A GPGPU Algorithm for c-approximate r-nearest Neighbor Search in High Dimensions

Size: px
Start display at page:

Download "A GPGPU Algorithm for c-approximate r-nearest Neighbor Search in High Dimensions"

Transcription

1 A GPGPU Algorithm for c-approximate r-nearest Neighbor Search in High Dimensions Lee A Carraher, Philip A Wilsey, and Fred S Annexstein School of Electronic and Computing Systems University of Cincinnati May 24, 2013

2 2 / 17 Parallel Nearest Neighbor Search An approximate Nearest Neighbor algorithm in parallel GPGPU implementation of the Leech Lattice decoder for LSH NN Other non-sequential parts of LSH NN in parallel (projection, sorting) Optimized for the CUDA architecture

3 3 / 17 Motivations NN is an intuitive, powerful basis for machine learning algorithms Approximate answers are good enough for big data GPU provides many benefits and challenges High ALU to Control allocation ratio Remap for data intensive processing Memory transfer bottlenecks (no MMU or cache) Getting it to fit in shared memory

4 4 / 17 NN, KNN, c-approx NN, cr-approx NN NN problem: given a query vector, return the nearest vector in a set of vectors by minimizing some distance function KNN is NN but the K nearest vectors are returned (NN is KNN where K=1) c approx NN returns a NN within a constant ɛ-distances of the optimal NN cr approx NN extends the c-approx NN by returning all the vectors within a radius r of the query vector

5 5 / 17 Problems With Other Parallel Search GPU Linear Search Fast, simple implementation Linear search complexity and speedup All vectors must be in MM GPU Kd-Tree Search Vectors do not have to be in MM Work well for d<20 Parallel DFS has issues scaling

6 6 / 17 Locality Sensitive Hashing for NN Nearest Neighbor search algorithm based on LSH functions Collision probability corresponds to closeness Collision Probability is a pseudo-distance function Only consider colliding vectors Exhaustively search colliding vectors

7 LSH Query Multiple Times Hashtable of Near Neighbors Datapoint Labels Query R-project vectors to LSH dim Compute Lattice Hash Create Sequence of near neighbors Compute Real Distances and Sort 7 / 17

8 8 / 17 An Example Hash Family 0 w 1 w 2 3 w r Figure: Random Projection of R 2 R 1

9 9 / 17 ECC as Hash Functions The goal of ECCs are the same as a good LSH function Send data over a noisy channel and correct the errors Only a subset of data is valid (codes/hashes) Codes correct within an error correcting radius Shannon s Limit (optimal codes exist, but are complex) Fast implementation (not as important as cpu clock>>channel capacity) Need to find a compromise between decoding complexity and the native dimensionality of the ECC

10 Comparison of ECC Decoders Error Correcting Performance ( Samples) 1 Probability of Bit Error - log10(pb) Leech hex -2db and QAM16 E8 2PSK Unencoded QAM64 Unencoded QAM EB/NO (db) Leech Lattice partitions R 24, in 519 operations 10 / 17

11 11 / 17 Parallel Λ 24 Decoder Block Decoding Thread Block Global Mem r[0:12] r[12:24] r[0:12] r[12:24] QAM(A_pts) QAM(A_pts) QAM(B_pts) QAM(B_pts) d_ij[0:12] d_ij[12:24] d_ij[0:12] d_ij[12:24] Block Conf(even) Block Conf(odd) Block Conf(even) Block Conf(odd) mues prefrepe muos prefrepo mues prefrepe muos prefrepo MinH6 MinH6 MinH6 MinH6 weight y weight y weight y weight y H_parity H_parity H_parity H_parity weight Codeword weight Codeword weight Codeword weight Codeword K_parity K_parity K_parity K_parity weight_ae Codeword_AE weight_ao Codeword_AO weight_be Codeword_Be weight_bo Codeword_BO Compare weights

12 12 / 17 GPU tweak: Avoid Branching Warps (sets of 16 threads) run as SIMD Branches cause a warp to be rescheduled and run again 99998% chance for uniform boolean test, ( ) Conversion provides a 68% Speedup for our algorithm Conditional Code IF dista<distb: ELSE: d ij [4i]=distA d ijk [4i]=distB kparities[4i]=0 d ij [4i]=distB d ijk [4i]=distA kparities[4i]= 1 Sequential Access Code d = dista<distb d ij [4i]=distA*d+distB*( d) d ijk [4i]=distB*d+distA*( d) kparities[4i] = ( d)

