A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples.

Size: px
Start display at page:

Download "A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples."

Transcription

1 Objectives This module explores the evolution and extension of IPv4, including the key scalability features that engineers have added to it over the years: Subnetting Classless interdomain routing (CIDR) Variable length subnet masking (VLSM) Route summarization Finally, this module examines advanced IP implementation techniques such as the following: IP unnumbered Dynamic Host Configuration Protocol (DHCP) Helper addresses 1

2 A few notes The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples. 2

3 IPv4 Address Classes 3

4 IPv4 Address Classes No medium size host networks In the early days of the Internet, IP addresses were allocated to organizations based on request rather than actual need. 4

5 IPv4 Address Classes Class D Addresses A Class D address begins with binary 1110 in the first octet. First octet range 224 to 239. Class D address can be used to represent a group of hosts called a host group, or multicast group. Class E Addresses First octet of an IP address begins with 1111 Class E addresses are reserved for experimental purposes and should not be used for addressing hosts or multicast groups. 5

6 IP addressing crisis Address Depletion Internet Routing Table Explosion 6

7 IPv4 Addressing Subnet Mask One solution to the IP address shortage was thought to be the subnet mask. Formalized in 1985 (RFC 950), the subnet mask breaks a single class A, B or C network in to smaller pieces. 7

8 Subnet Example Given the Class B address Class B Using /24 subnet... Network Network Host Host Network Network Subnet Host Internet routers still see this net as But internal routers think all these addresses are on different networks, called subnetworks 8

9 Subnet Example Network Network Subnet Host Using the 3rd octet, was divided into: and so on... 9

10 All Zeros and All Ones Subnets Using the All Ones Subnet There is no command to enable or disable the use of the all-ones subnet, it is enabled by default. Router(config)#ip subnet-zero The use of the all-ones subnet has always been explicitly allowed and the use of subnet zero is explicitly allowed since Cisco IOS version RFC 1878 states, "This practice (of excluding all-zeros and all-ones subnets) is obsolete! Modern software will be able to utilize all definable networks." Today, the use of subnet zero and the all-ones subnet is generally accepted and most vendors support their use, though, on certain networks, particularly the ones using legacy software, the use of subnet zero and the all-ones subnet can lead to problems. CCO: Subnet Zero and the All-Ones Subnet 8.shtml 10

11 Long Term Solution: IPv6 IP v6, or IPng (IP the Next Generation) uses a 128-bit address space, yielding 340,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses. IPv6 has been slow to arrive IPv4 revitalized by new features, making IPv6 a luxury, and not a desperately needed fix IPv6 requires new software; IT staffs must be retrained IPv6 will most likely coexist with IPv4 for years to come. Some experts believe IPv4 will remain for more than 10 years. 11

12 Short Term Solutions: IPv4 Enhancements CIDR (Classless Inter-Domain Routing) RFCs 1517, 1518, 1519, 1520 VLSM (Variable Length Subnet Mask) RFC 1009 Private Addressing - RFC 1918 NAT/PAT (Network Address Translation / Port Address Translation) RFC 12

13 CIDR (Classless Inter-Domain Routing) By 1992, members of the IETF were having serious concerns about the exponential growth of the Internet and the scalability of Internet routing tables. The IETF was also concerned with the eventual exhaustion of 32-bit IPv4 address space. Projections were that this problem would reach its critical state by 1994 or IETF s response was the concept of Supernetting or CIDR, cider. To CIDR-compliant routers, address class is meaningless. The network portion of the address is determined by the network subnet mask, network-prefix or prefix-length (/8, /19, etc.) The network address is NOT determined by the first octet (first two bits), /16 or /19 CIDR helped reduced the Internet routing table explosion with supernetting and reallocation of IPv4 address space. 13

14 Active BGP entries Report last updated at Thu, 16 Jan

15 CIDR (Classless Inter-Domain Routing) First deployed in 1994, CIDR dramatically improves IPv4 s scalability and efficiency by providing the following: Eliminates traditional Class A, B, C addresses allowing for more efficient allocation of IPv4 address space. Supporting route aggregation (summarization), also known as supernetting, where thousands of routes could be represented by a single route in the routing table. Route aggregation also helps prevent route flapping on Internet routers using BGP. Flapping routes can be a serious concern with Internet core routers. CIDR allows routers to aggregate, or summarize, routing information and thus shrink the size of their routing tables. Just one address and mask combination can represent the routes to multiple networks. Used by IGP routers within an AS and EGP routers between AS. 15

16 a router must maintain individual routing table entries for these class B networks. With CIDR, a router can summarize these routes into eight networks by using a 13-bit prefix: /13 Steps: 1. Count the number of left-most matching bits, /13 2. Add all zeros after the last matching bit: =

