LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6

Size: px
Start display at page:

Download "LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6"

Transcription

1 LPTCOM By Bruce Misner Lakehead University LPTCOM is a demonstration of a robust bi-directional communcation between the PIC microcontroller and the printer port of your PC. Incorporating more handshaking signals we can develop a compact and complete read and write cycle for either for either communicating device. 37Ah /d1 37AH /d3 LPT Request LPT Ready 378h d0 378h d1 378h d7 379h d6 379h d5 PIC Request P1 J1 PIC Interface LPT Request PIC Request RB6 pin h d2 RD0 pin RD1 pin h d3 RD2 pin RD3 pin h d4 RD4 pin 27 RD5 pin h d5 RD6 pin 29 RD7 pin H d6 PIC Ready LPT DB25 Connector LPT Ready PIC Ready RB7 pin 40 RE1 pin 9 RE0 pin 8 The schematic indicates how all the signals are connected to each other. It does not show that the two connectors are joined by a straight through ribbon cable. The other thing to take note of is that the control signals from the LPT port are inverted at the output. Hence, when we write to the PIC on either the LPT Request line or the LPT Ready line must write out a logic low to actually raise the signal to its active high state. The last thing of note is that the ground line pin 25 on the LPT connector side and ground on your microcontroller board must be joined as well.

2 Recv Request Recv Data Send Ready Send Data Send Request Above is the timing diagram for the different states for a read/write cycle. The cycles are the same no matter which is the sender and which is the receiver. Let s go through the timing states of the communication. At 1 the sender has raised its request line to signal that it wants to send a byte of data. The sender then places the data on its data port in state t2. Once the data is present on the port the sender now raises its ready line. The sender has proceeded to this point without requiring feedback from the receiver. Once the receiver detects that the senders ready line is high and the data is ready to be read, it can do just that. Now, the receiver has read the data off of the data port and signals the sender that it has done this by raising its request line. The sender responds to the receivers action by lowering its ready signaland to respond back the receiver lowers its request line and in turn the sender lowers its request line. This completes the timing cycle.

3 PIC Receive routine: intvect btfss INTCON,RBIF retfie readdata movlw b' ' ;turn off interupts bsf STATUS,RP0 movlw b' ' movwf TRISD ;change port direction bcf STATUS,RP0 poll4rdy btfss PORTB,6 goto poll4rdy ;wait for ready from lpt movf PORTD,W ;read data movwf readvalue ;save in readvalue bsf PORTE,0 poll4notrdy btfsc PORTB,6 goto poll4notrdy bcf PORTE,0 ;raise request ;wait for ready from lpt to drop ;drop ready poll4notreq btfsc PORTB,7 goto poll4notreq ; movlw b' ' ;reenable interupts ; retfie

4 The previous code selection is the receive routine for the PIC. The first thing we notice is that it is tied to Port B Change interupt. Hence, when the PC wants to communicate with the PIC it raises the LPT Request line and this generates an interupt. Now, to try and step you through the code. First, we test to see if the interupt was generated by the Port B Change interupt by testing bit RBIF to see if the flag bit is set. If it was not the Port B Change then we end the interupt routine and go back to our main program. We then disable the interupts while we service our request. If we did not disable interupts the other control signals changing state would generate interupts and we would end up in a predicament. We now change the Port D direction to input by writing all ones to the TRISD register. We then poll the LPT Ready line for it to change state. Once the Ready line is high we can read the data byte and save it in a previously defined variable readvalue. Now that the data is read, we must inform the LPT Port that we have read by setting the PIC Request Line high. We now wait for the LPT Port to drop its ready line, then we drop our PIC Ready Line and then wait for the LPT Port to drop its Request line. This completes the cycle so now we can re-enable our interupts and return from our interupt routine. VB Send Code Private Sub sendbutton_click() Timer1.Enabled = False i = OutPortB(&H37A, 8) 'raise request and output i = OutPortB(&H378, Val(Text2.Text)) i = OutPortB(&H37A, 0) 'raise ready End Sub Do While (InPortB(&H379) And 32) = 0 i = OutPortB(&H37A, 8) Do While (InPortB(&H379) And 32) <> 0 i = OutPortB(&H37A, 10) Timer1.Enabled = True

