GeForce GTX 10 Series Basyir Adam, Fadhlan Hafizhelmi Kamaru Zaman, Member, IEEE,

More information

arxiv: v2 [cs.cv] 30 Mar 2016

arxiv: v2 [cs.cv] 30 Mar 2016 arxiv:1512.2325v2 [cs.cv] 3 Mar 216 SSD: Single Shot MultiBox Detector Wei Liu 1, Dragomir Anguelov 2, Dumitru Erhan 3, Christian Szegedy 3, Scott Reed 4, Cheng-Yang Fu 1, Alexander C. Berg 1 1 UNC Chapel

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Part Localization by Exploiting Deep Convolutional Networks

Part Localization by Exploiting Deep Convolutional Networks Part Localization by Exploiting Deep Convolutional Networks Marcel Simon, Erik Rodner, and Joachim Denzler Computer Vision Group, Friedrich Schiller University of Jena, Germany www.inf-cv.uni-jena.de Abstract.

More information

Category-level Localization

Category-level Localization Category-level Localization Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb,

More information