17 CIDR (Classless Inter-Domain Routing) By using a prefix address to summarizes routes, administrators can keep routing table entries manageable, which means the following More efficient routing A reduced number of CPU cycles when recalculating a routing table, or when sorting through the routing table entries to find a match Reduced router memory requirements Route summarization is also known as: Route aggregation Supernetting Supernetting is essentially the inverse of subnetting. CIDR moves the responsibility of allocation addresses away from a centralized authority (InterNIC). Instead, ISPs can be assigned blocks of address space, which they can then parcel out to customers. 17

18 ISP/NAP Hierarchy - The Internet: Still hierarchical after all these years. Jeff Doyle (Tries to be anyways!) NAP (Network Access Point) Network Service Provider Network Service Provider Regional Service Provider Regional Service Provider Regional Service Provider Regional Service Provider ISP ISP ISP ISP ISP ISP ISP ISP Subscribers Subscribers Subscribers Subscribers Subscribers Subscribers Subscribers Subscribers 18

19 Supernetting Example Company XYZ needs to address 400 hosts. Its ISP gives them two contiguous Class C addresses: / /24 Company XYZ can use a prefix of /23 to supernet these two contiguous networks. (Yielding 510 hosts) / / /24 23 bits in common 19

20 Supernetting Example With the ISP acting as the addressing authority for a CIDR block of addresses, the ISP s customer networks, which include XYZ, can be advertised among Internet routers as a single supernet. 20

21 CIDR and the Provider Another example of route aggregation. 21

22 CIDR and the provider / /23 Even Better: / / / / Summarization from the customer networks to their provider. (As long as there are no other routes elsewhere within this range, well ) / / /

23 /25 CIDR and the provider /23 Further summarization happens with the next upstream provider / / / / bits in common 23

24 CIDR Restrictions Dynamic routing protocols must send network address and mask (prefix-length) information in their routing updates. In other words, CIDR requires classless routing protocols for dynamic routing. However, you can still configure summarized static routes, after all, that is what a /0 route is. 24

25 Summarized and Specific Routes: Longest-bit Match (more later) Merida Summarized Update Specific Route Update / / /24 Quito Cartago / / /24 Merida receives a summarized /16 update from Quito and a more specific /24 update from Cartago. Merida will include both routes in the routing table. Merida will forward all packets matching at least the first 24 bits of to Cartago (172/16/5/0/24), longest-bit match. Merida will forward all other packets matching at least the first 16 bits to Quito ( /16). 25

26 Short Term Solutions: IPv4 Enhancements CIDR (Classless Inter-Domain Routing) RFCs 1517, 1518, 1519, 1520 VLSM (Variable Length Subnet Mask) RFC 1009 Private Addressing - RFC 1918 NAT/PAT (Network Address Translation / Port Address Translation) RFC 26

27 VLSM (Variable Length Subnet Mask) Limitation of using only a single subnet mask across a given network-prefix (network address, the number of bits in the mask) was that an organization is locked into a fixed-number of of fixed-sized subnets. 1987, RFC 1009 specified how a subnetted network could use more than one subnet mask. VLSM = Subnetting a Subnet If you know how to subnet, you can do VLSM! 27

28 VLSM Simple Example / /16 1st octet 2nd octet 3rd octet 4th octet 10 Host Host Host 10 Subnet Host Host / Host Host / Host Host / Host Host 10.n.0.0/16 10 Host Host / Host Host Subnetting a /8 subnet using a /16 mask gives us 256 subnets with 65,536 hosts per subnet. Let s take the /16 subnet and subnet it further 28

29 VLSM Simple Example Note: /16 is now a summary of all of the /24 subnets. Summarization coming soon! Network Subnet Host Host / Host Host / Subnet Host / Host / Host 10.2.n.0/ Host / Host 29

30 VLSM Simple Example /8 subnetted using /16 Subnet 1 st host Last host Broadcast / / /16 sub-subnetted using /24 Subnet 1 st host Last host Broadcast / / / Etc / / Etc /

31 VLSM Simple Example Subnets / / / / / /24 Etc / /16 Etc /16 An example of VLSM, NOT of good network design / / / / / / / / / / /16 Your network can now have 255 /16 subnets with 65,534 hosts each AND 256 /24 subnets with 254 hosts each. All you need to make it work is a classless routing protocol that passes the subnet mask with the network address in the routing updates. Classless routing protocols: RIPv2, EIGRP, OSPF, IS-IS, BGPv4 (coming) / / /24 31

32 Another VLSM Example using /30 subnets /24 network subnetted into eight /27 ( ) subnets /27 subnet, subnetted into eight /30 ( ) subnets This network has seven /27 subnets with 30 hosts each AND eight /30 subnets with 2 hosts each. /30 subnets are very useful for serial networks. 32