5 On the PC side we write the following code tied to a button click event. First we will disable the Timer so the Timer time event does not interupt our transfer. Next, we change our LPT1 data port 378h to an output port by clearing bit 5 on port 37Ah, also at this time we will raise the LPT Request Line. Now, we can place our data on the 378h Data port and then raise the LPT Ready Line. We now loop until the PIC sends back our PIC Request Line signal, at which time, we can drop our LPT Ready Line. Again we loop until the PIC Request Line goes low this time and then we drop our LPT Request line and then enable the Timer again. Remember all bits used on port 37Ah are inverted, for example when we OutportB(&H37A,0) we are raising both LPT Request and LPT Ready lines high. Let s stay on the PC side and go through the PC receive code. For this we use Timer1 to poll the PIC s Request Line. An interupt could be used as well but, that would take some fancy coding I will leave for later. PC Receive Code Private Sub Timer1_Timer() Timer1.Enabled = False i = InPortB(&H379) If (i And 32) <> 0 Then 'test if request high i = OutPortB(&H37A, &HFF) 'change direction Do While (InPortB(&H379) And 64) = 0 'wait for ready i = InPortB(&H378) 'read data Text1.Text = Str$(i) i = OutPortB(&H37A, 8) 'raise request Do While (InPortB(&H379) And 64) <> 0 ' wait for not ready End If i = OutPortB(&H37A, &HF) 'change to output and drop signals do while (inportb(&h379) and 32)<>0 loop Timer1.Enabled = True End Sub

6 The PC timer on timing out reads in from port 379h to test to see if the PIC is requesting to send a byte of data. If the PIC is not requesting transfer the timer which we disabled at the start of the subroutine is re-enabled and the subroutine is exitted. If the PIC is requesting we turn our 378h data port to an input and wait till the PIC signals it is ready. When the PIC signals ready we can read our byte then we will raise the LPT Request Line to signal the data has been read then we wait for PIC to drop it s ready line. We now turn the 378H port back to an output being careful to leave the other bits on the 37Ah port low (high as far as the VB code is concerned). We should probably wait in a loop till the PIC Request Line goes low before we exit the if statement. Finally, we reenable the Timer1 and exit our subroutine. PIC Write Code writedata movlw b' ' ;turn off interupts bsf PORTE,0 ;raise request line bsf STATUS,RP0 movlw b' ' movwf TRISD bcf STATUS,RP0 ;change direction of PORTD movf writevalue,w ;load writevalue into W movwf PORTD ;send out value bsf PORTE,1 ;raise ready poll4done btfss PORTB,7 goto poll4done bcf PORTE,1 ;wait for lpt signal ;clear ready poll4reqdrop btfsc PORTB,7 goto poll4reqdrop bcf PORTE,0 ;wait for lpt signal ;clear request movlw b' ' ;reenable interupts return

7 When we want the PIC to send a byte of data we call the writedata subroutine. Writedata sends the value that is saved in the writevalue variable. First, we have to turn off the interupts because when the LPT Request Line goes high to signal it has read the data it would cause an interupt and start into its receive routine. We raise the PIC Request Line to signal the PC we want to send a byte. We then change PORTD to an output port, load the value of writevalue into the W register, and then to PORTD. We then raise the PIC Ready Line to signal that the data is ready to be read and then we sit in a loop till the LPT Request Line goes high to signal that the PC has read the data. We then lower the PIC Ready Line and wait for the PC to lower the LPT Request Line. Once that line has dropped we can lower the PIC Request Line re-enable our interupts and return from our subroutine. Other tricks that have been tried include: Testing both request and ready lines to see if they are both high, indicating that there is no connection between the two devices. In conclusion, there can be more elaborate ways to achieve higher data throughput, coupling the PIC Request Line with the LPT interupt as not to use the timer. However, this works well and for small data transfers it would more that sufficient.

PIC Microcontroller Trainer

PIC Microcontroller Trainer PIC Microcontroller Trainer By Bruce Misner Lakehead University Electrical Engineering August, 00 Overview The purpose of constructing this Printer Trainer is to give the student an experimental device

More information

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC18 Serial Port Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Serial vs. parallel data transfer 2 Simplex, half-, and full-duplex transfers 3

More information

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning Interrupts ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic Concepts of Interrupts An interrupt is a communication process A device Requests

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

Binary Outputs and Timing

Binary Outputs and Timing Binary Outputs and Timing Each of the I/O pins on a PIC can be inputs or ourputs As an input, the pin is high impedance (meaning it is passive and draws very little current). If you apply 0V to that pin,

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors Input/Output 1 Introduction Embedded system functionality aspects Processing Transformation of data Implemented using processors Storage Retention of data Implemented using memory Communication Transfer

More information

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ /* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF ;***** VARIABLE DEFINITIONS COUNT_L EQU 0x01 ;**********************************************************************

More information

Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011

Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011 Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011 Microcontrollers andembedded Systems and and EE445 Embedded Embedded Microcontrollers

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Interrupts and Resets Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Interrupts An event that will cause the CPU to stop the normal program execution

More information

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Work Completed: Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Last week started with the goal to complete writing the overall program for the game.

