OpenMP for Heterogeneous Multicore Embedded Systems using MCA API standard interface

Size: px
Start display at page:

Download "OpenMP for Heterogeneous Multicore Embedded Systems using MCA API standard interface"

Transcription

1 OpenMP for Heterogeneous Multicore Embedded Systems using MCA API standard interface Sunita Chandrasekaran Peng Sun, Suyang zhu, Barbara Chapman HPCTools Group, University of Houston, USA in collaboration with freescale semiconductor (FSL) and Semiconductor Research Corporation (SRC) OpenMP SC14

2 Real- world applications using embedded systems FPGAS used to receive a number of acoustic pings form an image DSP, a device to interact with a user through the embedded processor within A self- piloted car powered by the NVIDIA Jetson TK1 11/18/14 2

3 Embedded programmers requirements Write once, reuse anywhere o Avoid rewriting from scratch o Provide incremental migration path essential for application codes o Exploit multiple levels of parallelism with familiar and/or commodity programming models o None are perfect, but industry adoption is critical 11/18/14 3

4 OpenMP widely adopted standard ( Industry standard for shared memory parallel programming o Supported by large # of vendors (TI, AMD, IBM, Intel, Cray, NVIDIA, HP..) o OpenMP 4.0 provides support for compute devices such as Xeon Phis, GPUs and others! High level directive-based solution o Compiler directives, library routines and envt. variables o Programming Model - Fork-Join parallelism o Threads communicate by sharing variables o Synchronizations to control race conditions o Structured programming to reduce likelihood of bugs Programming made easy! void main() { double Res[1000]; #pragma omp parallel fo for(int i=0;i<1000;i++) { do_huge_comp(res[i] } 11/18/14 4

5 OpenMP Solution Stack 5 OpenMP Parallel Computing Solution Stack User layer OpenMP Application Prog. layer OpenMP API Directives, Compiler OpenMP library Environment variables System layer Runtime library OS/system support for shared memory Core 1 Core 2 Core n 11/18/14 5

6 OpenMP for Embedded Systems " Programming embedded systems a challenge " Need high-level standards such as OpenMP " Runtime relies on lower level components OS, threading/hardware libraries, memory allocation, synchronization e.g. Linux, Pthreads o But embedded systems typically lack some of these features " OpenMP has shared-memory cache-coherent memory model But embedded platforms feature distributed, nonuniform memory, with no cache-coherency Vocabulary for heterogeneity is required in the embedded space OpenMP 4.0 is there!! 11/18/14 6

7 Multicore Association Industry standard API (MCA) MCA Foundation APIs Communications (MCAPI) - Lightweight messaging Resource Management (MRAPI) - Basic synchronization - Shared/Distributed Memory - System Metadata Task Management (MTAPI) - Task lifecycle - Task placement - Task priority SW/HW Interface for Multicore/Manycore (SHIM) -XML HW description from SW perspective 11/18/14 7

8 Tasks in Heterogeneous Systems Domain Node Node Node Node MTAPI application MTAPI tasks MTAPI tasks tasks MTAPI tasks MTAPI runtime system (optionally MCAPI / MRAPI) sched. / lib. OS 1 OS 2 DSP CPU core CPU core CPU core CPU core GPU memory memory memory Tasks execute a job, implemented by an action function, on a local or remote node Task can be started individually or via queues (to influence the scheduling behavior) Arguments are copied to the remote node Results are copied back to the node that started the task Sven Brehmer, MCA Talk at the OpenMP Booth, SC13 11/18/14 8

9 Tasks, Jobs, Actions Node 1 task a Node 2 Task- based applicatio n task b job a job b action a action b task c task d job c Node 3 action a action c job d action d 11/18/14 9

10 Runtime Design and Optimizations Optimized Thread Creation, Waiting and Awakening o All threads in a team cannot be identical o Uses MRAPI meta data primitives o Avoid over-subscription o Distributed spin-waiting Synchronization Construct Memory Model o Uses MRAPI shared/remote memory primitives 10

11 Freescale s Communication processor with data path QorlQ P4080 processor 4-8 Power architecture e500mc cores Accelerators Encryption (SEC) Pattern Matching Engine (PME) Target applications: Aerospace and Defense Ethernet Switch, Router Pre-crash detection Forward Collision Warning hzp:// code=p4080&tid=redp /18/14 11

12 Portable OpenMP Implementation Translated OpenMP for MPSoCs Used Multicore Association (MCA) APIs as target for our OpenMP translation Developed MCA-based runtime: o Portable across MPSoCs o Light-weight o Supports non-cachecoherent systems o Performance comparable to customized vendorspecific implementations Applica-on'Layer' OpenMP' Programming' Layer' MCA'APIs'Layer' System'Layer' Hardware'Layer' Direc-ves' OpenMP'Applica-ons' Run-me' Library' Rou-nes' OpenMP'Run-me'Library' Environment' Variables' MRAPI' MCAPI' MTAPI' Opera-ng'Systems'(or'Virtualiza-on)' Mul-core'Embedded'Systems' 11/18/14 12

13 Compilation Process OpenUH as our frontend open source, optimizing compiler suite for C, C++ and Fortran, based on Open64 o Translates C+OpenMP source into C with OpenMP runtime function calls OpenMP source code Frontend source-tosource translation Bare C code with OpenMP runtime library calls app.c OpenUH Compiler app.w2c.c Power Architecture GCC Compiler OpenMP Runtime Library Power Architecture GCC Compiler libeomp MCA Libraries Power Architecture GCC Compiler libmca PowerPC-GCC as our backend to generate the object file and libraries Final executable file is generated by linking the object file, our OpenMP runtime library and the MCA runtime library. Object code app.w2c.o Power Architecture GCC Linker Dual-core power processor from Freescale Semiconductor app.out Executable image running on the board 11/18/14 13