33 / /30 Hosts Bcast 2 Hosts / & / & / & / & / & / & / & / &

34 / / / / / / / / / / / / / /27 This network has seven /27 subnets with 30 hosts each AND seven /30 subnets with 2 hosts each (one left over). /30 subnets with 2 hosts per subnet do not waste host addresses on serial networks. 34

35 VLSM and the Routing Table Routing Table without VLSM RouterX#show ip route /27 is subnetted, 4 subnets C is directly connected, Serial0 C is directly connected, Serial1 C is directly connected, Serial2 C is directly connected, FastEthernet0 Routing Table with VLSM RouterX#show ip route C C C C Displays one subnet mask for all child routes. Classful mask is assumed for the parent route /24 is variably subnetted, 4 subnets, 2 masks /30 is directly connected, Serial /30 is directly connected, Serial /30 is directly connected, Serial /27 is directly connected, FastEthernet0 Parent Route shows classful mask instead of subnet mask of the child routes. Each Child Routes includes its subnet mask. Each child routes displays its own subnet mask. Classful mask is included for the parent route. 35

36 Final Notes on VLSM Whenever possible it is best to group contiguous routes together so they can be summarized (aggregated) by upstream routers. (coming soon!) Even if not all of the contiguous routes are together, routing tables use the longest-bit match which allows the router to choose the more specific route over a summarized route. Coming soon! You can keep on sub-subnetting as many times and as deep as you want to go. You can have various sizes of subnets with VLSM. 36

37 Route flapping Route flapping occurs when a router interface alternates rapidly between the up and down states. Route flapping, and it can cripple a router with excessive updates and recalculations. However, the summarization configuration prevents the RTC route flapping from affecting any other routers. The loss of one network does not invalidate the route to the supernet. While RTC may be kept busy dealing with its own route flap, RTZ, and all upstream routers, are unaware of any downstream problem. Summarization effectively insulates the other routers from the problem of route flapping. 37

38 Short Term Solutions: IPv4 Enhancements CIDR (Classless Inter-Domain Routing) RFCs 1517, 1518, 1519, 1520 VLSM (Variable Length Subnet Mask) RFC 1009 Private Addressing - RFC 1918 NAT/PAT (Network Address Translation / Port Address Translation) RFC 38

39 Private IP addresses (RFC 1918) If addressing any of the following, these private addresses can be used instead of globally unique addresses: A non-public intranet A test lab A home network Global addresses must be obtained from a provider or a registry at some expense. 39

40 Discontiguous subnets Mixing private addresses with globally unique addresses can create discontiguous subnets. Not the main cause however Discontiguous subnets, are subnets from the same major network that are separated by a completely different major network or subnet. Question: If a classful routing protocol like RIPv1 or IGRP is being used, what do the routing updates look like between Site A router and Site B router? 40

41 Discontiguous subnets Classful routing protocols, notably RIPv1 and IGRP, can t support discontiguous subnets, because the subnet mask is not included in routing updates. RIPv1 and IGRP automatically summarize on classful boundaries. Site A and Site B are all sending each other the classful address of /24. A classless routing protocol (RIPv2, EIGRP, OSPF) would be needed: to not summarize the classful network address and to include the subnet mask in the routing updates. 41

42 Discontiguous subnets RIPv2 and EIGRP automatically summarize on classful boundaries. When using RIPv2 and EIGRP, to disable automatic summarization (on both routers): Router(config-router)#no auto-summary SiteA now receives /27 SiteB now receives /27 42

43 Short Term Solutions: IPv4 Enhancements CIDR (Classless Inter-Domain Routing) RFCs 1517, 1518, 1519, 1520 VLSM (Variable Length Subnet Mask) RFC 1009 Private Addressing - RFC 1918 NAT/PAT (Network Address Translation / Port Address Translation) RFC 43

44 Network Address Translation (NAT) NAT: Network Address Translatation NAT, as defined by RFC 1631, is the process of swapping one address for another in the IP packet header. In practice, NAT is used to allow hosts that are privately addressed to access the Internet. 44

45 Network Address Translation (NAT) TCP Source Port 1026 TCP Source Port 1026 NAT translations can occur dynamically or statically. The most powerful feature of NAT routers is their capability to use port address translation (PAT), which allows multiple inside addresses to map to the same global address. This is sometimes called a many-to-one NAT TCP Source Port TCP Source Port 1924 With PAT, or address overloading, literally hundreds of privately addressed nodes can access the Internet using only one global address. The NAT router keeps track of the different conversations by mapping TCP and UDP port numbers. 45

46 Using IP unnumbered There are certain drawbacks that come with using IP unnumbered: The use of ping cannot determine whether the interface is up because the interface has no IP address. A network IOS image cannot boot over an unnumbered serial interface. IP security options cannot be supported on an unnumbered interface. 46