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

Laboratory Exercise 5 - Analog to Digital Conversion

Laboratory Exercise 5 - Analog to Digital Conversion Laboratory Exercise 5 - Analog to Digital Conversion The purpose of this lab is to control the blinking speed of an LED through the Analog to Digital Conversion (ADC) module on PIC16 by varying the input

More information

Done 1 NVB THF TLF T/R POL 1SHOT. Figure 1: Status register

Done 1 NVB THF TLF T/R POL 1SHOT. Figure 1: Status register Introduction to Microprocessors Feisal Mohammed 12th January 2001 Mini-project This project is to implement a temperature monitor using the PicStic4, the DS1821 temperature sensor and a LCD display. The

More information

Micro II and Embedded Systems

Micro II and Embedded Systems 16.480/552 Micro II and Embedded Systems Introduction to PIC Microcontroller Revised based on slides from WPI ECE2801 Moving Towards Embedded Hardware Typical components of a PC: x86 family microprocessor

More information

Input/Output Ports and Interfacing

Input/Output Ports and Interfacing Input/Output Ports and Interfacing ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic I/O Concepts Peripherals such as LEDs and keypads are essential

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630470) Lecture 4 Memory Organization Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Memory Organization: PIC16F84 has two separate memory blocks, for data and for program. EEPROM

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle.

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle. PIC PROGRAMMING You have been introduced to PIC chips and the assembly language used to program them in the past number of lectures. The following is a revision of the ideas and concepts covered to date.

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

Performance & Applications

Performance & Applications EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 15th March 2002 CLR Part VI Performance & Applications It is possible to predict the execution time of code, on the basis

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

D:\PICstuff\PartCounter\PartCounter.asm

D:\PICstuff\PartCounter\PartCounter.asm 1 ;********************************************************************** 2 ; This file is a basic code template for assembly code generation * 3 ; on the PICmicro PIC16F84A. This file contains the basic

More information

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling Interfacing PIC Microcontrollers ADC8BIT2 Schematic This application demonstrates analogue input sampling A manually adjusted test voltage 0-5V is provided at AN0 input A reference voltage of 2.56V is

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 15 Instruction Set Most instructions execution Time One instruction cycle If XTAL frequency = 20 MHz, then instruction cycle time is 0.2 s or 200 ns (= 4/20

More information

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model)

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model) ELCD SERIES INTRODUCTION ALCD is Serial LCD module which is controlled through Serial communication. Most of existing LCD adopts Parallel communication which needs lots of control lines and complicated

More information

Figure 1: Pushbutton without Pull-up.

Figure 1: Pushbutton without Pull-up. Chapter 7: Using the I/O pins as Inputs. In addition to working as outputs and being able to turn the I/O pins on and off, these same pins can be used as inputs. In this mode the PIC is able to determine

More information

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics:

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics: Section 14. Timer1 HIGHLIGHTS This section of the manual contains the following major topics: 14.1 Introduction... 14-2 14.2 Control Register... 14-4 14.3 Timer1 Operation in Timer Mode... 14-5 14.4 Timer1

More information

Learning Objectives:

Learning Objectives: Topic 5.2.1 PIC microcontrollers Learning Objectives: At the end of this topic you will be able to; Recall the architecture of a PIC microcontroller, consisting of CPU, clock, data memory, program memory

More information

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER Amey Arvind Madgaonkar 1, Sumit Dhere 2 & Rupesh Ratnakar Kadam 3 1. Block diagram International Journal of Latest Trends in Engineering

More information

GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF).

GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF). GUIDE TO USE OF PIC 16F690 EEProm The 16F690 PIC has a 256 byte EEProm (mapped to 0x2100..0x21FF). PRESET DATA (WITH PROGRAM CODE) Data can be preset by use of the de operator: Org 0x21XX de de etc. 0x01,0x02

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Microchip PIC Manufacturer Information: Company: Website: http://www.microchip.com Reasons for success: Became the hobbyist's

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 10: Applications for Programming PIC18 in C Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering Programming the PIC18 to transfer

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

Embedded Systems Programming and Architectures

Embedded Systems Programming and Architectures Embedded Systems Programming and Architectures Lecture No 10 : Data acquisition and data transfer Dr John Kalomiros Assis. Professor Department of Post Graduate studies in Communications and Informatics

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller Maxim > App Notes > 1-Wire DEVICES BATTERY MANAGEMENT Keywords: 1-wire, PICmicro, Microchip PIC, 1-Wire communication, PIC microcontroller, PICmicro microcontroller, 1 wire communication, PICs, micros,

More information

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!!