13 13 / 17 Results For SIFT Vectors Comparison of Time for LSH and Linear Search Linear Search Times LSH Search Times 50 Average Time (s) Number of Images

14 14 / 17 Result Extrapolation For Larger DBs Extrapolated Linear Search Extrapolated Comparison of Time for LSH and Linear Search (Semilog) Average Time Extrapolated Linear Search y= 045x Number of Images Extrapolated LSH Search Average Time log-scale Average Time Extrapolated LSH y= 015x^ Number of Images 10-1 Extrapolated Linear Search Extrapolated LSH Number of Images

15 Ratio of Sequential To Parallel Code 094 Query Database: Parallel/Total Compute Time for SIFT Samples Ratio Par/Seq SIFT sample data samples avg=09340, R2= e Samples 15 / 17

16 Scaled Speedup Results 30 Query: Total Speedup as a function of Parallel Speedup 25 Total Speedup Parallelism Our Theoretical Speedup (934%) 90% Serial Code 95% Serial Code 97% Serial Code Theoretical Speedup Parallel Speedup 16 / 17

17 17 / 17 Conclusions GPU parallel implementations of lattice hashing accelerates the NN algorithm Required sequential parts of the LSH algorithm will always cause bottlenecks Within the processor count range of some medium embedded applications (UAVs, Cellphones, Surveillance Systems) speedup scales Tweaking parts of the LSH algorithm for the GPU Random Projection Calculation (bulk or per query) Hash list sorting and intersection (per-query) Linear searching of candidate NNs (for exact NN)

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University Approximate Nearest Neighbor Search Deng Cai Zhejiang University The Era of Big Data How to Find Things Quickly? Web 1.0 Text Search Sparse feature Inverted Index How to Find Things Quickly? Web 2.0, 3.0

More information

Warped parallel nearest neighbor searches using kd-trees

Warped parallel nearest neighbor searches using kd-trees Warped parallel nearest neighbor searches using kd-trees Roman Sokolov, Andrei Tchouprakov D4D Technologies Kd-trees Binary space partitioning tree Used for nearest-neighbor search, range search Application:

More information

Multi Agent Navigation on GPU. Avi Bleiweiss

Multi Agent Navigation on GPU. Avi Bleiweiss Multi Agent Navigation on GPU Avi Bleiweiss Reasoning Explicit Implicit Script, storytelling State machine, serial Compute intensive Fits SIMT architecture well Navigation planning Collision avoidance

More information

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC MIKE GOWANLOCK NORTHERN ARIZONA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING & CYBER SYSTEMS BEN KARSIN UNIVERSITY OF HAWAII AT MANOA DEPARTMENT

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18.

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18. Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 18 Image Hashing Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph:

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors State-of-the-Art Yury Lifshits Steklov Institute of Mathematics at St.Petersburg Yandex Tech Seminar, April 2007 1 / 28 Outline 1 Problem Statement Applications Data Models

More information

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Rajesh Bordawekar IBM T. J. Watson Research Center bordaw@us.ibm.com Pidad D Souza IBM Systems pidsouza@in.ibm.com 1 Outline

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4)

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) Lecture: Storage, GPUs Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) 1 Magnetic Disks A magnetic disk consists of 1-12 platters (metal or glass disk covered with magnetic recording material

More information

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization Duksu Kim Assistant professor, KORATEHC Education Ph.D. Computer Science, KAIST Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications Professional Experience Senior

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

CS 179: GPU Computing

CS 179: GPU Computing CS 179: GPU Computing LECTURE 2: INTRO TO THE SIMD LIFESTYLE AND GPU INTERNALS Recap Can use GPU to solve highly parallelizable problems Straightforward extension to C++ Separate CUDA code into.cu and.cuh

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

CS6963: Parallel Programming for GPUs Midterm Exam March 25, 2009

CS6963: Parallel Programming for GPUs Midterm Exam March 25, 2009 1 CS6963: Parallel Programming for GPUs Midterm Exam March 25, 2009 Instructions: This is an in class, open note exam. Please use the paper provided to submit your responses. You can include additional

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors Classic Ideas, New Ideas Yury Lifshits Steklov Institute of Mathematics at St.Petersburg http://logic.pdmi.ras.ru/~yura University of Toronto, July 2007 1 / 39 Outline