47 DHCP DHCP overview DHCP operation Configuring IOS DHCP server Easy IP 47

48 DHCP overview Administrators set up DHCP servers to assign addresses from predefined pools. DHCP servers can also offer other information: DNS server addresses WINS server addresses Domain names Most DHCP servers also allow the ability to define specifically what client MAC addresses can be serviced and to automatically assign the same number to a particular host each time. Note: BootP was originally defined in RFC 951 in It is the predecessor of DHCP, and it shares some operational characteristics. Both protocols use UDP ports 67 and 68, which are well known as BootP ports because BootP came before DHCP. 48

49 DHCP operation The client sends a DHCPREQUEST broadcast to all nodes. If the client finds the offer agreeable, it will send another broadcast. This broadcast is a DHCPREQUEST, specifically requesting those particular IP parameters. Why does the client broadcast the request instead of unicasting it to the server? A broadcast is used because the very first message, the DHCPDISCOVER, may have reached more than one DHCP server. After all, it was a broadcast. If more than one server makes an offer, the broadcasted DHCPREQUEST lets the servers know which offer was accepted, which is usually the first offer received. 49

50 Configuring IOS DHCP server Basic More options Note: The network statement enables DHCP on any router interfaces belonging to that network. 50

51 Configuring IOS DHCP server (1 of 2) 51

52 Configuring IOS DHCP server (2 of 2) 52

53 Easy IP 53

54 Using helper addresses 54

55 Configuring IP helper addresses By default, the ip helper-address command forwards the eight UDPs services. 55

56 Configuring IP helper addresses Broadcast Unicast To configure RTA e0, the interface that receives the Host A broadcasts, to relay DHCP broadcasts as a unicast to the DHCP server, use the following commands: RTA(config)#interface e0 RTA(config-if)#ip helper-address

57 Configuring IP helper addresses Broadcast Unicast Helper address configuration that relays broadcasts to all servers on the segment. RTA(config)#interface e0 RTA(config-if)#ip helper-address But will RTA forward the broadcast? 57

58 Directed Broadcast Notice that the RTA interface e3, which connects to the server farm, is not configured with helper addresses. However, the output shows that for this interface, directed broadcast forwarding is disabled. This means that the router will not convert the logical broadcast into a physical broadcast with a Layer 2 address of FF-FF-FF-FF-FF-FF. To allow all the nodes in the server farm to receive the broadcasts at Layer 2, e3 will need to be configured to forward directed broadcasts with the following command: RTA(config)#interface e3 RTA(config-if)#ip directed-broadcast 58

59 Configuring IP helper addresses L3 Broadcast L2 Broadcast Helper address configuration that relays broadcasts to all servers on the segment. RTA(config)#interface e0 RTA(config-if)#ip helper-address RTA(config)#interface e3 RTA(config-if)#ip directed-broadcast 59

60 IP address issues solutions This module has shown that IPv4 addressing faces two major issues: The depletion of addresses, particularly the key medium-sized space The pervasive growth of Internet routing tables In 1994, the Internet Engineering Task Force (IETF) proposed IPv6 in RFC 1752 and a number of working groups were formed in response. IPv6 covers issues such as the following: Address depletion Quality of service Address autoconfiguration Authentication Security It will not be easy for organizations deeply invested in the IPv4 scheme to migrate to a totally new architecture. As long as IPv4, with its recent extensions and CIDR enabled hierarchy, remains viable, administrators will shy away from adopting IPv6. A new IP protocol requires new software, new hardware, and new methods of administration. It is likely that IPv4 and IPv6 will coexist, even within an autonomous system, for years to come. 60

61 IPv6 Three general types of addresses exist: Unicast An identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address. Anycast An identifier for a set of interfaces that typically belong to different nodes. A packet sent to an anycast address is delivered to the nearest, or first, interface in the anycast group. Multicast An identifier for a set of interfaces that typically belong to different nodes. A packet sent to a multicast address is delivered to all interfaces in the multicast group. 61

62 IPv6 To write 128-bit addresses so that they are readable to human eyes, the IPv6 architects abandoned dotted decimal notation in favor of a hexadecimal format. Therefore, IPv6 is written as 32 hex digits, with colons separating the values of the eight 16-bit pieces of the address. 62

63 IPv6 IP v6, or IPng (IP the Next Generation) uses a 128- bit address space, yielding 340,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses. 63

64 Summary This module described how all of the following could enable more efficient use of IP addresses: Subnet masks VLSMs Private addressing Network address translation (NAT) 64

College of DuPage. CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing

College of DuPage. CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing College of DuPage CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing 3-2004 1 Overview With the phenomenal growth of the Internet and TCP/IP, virtually every

More information

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324 IP Addressing Week 6 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 1 Addressing: Network & Host Network address help to identify route through the network cloud Network address

More information

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 VLSM and CIDR Routing Protocols and Concepts Chapter 6 Version 4.0 1 Objectives Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

Chapter 6. Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6

Chapter 6. Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6 Chapter 6 Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6 VLSM and CIDR Classful and Classless Addressing CCNA2-2 Chapter 6 Classful and Classless Routing

More information

CCE1030 Computer Networking

CCE1030 Computer Networking CCE1030 Computer Networking Lecture 19 Subnetting CIDR / VLSM Usama Arusi January 2018 CCE1030 Usama Arusi 1 Lecture Content Introduction Classful IP Addressing Classful Addressing Structure Classless

More information

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements?