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF APRIL MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: MidTerm Date and Time: Thursday April 14th 2005 8AM Duration:

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

ECE Homework #3

ECE Homework #3 ECE 376 - Homework #3 Flow Charts, Binary Inputs, Binary Outputs (LEDs). Due Monday, January 29th The temperature sensor in your lab kits has the temperature-resistance relationship of R = 1000 exp 3965

More information

Chapter 11: Interrupt On Change

Chapter 11: Interrupt On Change Chapter 11: Interrupt On Change The last two chapters included examples that used the external interrupt on Port C, pin 1 to determine when a button had been pressed. This approach works very well on most

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses ECE 354 Computer Systems Lab II Interrupts, Strings, and Busses Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system

More information

Week1. EEE305 Microcontroller Key Points

Week1. EEE305 Microcontroller Key Points Week1 Harvard Architecture Fig. 3.2 Separate Program store and Data (File) stores with separate Data and Address buses. Program store Has a 14-bit Data bus and 13-bit Address bus. Thus up to 2 13 (8K)

More information

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

ﻢﯿﺣﺮﻟا ﻦﻤﺣﺮﻟا ﷲا ﻢﺴﺑ

ﻢﯿﺣﺮﻟا ﻦﻤﺣﺮﻟا ﷲا ﻢﺴﺑ بسم االله الرحمن الرحیم In the name of Allah 1 2 Graphical LCD for beginners and interfacing with PIC MCU By Eng. Mustafa H. Abyad Cairo, Egypt March 2009 Table of contents 3 Table of contents. 3 1. Introduction

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

Section 30. In-Circuit Serial Programming (ICSP )

Section 30. In-Circuit Serial Programming (ICSP ) Section 30. In-Circuit Serial Programming (ICSP ) HIGHLIGHTS This section of the manual contains the following major topics: 30. Introduction... 30-2 30.2 Entering In-Circuit Serial Programming Mode...

More information

Chapter 3: Further Microcontrollers

Chapter 3: Further Microcontrollers Chapter 3: Further Microcontrollers Learning Objectives: At the end of this topic you will be able to: recall and describe the structure of microcontrollers as programmable assemblies of: memory; input

More information

Experiment 7:The USART

Experiment 7:The USART University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 7 Experiment 7:The USART Objectives Introduce the USART module of the PIC

More information

THE UNIVERSITY OF THE WEST INDIES

THE UNIVERSITY OF THE WEST INDIES THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF MOCK 2004 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: Three Hours INSTRUCTIONS TO CANDIDATES: This paper

More information

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller 1 von 8 24.02.2010 21:53 More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller As with the FPGA board previously, the connections are made by soldering standard IDC

More information

The University of Texas at Arlington Lecture 5

The University of Texas at Arlington Lecture 5 The University of Texas at Arlington Lecture 5 CSE 3442/5442 LCD Discussed in Chapter 12 RS, R/W, E Signals Are Used to Send/Receive Data on D0-D7 2 PIC PROGRAMMING IN C CHAPTER 7 Chapter 7 discusses the

More information

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada A Better Mouse Trap Author: APPLICATION OPERATION: My application uses a PIC12C508 to produce realistic sounding mouse-like coos that all mice are sure to find seductive. The entire circuit should be imbedded

More information

CONNECT TO THE PIC. A Simple Development Board

CONNECT TO THE PIC. A Simple Development Board CONNECT TO THE PIC A Simple Development Board Ok, so you have now got your programmer, and you have a PIC or two. It is all very well knowing how to program the PIC in theory, but the real learning comes

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Physics 335 Intro to MicroControllers and the PIC Microcontroller

Physics 335 Intro to MicroControllers and the PIC Microcontroller Physics 335 Intro to MicroControllers and the PIC Microcontroller May 4, 2009 1 The Pic Microcontroller Family Here s a diagram of the Pic 16F84A, taken from Microchip s data sheet. Note that things are

More information

Using the 8-Bit Parallel Slave Port

Using the 8-Bit Parallel Slave Port M AN579 Using the 8-Bit Parallel Slave Port Author: INTRODUCTION PIC16C64/74 microcontrollers from Microchip Technology Inc. can be interfaced with ease into a multi-microprocessor environment using its