More information

Generic Polyphase Filterbanks with CUDA

Generic Polyphase Filterbanks with CUDA Generic Polyphase Filterbanks with CUDA Jan Krämer German Aerospace Center Communication and Navigation Satellite Networks Weßling 04.02.2017 Knowledge for Tomorrow www.dlr.de Slide 1 of 27 > Generic Polyphase

More information

Predicting GPU Performance from CPU Runs Using Machine Learning

Predicting GPU Performance from CPU Runs Using Machine Learning Predicting GPU Performance from CPU Runs Using Machine Learning Ioana Baldini Stephen Fink Erik Altman IBM T. J. Watson Research Center Yorktown Heights, NY USA 1 To exploit GPGPU acceleration need to

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013 Voronoi Region K-means method for Signal Compression: Vector Quantization Blocks of signals: A sequence of audio. A block of image pixels. Formally: vector example: (0.2, 0.3, 0.5, 0.1) A vector quantizer

More information

Spatial Data Management

Spatial Data Management Spatial Data Management [R&G] Chapter 28 CS432 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite imagery, where each pixel stores a measured value

More information

Module 3: Hashing Lecture 9: Static and Dynamic Hashing. The Lecture Contains: Static hashing. Hashing. Dynamic hashing. Extendible hashing.

Module 3: Hashing Lecture 9: Static and Dynamic Hashing. The Lecture Contains: Static hashing. Hashing. Dynamic hashing. Extendible hashing. The Lecture Contains: Hashing Dynamic hashing Extendible hashing Insertion file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture9/9_1.htm[6/14/2012

More information

Benchmarking the Memory Hierarchy of Modern GPUs

Benchmarking the Memory Hierarchy of Modern GPUs 1 of 30 Benchmarking the Memory Hierarchy of Modern GPUs In 11th IFIP International Conference on Network and Parallel Computing Xinxin Mei, Kaiyong Zhao, Chengjian Liu, Xiaowen Chu CS Department, Hong

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

over Multi Label Images

over Multi Label Images IBM Research Compact Hashing for Mixed Image Keyword Query over Multi Label Images Xianglong Liu 1, Yadong Mu 2, Bo Lang 1 and Shih Fu Chang 2 1 Beihang University, Beijing, China 2 Columbia University,

More information

Spatial Data Management

Spatial Data Management Spatial Data Management Chapter 28 Database management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

Introduction to GPU programming with CUDA

Introduction to GPU programming with CUDA Introduction to GPU programming with CUDA Dr. Juan C Zuniga University of Saskatchewan, WestGrid UBC Summer School, Vancouver. June 12th, 2018 Outline 1 Overview of GPU computing a. what is a GPU? b. GPU

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Scene Completion Problem The Bare Data Approach High Dimensional Data Many real-world problems Web Search and Text Mining Billions

More information

Similarity Searching Techniques in Content-based Audio Retrieval via Hashing

Similarity Searching Techniques in Content-based Audio Retrieval via Hashing Similarity Searching Techniques in Content-based Audio Retrieval via Hashing Yi Yu, Masami Takata, and Kazuki Joe {yuyi, takata, joe}@ics.nara-wu.ac.jp Graduate School of Humanity and Science Outline Background

More information

Efficient Computation of Radial Distribution Function on GPUs

Efficient Computation of Radial Distribution Function on GPUs Efficient Computation of Radial Distribution Function on GPUs Yi-Cheng Tu * and Anand Kumar Department of Computer Science and Engineering University of South Florida, Tampa, Florida 2 Overview Introduction

More information

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs

Lecture 27: Multiprocessors. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Lecture 27: Multiprocessors Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood programming model

More information

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Hashing Structures Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Hashing Structures I. Motivation and Review II. Hash Functions III. HashTables I. Implementations

More information

MapReduce Locality Sensitive Hashing GPUs. NLP ML Web Andrew Rosenberg

MapReduce Locality Sensitive Hashing GPUs. NLP ML Web Andrew Rosenberg MapReduce Locality Sensitive Hashing GPUs NLP ML Web Andrew Rosenberg Big Data What is Big Data? Data Analysis based on more data than previously considered. Analysis that requires new or different processing

More information

Accelerating Spark Workloads using GPUs

Accelerating Spark Workloads using GPUs Accelerating Spark Workloads using GPUs Rajesh Bordawekar, Minsik Cho, Wei Tan, Benjamin Herta, Vladimir Zolotov, Alexei Lvov, Liana Fong, and David Kung IBM T. J. Watson Research Center 1 Outline Spark