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements? 95 Chapter 7 TCP/IP Protocol Suite and IP Addressing This chapter presents an overview of the TCP/IP Protocol Suite. It starts with the history and future of TCP/IP, compares the TCP/IP protocol model

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Internet Protocol (IP) Addressing TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats Classful IP Addressing When IP was first standardized in September 1981, the specification required that each system attached to an IP-based Internet be assigned a unique, 32-bit Internet address value.

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Network Addressing TDC463 Fall 2017 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses at L2? If not, should

More information

Chapter 7: Routing Dynamically. Routing & Switching

Chapter 7: Routing Dynamically. Routing & Switching Chapter 7: Routing Dynamically Routing & Switching The Evolution of Dynamic Routing Protocols Dynamic routing protocols used in networks since the late 1980s Newer versions support the communication based

More information

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved. IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Module Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Discover the Binary counting

More information

Chapter 7. IP Addressing Services. IP Addressing Services. Part I

Chapter 7. IP Addressing Services. IP Addressing Services. Part I Chapter 7 IP Addressing Services Part I CCNA4-1 Chapter 7-1 IP Addressing Services Dynamic Host Configuration Protocol (DHCP) CCNA4-2 Chapter 7-1 Dynamic Host Configuration Protocol (DHCP) Every device

More information

Chapter 4: VLSM and Classless Inter Domain Routing. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Chapter 4: VLSM and Classless Inter Domain Routing. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Chapter 4: VLSM and Classless Inter Domain Routing 1 What will we Learn from chapter 4? Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

Scaling IP Addresses DHCP CCNA 4

Scaling IP Addresses DHCP CCNA 4 Scaling IP Addresses DHCP CCNA 4 Note to instructors If you have downloaded this presentation from the Cisco Networking Academy Community FTP Center, this may not be my latest version of this PowerPoint.

More information

TDC 563 Protocols and Techniques for Data Networks

TDC 563 Protocols and Techniques for Data Networks TDC 563 Protocols and Techniques for Data Networks Network Addressing TDC563 Autumn 2015/16 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

Chapter 18 and 22. IPv4 Address. Data Communications and Networking

Chapter 18 and 22. IPv4 Address. Data Communications and Networking University of Human Development College of Science and Technology Department of Information Technology Chapter 18 and 22 Data Communications and Networking IPv4 Address 1 Lecture Outline IPv4 Addressing

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing Network Layer: Logical Addressing Introduction The network layer is responsible for the delivery of individual packets from source to the destination host Logical Addressing A universal addressing system

More information

Internet Fundamentals

Internet Fundamentals Internet Fundamentals Lecture-10 IPv4 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router)

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

Lecture 8 Network Layer: Logical addressing

Lecture 8 Network Layer: Logical addressing Data Communications ACOE412 Lecture 8 Network Layer: Logical addressing Spring 2009 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses

More information

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP Fourth Edition Chapter 2: IP Addressing and Related Topics Objectives Describe IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

NETWORK LAYER: IP Addressing

NETWORK LAYER: IP Addressing NETWORK LAYER: IP Addressing McGraw-Hill The McGraw-Hill Companies, Inc., 2004 2000 Position of network layer McGraw-Hill The McGraw-Hill Companies, Inc., 2004 Network layer duties McGraw-Hill The McGraw-Hill

More information

Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office

Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office ExamForce.com 640-822 CCNA ICND Study Guide 31 Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office Describe the need and role of addressing

More information

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM)

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Overview IP addressing IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Written exercise : VLSM calculation Summarisation of routes Classless InterDomain routing (CIDR) Internet registry

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

12 Advanced IP Addressing

12 Advanced IP Addressing 12 Advanced IP Addressing CERTIFICATION OBJECTIVES 12.01 Variable-Length Subnet Masking 12.02 Route Summarization Q&A Two-Minute Drill Self Test 2 Chapter 12: Advanced IP Addressing In Chapter 11, you

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 IPv4 IPv4 addresses are 32 bit length. IPv4 addresses are

More information

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 CS 356: Computer Network Architectures Lecture 15: DHCP, NAT, and IPv6 [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 Xiaowei Yang xwy@cs.duke.edu Dynamic Host Configuration Protocol (DHCP) Dynamic Assignment