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC Architecture & Assembly Language Programming Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw ALU with working register (WREG) and literal value 2 MOVLW

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

EXPERIMENT 4: Parallel Input/Output. Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing

EXPERIMENT 4: Parallel Input/Output. Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing EXPERIMENT 4: Parallel Input/Output Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing Components' List: 1. Protoboard 2. 4 x pushbutton 3. 4 x 330Ω resistor 4. 4

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

These 3 registers contain enable, priority,

These 3 registers contain enable, priority, 8.3.2) Registers Related to Interrupts These registers enable/disable the interrupts, set the priority of the interrupts, and record the status of each interrupt source. RCON INTCON, INTCON2, and INTCON3

More information

PIC Discussion By Eng. Tamar Jomaa

PIC Discussion By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Outlines 2.6 TMR0 2.7 EEPROM 2.8 Look up table 2.9 Macro 2.6 TMR0 Example#1 Write an assembly program to make a counter using TMR0, the count should increment it s value

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 6 Lecture outline Reading:Ch7 of text Today s lecture: Microcontroller 2 7.1 MICROPROCESSORS Hardware solution: consists of a selection of specific

More information

Arithmetic,logic Instruction and Programs

Arithmetic,logic Instruction and Programs Arithmetic,logic Instruction and Programs 1 Define the range of numbers possible in PIC unsigned data Code addition and subtraction instructions for unsigned data Perform addition of BCD Code PIC unsigned

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design Year: IV DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 Microcontroller based system design Semester : VII UNIT I Introduction to PIC Microcontroller

More information

ECE 354 Computer Systems Lab II. Memory and Indirect Addressing

ECE 354 Computer Systems Lab II. Memory and Indirect Addressing ECE 354 Computer Systems Lab II Memory and Indirect Addressing Lab report for lab 1 Schematics Lab 2 Comments Label pins used on all chips Use standard chip names/numbers (DB25,SP-233) from the datasheet

More information

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Starting with Serial Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Outline Introduction Synchronous Serial Communication Asynchronous Serial Communication Physical Limitations Overview of PIC 16 Series The

More information

MicroToys Guide: PS/2 Mouse N. Pinckney April 2005

MicroToys Guide: PS/2 Mouse N. Pinckney April 2005 Introduction A computer mouse provides an excellent device to acquire 2D coordinate-based user input, since most users are already familiar with it. Most mice usually come with two or three buttons, though

More information

Application Note - PIC Source Code v1.1.doc

Application Note - PIC Source Code v1.1.doc Programmable, RGB-backlit LCD Keyswitches APPLICATION NOTE PIC SOURCE CODE 2004-2006 copyright [E³] Engstler Elektronik Entwicklung GmbH. All rights reserved. PIC Source Code The following Assembler source

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

DISCONTINUED. SPI Communication with AMT bit Absolute Encoder

DISCONTINUED. SPI Communication with AMT bit Absolute Encoder ApplicAtion note An-1001 SPI Communication with AMT203 12-bit Absolute Encoder introduction This application note is designed to provide guidelines on how to properly interface with the AMT 203 Absolute

More information

TB011. Using SRAM With A PIC16CXXX IMPLEMENTATION INTRODUCTION BLOCK DIAGRAM OF MULTIPLEXED ADDRESS/DATA BUS ON A PIC16C74

TB011. Using SRAM With A PIC16CXXX IMPLEMENTATION INTRODUCTION BLOCK DIAGRAM OF MULTIPLEXED ADDRESS/DATA BUS ON A PIC16C74 Using SRAM With A PIC16CXXX TB011 Author: Rick Evans INTRODUCTION There are applications where a significant amount of data memory is required beyond what is in the microcontroller. For example, buffering

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 August 13, 2012 Name: ID #: Section: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

ME 515 Mechatronics. A microprocessor

ME 515 Mechatronics. A microprocessor ME 515 Mechatronics Microcontroller Based Control of Mechanical Systems Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk A microprocessor

More information

/ 28 HLL assembly Q4: Conditional instructions / 40 TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 28 HLL assembly Q4: Conditional instructions / 40 TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor Systems Design I Fall 2014 Exam 2 November 5, 2014 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices (e.g.,

More information

LCDs. Embedded Systems Interfacing. 20 September 2011

LCDs. Embedded Systems Interfacing. 20 September 2011 20 September 2011 How Polarizers Work How work How Color Work Other Technologies Reflective Nematic (no back light) Cholesteric Liquid Crystal Organic LED/Polymer LED Vacuum Florescent Display Display

More information