More information

Concurrency for data-intensive applications

Concurrency for data-intensive applications Concurrency for data-intensive applications Dennis Kafura CS5204 Operating Systems 1 Jeff Dean Sanjay Ghemawat Dennis Kafura CS5204 Operating Systems 2 Motivation Application characteristics Large/massive

More information

Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014

Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014 Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014 Presenter: Derrick Blakely Department of Computer Science, University of Virginia https://qdata.github.io/deep2read/

More information

POST-SIEVING ON GPUs

POST-SIEVING ON GPUs POST-SIEVING ON GPUs Andrea Miele 1, Joppe W Bos 2, Thorsten Kleinjung 1, Arjen K Lenstra 1 1 LACAL, EPFL, Lausanne, Switzerland 2 NXP Semiconductors, Leuven, Belgium 1/18 NUMBER FIELD SIEVE (NFS) Asymptotically

More information

Searching in one billion vectors: re-rank with source coding

Searching in one billion vectors: re-rank with source coding Searching in one billion vectors: re-rank with source coding Hervé Jégou INRIA / IRISA Romain Tavenard Univ. Rennes / IRISA Laurent Amsaleg CNRS / IRISA Matthijs Douze INRIA / LJK ICASSP May 2011 LARGE

More information

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Scalable Multi Agent Simulation on the GPU Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Reasoning Explicit State machine, serial Implicit Compute intensive Fits SIMT well Collision avoidance Motivation

More information

Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications

Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications Tasneem Brutch, Bo Li, Guodong Rong, Yi Shen, Chang Shu Samsung Research America-Silicon Valley {t.brutch, robert.li, g.rong,

More information

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro INTRODUCTION TO GPU COMPUTING WITH CUDA Topi Siro 19.10.2015 OUTLINE PART I - Tue 20.10 10-12 What is GPU computing? What is CUDA? Running GPU jobs on Triton PART II - Thu 22.10 10-12 Using libraries Different

More information

GPU-based Distributed Behavior Models with CUDA

GPU-based Distributed Behavior Models with CUDA GPU-based Distributed Behavior Models with CUDA Courtesy: YouTube, ISIS Lab, Universita degli Studi di Salerno Bradly Alicea Introduction Flocking: Reynolds boids algorithm. * models simple local behaviors

More information

Sorting and Searching. Tim Purcell NVIDIA

Sorting and Searching. Tim Purcell NVIDIA Sorting and Searching Tim Purcell NVIDIA Topics Sorting Sorting networks Search Binary search Nearest neighbor search Assumptions Data organized into D arrays Rendering pass == screen aligned quad Not

More information

Locality-Aware Mapping of Nested Parallel Patterns on GPUs

Locality-Aware Mapping of Nested Parallel Patterns on GPUs Locality-Aware Mapping of Nested Parallel Patterns on GPUs HyoukJoong Lee *, Kevin Brown *, Arvind Sujeeth *, Tiark Rompf, Kunle Olukotun * * Pervasive Parallelism Laboratory, Stanford University Purdue

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES CONFERENCES Short Name SIGMOD Full Name Special Interest Group on Management Of Data CONTINUOUS NEAREST NEIGHBOR SEARCH Yufei Tao, Dimitris Papadias, Qiongmao Shen Hong Kong University of Science and Technology

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27 1 / 27 GPU Programming Lecture 1: Introduction Miaoqing Huang University of Arkansas 2 / 27 Outline Course Introduction GPUs as Parallel Computers Trend and Design Philosophies Programming and Execution

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 3, 208 Locality sensitive hashing for approximate NN

More information

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS Ferdinando Alessi Annalisa Massini Roberto Basili INGV Introduction The simulation of wave propagation

More information

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012 Supervised Hashing with Kernels Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), and Shih Fu Chang (Columbia Columbia) June, 2012 Outline Motivations Problem

More information

Parallelizing FPGA Technology Mapping using GPUs. Doris Chen Deshanand Singh Aug 31 st, 2010

Parallelizing FPGA Technology Mapping using GPUs. Doris Chen Deshanand Singh Aug 31 st, 2010 Parallelizing FPGA Technology Mapping using GPUs Doris Chen Deshanand Singh Aug 31 st, 2010 Motivation: Compile Time In last 12 years: 110x increase in FPGA Logic, 23x increase in CPU speed, 4.8x gap Question:

More information

Parallel Processing SIMD, Vector and GPU s cont.