More information

DHCP & NAT. Module : Computer Networks Lecturer : Lucy White Office : 324

DHCP & NAT. Module : Computer Networks Lecturer : Lucy White Office : 324 DHCP & NAT Module : Computer Networks Lecturer : Lucy White lbwhite@wit.ie Office : 324 1 Dynamic Host Configuration Protocol (DHCP) Every device that connects to a network needs an IP address. Network

More information

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public RIPv2 Routing Protocols and Concepts Chapter 7 1 Objectives Encounter and describe the limitations of RIPv1 s limitations. Apply the basic Routing Information Protocol Version 2 (RIPv2) configuration commands

More information

Al-Mustansiriyah University Fourth Year ( )

Al-Mustansiriyah University Fourth Year ( ) What subnet and broadcast address is IP address 172.16.10.33, 255.255.255.224 (/27) a member of? Answer: The interesting octet is the fourth octet. 256-224=32 block size. Because 32+32=64 and 33 is between

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 2017 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007 1

More information

TDC 363 Introduction to LANs

TDC 363 Introduction to LANs TDC 363 Introduction to LANs Routing Protocols and RIP Greg Brewster DePaul University TDC 363 1 Dynamic Routing Routing Protocols Distance Vector vs. Link State Protocols RIPv1 & RIPv2 RIP Problems Slow

More information

Module 4. Planning the Addressing Structure

Module 4. Planning the Addressing Structure Module 4 Planning the Addressing Structure Name 4.1.1 1. How many bits are in an IP address? 2. What is dotted decimal notation? 3. What is the parent part of an IP address? 4. What is the child part of

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

IP Addresses. IP Addresses

IP Addresses. IP Addresses IP Addresses Introductory material. IP Addressing Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses ting CIDR IP Version 6 addresses An entire module

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 2017 Network

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1 Which statement about stateless autoconfiguration is true? A host can autoconfigure itself by appending its MAC address to the local link prefix (64 bits). 2 Autoconfiguration allows devices to connect

More information

The Routing Table: A Closer Look

The Routing Table: A Closer Look The Routing Table: A Closer Look Routing Protocols and Concepts Chapter 8 Version 4.0 1 Objectives Describe the various route types found in the routing table structure. Describe the routing table lookup

More information

Chapter 4 Reading Organizer

Chapter 4 Reading Organizer Name Date Chapter 4 Reading Organizer After completion of this chapter, you should be able to: 4.1 Analyze the features and benefits of a hierarchical IP addressing structure. Plan and implement a VLSM

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Addressing & Subnetting

Addressing & Subnetting Addressing & Subnetting Addressing to identify and locate each host. We call it addressing. Identification: hostname, address (MAC, IP) IP add? MAC add? MAC add: local IP add: internetwork An address generally

More information

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6 Communication at the network layer is host-to-host Length of address Space adresses (2 length ) Total number of addresses used by the protocol IPv4 & IPv6 IPv4 ADDRESSES Defines the connection of a device

More information

RIP Version 2. The Classless Brother

RIP Version 2. The Classless Brother RIP Version 2 The Classless Brother (C) Herbert Haas 2005/03/11 1 Why RIPv2 Need for subnet information and VLSM Need for Next Hop addresses for each route entry Need for external route tags Need for multicast

More information

1 Connectionless Routing

1 Connectionless Routing UCSD DEPARTMENT OF COMPUTER SCIENCE CS123a Computer Networking, IP Addressing and Neighbor Routing In these we quickly give an overview of IP addressing and Neighbor Routing. Routing consists of: IP addressing

More information

Using IP Addressing in the Network Design

Using IP Addressing in the Network Design Using IP Addressing in the Network Design Designing and Supporting Computer Networks Chapter 6 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Describe the use of a

More information

Basic Idea. Routing. Example. Routing by the Network

Basic Idea. Routing. Example. Routing by the Network Basic Idea Routing Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Routing by the Network

Routing by the Network Routing Basic Idea Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Chapter 8: Subnetting IP Networks

Chapter 8: Subnetting IP Networks Chapter 8: Subnetting IP Networks Designing, implementing and managing an effective IP addressing plan ensures that networks can operate effectively and efficiently. This is especially true as the number

More information

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask 1 2 3 4 5 6 7 8 9 10 Unit C - Network Addressing Objectives Describe the purpose of an IP address and Subnet Mask and how they are used on the Internet. Describe the types of IP Addresses available. Describe

More information

CCNP 1: Advanced Routing

CCNP 1: Advanced Routing Scope and Sequence CCNP 1: Advanced Routing Cisco Networking Academy Program Version 3.1 TABLE OF CONTENTS CCNP 1: ADVANCED ROUTING...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE

More information

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech Video Frank Schneemann, MS EdTech EIGRP Routing Protocols and Concepts Chapter 9 ITE PC v4.0 Chapter 1 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 9.0.1 Introduction Enhanced Interior

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Introduction to Local and Wide Area Networks

Introduction to Local and Wide Area Networks Introduction to Local and Wide Area Networks Lecturers Amnach Khawne Jirasak Sittigorn Chapter 1 1 Routing Protocols and Concepts Chapter 8 : The Routing Table: A Closer Look Chapter 9 : EIGRP Chapter

More information

Figure 11 Two-level addressing in classful addressing

Figure 11 Two-level addressing in classful addressing Two-Level Addressing The whole purpose of IPv4 addressing is to define a destination for an Internet packet (at the network layer). When classful addressing was designed, it was assumed that the whole

More information

PASS4TEST. IT Certification Guaranteed, The Easy Way! We offer free update service for one year

PASS4TEST. IT Certification Guaranteed, The Easy Way!  We offer free update service for one year PASS4TEST IT Certification Guaranteed, The Easy Way! \ http://www.pass4test.com We offer free update service for one year Exam : 642-901 Title : Building Scalable Cisco Internetworks Vendors : Cisco Version

More information

CIDR VLSM AS. รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D.

CIDR VLSM AS. รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. CIDR VLSM AS รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. anan.p@ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand 1 Outline Classless

More information

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 TCP/IP Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 At the beginning of the course, we discussed two primary conceptual models of networking: OSI

More information

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez Computer Networks Lecture -5- IPv4 Addresses Dr. Abbas Abdulazeez McGraw-Hill The McGraw-Hill Companies, Inc., 2000 OBJECTIVES: To introduce the concept of an address space in general and the address space

More information

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addressing Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addresses Structure of an IP address Subnetting CIDR IP Version 6 addresses IP

More information

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS Prepared by Cisco Learning Institute June 23, 2008 Chapter 1 Introduction to Routing and Packet Forwarding Objectives

More information

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296.

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296. Chapter 4 Objectives Upon completion you will be able to: Understand IPv4 addresses and classes Identify the class of an IP address Find the network address given an IP address Understand masks and how

More information

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000 IP Addresses The IP addresses are unique. An IPv4 address is a 32-bit address. An IPv6 address is a 128-bit address. The address space of IPv4 is 2 32 or 4,294,967,296. The address space of IPv6 is 2 128

More information

CHAPTER 4: ROUTING DYNAMIC. Routing & Switching

CHAPTER 4: ROUTING DYNAMIC. Routing & Switching CHAPTER 4: ROUTING DYNAMIC Routing & Switching CHAPTER4 4.1 Dynamic Routing Protocols 4.2 Distance Vector Dynamic Routing 4.3 RIP and RIPng Routing 4.4 Link-State Dynamic Routing 4.5 The Routing Table

More information

CS 520: Network Architecture I Winter Lecture 11: IP Address Conservation

CS 520: Network Architecture I Winter Lecture 11: IP Address Conservation CS 520: Network Architecture I Winter 2006 Lecture 11: IP Address Conservation This lecture provides discussion of several approaches that are used to make better use of the IP address space. Subnetting

More information

Configuring IPv4 Addresses

Configuring IPv4 Addresses This chapter contains information about, and instructions for configuring IPv4 addresses on interfaces that are part of a networking device. Note All further references to IPv4 addresses in this document

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

Chapter 8: Subnetting IP Networks CCENT Routing and Switching Introduction to Networks v6.0

Chapter 8: Subnetting IP Networks CCENT Routing and Switching Introduction to Networks v6.0 Chapter 8: Subnetting IP Networks CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 8 - Sections & Objectives 8.1 Subnetting an IPv4 Network Explain how subnetting segments

More information

Routing Dynamically. 3.0 Routing Dynamically. Chapter Introduction Class Activity How Much Does This Cost?

Routing Dynamically. 3.0 Routing Dynamically. Chapter Introduction Class Activity How Much Does This Cost? Chapter 3 Routing Dynamically 3.0 Routing Dynamically 3.0.1.1 Introduction The data networks that we use in our everyday lives to learn, play, and work range from small, local networks to large, global

More information

Migration to IPv6 from IPv4. Is it necessary?