Parallel Processing SIMD, Vector and GPU s cont. Parallel Processing SIMD, Vector and GPU s cont. EECS4201 Fall 2016 York University 1 Multithreading First, we start with multithreading Multithreading is used in GPU s 2 1 Thread Level Parallelism ILP

More information

A Generic Inverted Index Framework for Similarity Search on the GPU

A Generic Inverted Index Framework for Similarity Search on the GPU A Generic Inverted Index Framework for Similarity Search on the GPU Jingbo Zhou, Qi Guo, H. V. Jagadish #, Luboš Krčál, Siyuan Liu Wenhao Luan, Anthony K. H. Tung, Yueji Yang, Yuxin Zheng National University

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

Query Answering Using Inverted Indexes

Query Answering Using Inverted Indexes Query Answering Using Inverted Indexes Inverted Indexes Query Brutus AND Calpurnia J. Pei: Information Retrieval and Web Search -- Query Answering Using Inverted Indexes 2 Document-at-a-time Evaluation

More information

Accelerated Machine Learning Algorithms in Python

Accelerated Machine Learning Algorithms in Python Accelerated Machine Learning Algorithms in Python Patrick Reilly, Leiming Yu, David Kaeli reilly.pa@husky.neu.edu Northeastern University Computer Architecture Research Lab Outline Motivation and Goals

More information

1.3 Data processing; data storage; data movement; and control.

1.3 Data processing; data storage; data movement; and control. CHAPTER 1 OVERVIEW ANSWERS TO QUESTIONS 1.1 Computer architecture refers to those attributes of a system visible to a programmer or, put another way, those attributes that have a direct impact on the logical

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

Multidimensional Indexing The R Tree

Multidimensional Indexing The R Tree Multidimensional Indexing The R Tree Module 7, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Single-Dimensional Indexes B+ trees are fundamentally single-dimensional indexes. When we create

More information

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability

Lecture 27: Pot-Pourri. Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability Lecture 27: Pot-Pourri Today s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs Disks and reliability 1 Shared-Memory Vs. Message-Passing Shared-memory: Well-understood

More information

Semantic Image Search. Alex Egg

Semantic Image Search. Alex Egg Semantic Image Search Alex Egg Inspiration Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS

ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS ACCELERATED COMPLEX EVENT PROCESSING WITH GRAPHICS PROCESSING UNITS Prabodha Srimal Rodrigo Registration No. : 138230V Degree of Master of Science Department of Computer Science & Engineering University

More information

CLSH: Cluster-based Locality-Sensitive Hashing

CLSH: Cluster-based Locality-Sensitive Hashing CLSH: Cluster-based Locality-Sensitive Hashing Xiangyang Xu Tongwei Ren Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University xiangyang.xu@smail.nju.edu.cn

More information

BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU

BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU 2013 8th International Conference on Communications and Networking in China (CHINACOM) BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU Xiang Chen 1,2, Ji Zhu, Ziyu Wen,

More information

A Parallel Access Method for Spatial Data Using GPU

A Parallel Access Method for Spatial Data Using GPU A Parallel Access Method for Spatial Data Using GPU Byoung-Woo Oh Department of Computer Engineering Kumoh National Institute of Technology Gumi, Korea bwoh@kumoh.ac.kr Abstract Spatial access methods

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 8, 28 Locality sensitive hashing for approximate NN

More information

Co-synthesis and Accelerator based Embedded System Design

Co-synthesis and Accelerator based Embedded System Design Co-synthesis and Accelerator based Embedded System Design COE838: Embedded Computer System http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer

More information

Handout 3. HSAIL and A SIMT GPU Simulator

Handout 3. HSAIL and A SIMT GPU Simulator Handout 3 HSAIL and A SIMT GPU Simulator 1 Outline Heterogeneous System Introduction of HSA Intermediate Language (HSAIL) A SIMT GPU Simulator Summary 2 Heterogeneous System CPU & GPU CPU GPU CPU wants

More information

Accelerating Applications. the art of maximum performance computing James Spooner Maxeler VP of Acceleration

Accelerating Applications. the art of maximum performance computing James Spooner Maxeler VP of Acceleration Accelerating Applications the art of maximum performance computing James Spooner Maxeler VP of Acceleration Introduction The Process The Tools Case Studies Summary What do we mean by acceleration? How

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Task Description: Finding Similar Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 11, 2017 Sham Kakade 2017 1 Document