Migration to IPv6 from IPv4. Is it necessary? Introduction Today Internet plays a big role in every aspect of our lives and IP acted as an important pillar of Internet. Since its inception the Internet has reached almost all corners of globe and it

More information

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding. Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

More information

Chapter 18. Introduction to Network Layer

Chapter 18. Introduction to Network Layer Chapter 18. Introduction to Network Layer 18.1 Network Layer Services 18.2 Packet Switching 18.3 Network Layer Performance 18.4 IPv4 Addresses 18.5 Forwarding of IP Packets Computer Networks 18-1 Communication

More information

Configuring IP Summary Address for RIPv2

Configuring IP Summary Address for RIPv2 Finding Feature Information, page 1 Information About IP Summary Address for RIPv2, page 1 How to Configure IP Summary Address for RIPv2, page 3 Configuring Examples for IP Summary Address for RIPv2, page

More information

Internet Addresses Reading: Chapter 4. 2/11/14 CS125-myaddressing

Internet Addresses Reading: Chapter 4. 2/11/14 CS125-myaddressing Internet Addresses Reading: Chapter 4 1 Internet Addresses Outline/Goals IP addresses RFC 950, STD 05 Dotted-quad notation IP prefixes for aggregation Address allocation Classful addresses Classless InterDomain

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

5. Providing a narrower address space is the primary design goal for IPv6.

5. Providing a narrower address space is the primary design goal for IPv6. Chapter 2: IP Addressing and Related Topics TRUE/FALSE 1. IP addresses can be represented as domain names to make it possible for users to identify and access resources on a network. T PTS: 1 REF: 59 2.

More information

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3 Chapter 3 Introduction to Dynamic Routing Protocols CCNA2-1 Chapter 3 Introduction to Dynamic Routing Protocols Introduction to Dynamic Routing Protocols CCNA2-2 Chapter 3 Perspective and Background Dynamic

More information

Why IPv6? Roque Gagliano LACNIC

Why IPv6? Roque Gagliano LACNIC Why IPv6? Roque Gagliano LACNIC Agenda Initial Concepts. IPv6 History. What is IPv6? Planning IPv6. Agenda Initial Concepts. IPv6 History. What is IPv6? Planning IPv6. Some initial concepts. IPv6 is the

More information

CS 457 Networking and the Internet. Addressing. Topics 9/15/16. Fall 2016 Indrajit Ray

CS 457 Networking and the Internet. Addressing. Topics 9/15/16. Fall 2016 Indrajit Ray CS 457 Networking and the Internet Fall 2016 Indrajit Ray Addressing Topics IP addresses Dotted-quad notation IP prefixes for aggregation Address allocation Classful addresses Classless InterDomain Routing

More information

IP - The Internet Protocol

IP - The Internet Protocol IP - The Internet Protocol 1 Orientation IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network Layer ARP Network Access Link Layer Media 2 IP:

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

CCNA. Course Catalog

CCNA. Course Catalog CCNA Course Catalog 2012-2013 This course is intended for the following audience: Network Administrator Network Engineer Systems Engineer CCNA Exam Candidates Cisco Certified Network Associate (CCNA 640-802)

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Ch.5 Internet Addressing 吳俊興 國立高雄大學資訊工程學系

Ch.5 Internet Addressing 吳俊興 國立高雄大學資訊工程學系 CSC521 Communication Protocols 網路通訊協定 Ch.5 Internet Addressing 吳俊興 國立高雄大學資訊工程學系 Internetworking With TCP/IP, Vol I: Sixth Edition, Douglas E. Comer Outline 1 Introduction 2 Universal Host Identifiers 3

More information

Internetworking Part 2

Internetworking Part 2 CMPE 344 Computer Networks Spring 2012 Internetworking Part 2 Reading: Peterson and Davie, 3.2, 4.1 19/04/2012 1 Aim and Problems Aim: Build networks connecting millions of users around the globe spanning

More information

Note: This case study utilizes Packet Tracer. Please see the Chapter 4 Packet Tracer file located in Supplemental Materials.

Note: This case study utilizes Packet Tracer. Please see the Chapter 4 Packet Tracer file located in Supplemental Materials. Part 1 Variable Length Subnet Mask (VLSM) Note: This case study utilizes Packet Tracer Please see the Chapter 4 Packet Tracer file located in Supplemental Materials An organization has been assigned the

More information

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008 Networks an overview dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 4, 2008 dr. C. P. J. Koymans (UvA) Networks February 4, 2008 1 / 53 1 Network modeling Layered networks

More information

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Addressing Schemes FLAT 1.Used by Intranetworks 2.Used by Layer 2 3.Used in MAC address 4.Is assigned statically based on next available number

More information

IP Addressing & Interdomain Routing. Next Topic

IP Addressing & Interdomain Routing. Next Topic IP Addressing & Interdomain Routing Next Topic IP Addressing Hierarchy (prefixes, class A, B, C, subnets) Interdomain routing Application Presentation Session Transport Network Data Link Physical Scalability

More information

SCALABLE INTERNET ROUTING

SCALABLE INTERNET ROUTING CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-7 SCALABLE ROUTING 1 2 Scalability Basic Subnetting & Subnet Masks The management of global resource is a complex task.

More information

Configuring a DHCP Server DHCP Operation

Configuring a DHCP Server DHCP Operation CCNA4 Chapter 7 * Configuring a DHCP Server The steps to configure a router as a DHCP server: Step 1. Define a range of addresses that DHCP is not to allocate. These are usually static addresses reserved

More information