More information

FASTER UPPER BOUNDING OF INTERSECTION SIZES

FASTER UPPER BOUNDING OF INTERSECTION SIZES FASTER UPPER BOUNDING OF INTERSECTION SIZES IBM Research Tokyo - Japan Daisuke Takuma Hiroki Yanagisawa 213 IBM Outline Motivation of upper bounding Contributions Data structure Proposal Evaluation (introduce

More information

Automatic Scaling Iterative Computations. Aug. 7 th, 2012

Automatic Scaling Iterative Computations. Aug. 7 th, 2012 Automatic Scaling Iterative Computations Guozhang Wang Cornell University Aug. 7 th, 2012 1 What are Non-Iterative Computations? Non-iterative computation flow Directed Acyclic Examples Batch style analytics

More information

GPU Programming Using NVIDIA CUDA

GPU Programming Using NVIDIA CUDA GPU Programming Using NVIDIA CUDA Siddhante Nangla 1, Professor Chetna Achar 2 1, 2 MET s Institute of Computer Science, Bandra Mumbai University Abstract: GPGPU or General-Purpose Computing on Graphics

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA GPGPU LAB Case study: Finite-Difference Time- Domain Method on CUDA Ana Balevic IPVS 1 Finite-Difference Time-Domain Method Numerical computation of solutions to partial differential equations Explicit

More information

Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming

Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming Sungjoo Ha, Byung-Ro Moon Optimization Lab Seoul National University Computer Science GECCO 2015 July 13th, 2015 Sungjoo Ha, Byung-Ro

More information

Cartoon parallel architectures; CPUs and GPUs

Cartoon parallel architectures; CPUs and GPUs Cartoon parallel architectures; CPUs and GPUs CSE 6230, Fall 2014 Th Sep 11! Thanks to Jee Choi (a senior PhD student) for a big assist 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ socket 14 ~ core 14 ~ HWMT+SIMD

More information

Parallel Graph Component Labelling with GPUs and CUDA

Parallel Graph Component Labelling with GPUs and CUDA Parallel Graph Component Labelling with GPUs and CUDA K.A. Hawick, A. Leist and D.P. Playne Institute of Information and Mathematical Sciences Massey University Albany, North Shore 102-904, Auckland, New

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Hybrid Implementation of 3D Kirchhoff Migration

Hybrid Implementation of 3D Kirchhoff Migration Hybrid Implementation of 3D Kirchhoff Migration Max Grossman, Mauricio Araya-Polo, Gladys Gonzalez GTC, San Jose March 19, 2013 Agenda 1. Motivation 2. The Problem at Hand 3. Solution Strategy 4. GPU Implementation

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

Computational Geometry

Computational Geometry Computational Geometry Search in High dimension and kd-trees Ioannis Emiris Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece Spring 2018 I.Emiris

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

On-the-Fly Elimination of Dynamic Irregularities for GPU Computing

On-the-Fly Elimination of Dynamic Irregularities for GPU Computing On-the-Fly Elimination of Dynamic Irregularities for GPU Computing Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen Graphic Processing Units (GPU) 2 Graphic Processing Units (GPU) 2 Graphic

More information

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES Cliff Woolley, NVIDIA PREFACE This talk presents a case study of extracting parallelism in the UMT2013 benchmark for 3D unstructured-mesh

More information

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser Datenbanksysteme II: Multidimensional Index Structures 2 Ulf Leser Content of this Lecture Introduction Partitioned Hashing Grid Files kdb Trees kd Tree kdb Tree R Trees Example: Nearest neighbor image

More information

Characterization of CUDA and KD-Tree K-Query Point Nearest Neighbor for Static and Dynamic Data Sets

Characterization of CUDA and KD-Tree K-Query Point Nearest Neighbor for Static and Dynamic Data Sets Characterization of CUDA and KD-Tree K-Query Point Nearest Neighbor for Static and Dynamic Data Sets Brian Bowden bbowden1@vt.edu Jon Hellman jonatho7@vt.edu 1. Introduction Nearest neighbor (NN) search

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Using CUDA in Practice Klaus Mueller Computer Science Department Stony Brook University Code examples from Shane Cook CUDA Programming Related to: score boarding load and store

More information

Warps and Reduction Algorithms

Warps and Reduction Algorithms Warps and Reduction Algorithms 1 more on Thread Execution block partitioning into warps single-instruction, multiple-thread, and divergence 2 Parallel Reduction Algorithms computing the sum or the maximum

More information