14 Enhanced OpenMP runtime Vs proprietary runtime DIJKSTRA JACOBI Normalized Execution Time Number of Threads libgomp libeomp Normalized Time Number of Threads libgomp libeomp FFT LU Decomposition Normalized Execution Time Number of Threads libgomp libeomp Normalized Execution Time Number of Threads libgomp libeomp 11/18/14 14

15 OpenMP + MCA for heterogeneous systems QorlQ P4080 processor 4-8 Power architecture e500mc cores Accelerators Encryption (SEC) Pattern Matching Engine (PME) Target applications: Aerospace and Defense Ethernet Switch, Router Pre-crash detection Forward Collision Warning hzp:// code=p4080&tid=redp /18/14 15

16 Creating an MCA wrapper For communication between the power processor and PME MCA Wrapper DMA 11/18/14 16

17 MCAPI Connectionless technique 11/18/14 17

18 MxAPI for accelerators lessons learned PME does not share memory with the main processor Data movement via a DMA channel Required thorough knowledge of low-level API very tightly tied to the hardware o Time consuming o Requires constant support from the vendor to understand the low-level API Created an MCA wrapper to abstract all lowlevel details o However the wrapper can be used for devices that relies on that same low-level API. 11/18/14 18

19 MTAPI Design and Implementation- Current Status On-going work: Implementing MTAPI features Writing small test cases to validate the MTAPI implementation Need to evaluate the MTAPI implementation on a heterogeneous multicore platform Preliminary results demonstrated overhead while communicating with a remote node through MCAPI 11/18/14 19

20 OpenMP and MCA API Applica-on'Layer' OpenMP'Applica-ons' OpenMP' Programming' Layer' Direc-ves' Run-me' Library' Rou-nes' OpenMP'Run-me'Library' Environment' Variables' MCA'APIs'Layer' MRAPI' MCAPI' MTAPI' System'Layer' No OS?? Opera-ng'Systems'(or'Virtualiza-on)' Hardware'Layer' Mul-core'Embedded'Systems' 11/18/14 20

21 Summary Extend OpenMP runtime library with MxAPI as the translation layer to target heterogeneous multicore SoCs o MTAPI prototype implementation UH SIEMENS : /10/31/siemens-produces-opensource-code-multicore-acceleration/ o Targeted a specialized accelerators 11/18/14 21

22 Accelerators are more than just GPUs 2013 onwards Before 2000 CPUs Intel Xeon Phi Intel Sandybridge Intel 2010 DSP Haswell + FPGAs Virtex 5 ARM FPGAs Virtex Convey Tilera Convey 7 AMD Berlin IBM Cyclops64 IBM Power AMD Warsaw Cell BE Xtreme 7 IBM Power DATA Blue Gene/Q 8 SGI RASC Nvidia Kepler Nvidia Maxwell Nvidia Nvidia Pascal Volta 11/18/14 22

23 MCAPI Communication API MCAPI Domain 1 MCAPI Node 1 endpoint <1,1,1> attributes port 1 endpoint <1,1,2> attributes port 2 Connectionless Message to <1,2,1> Messages: Connectionless - More flexible, less configuration - Blocking and non-blocking - Prioritized messages Connectionless Has More Flexibility MCAPI Node 2 endpoint <1,2,1> port 1 attributes Connectionless Message Connection- oriented Channels MCAPI Domain 1 MCAPI Node 1 endpoint <1,1,1> attributes port 1 Packets and Scalars: Connected - More efficient, more configuration - Blocking and non-blocking packets - Blocking scalars Connected Is More Efficient MCAPI Node 3 endpoint <1,1,2> attributes port 2 Packet Channel endpoint <1,3,1> port 1 attributes MCAPI Node 4 endpoint <1,4,1> attributes port 2 Scalar Channel endpoint <1,3,2> port 2 attributes 11/18/14 23

24 MRAPI Memory Concept LEGEND program data accesses data movement MRAPI API calls hardware/implementation specific MRAPI implementation activity local memory DMA Engine local memory local memory rmem buffer local buffer local buffer SW Cache native rd/wr MRAPI API rd/wr native rd/wr native rd/wr MRAPI API rd/wr ptr mrapi_rmem_handle mrapi_rmem_handle node0 node1 ptr ptr node2 core0 core1 core2 11/18/14 24

Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API

Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API EuroPAR 2016 ROME Workshop Exploring Task Parallelism for Heterogeneous Systems Using Multicore Task Management API Suyang Zhu 1, Sunita Chandrasekaran 2, Peng Sun 1, Barbara Chapman 1, Marcus Winter 3,

More information

Optimizing the performance and portability of multicore DSP platforms with a scalable programming model supporting the Multicore Association s MCAPI

Optimizing the performance and portability of multicore DSP platforms with a scalable programming model supporting the Multicore Association s MCAPI Texas Instruments, PolyCore Software, Inc. & The Multicore Association Optimizing the performance and portability of multicore DSP platforms with a scalable programming model supporting the Multicore Association

More information

MTAPI: Parallel Programming for Embedded Multicore Systems

MTAPI: Parallel Programming for Embedded Multicore Systems MTAPI: Parallel Programming for Embedded Multicore Systems Urs Gleim Siemens AG, Corporate Technology http://www.ct.siemens.com/ urs.gleim@siemens.com Markus Levy The Multicore Association http://www.multicore-association.org/

More information

HIGH-LEVEL PROGRAMMING MODEL FOR HETEROGENEOUS EMBEDDED SYSTEMS USING MULTICORE INDUSTRY STANDARD APIS

HIGH-LEVEL PROGRAMMING MODEL FOR HETEROGENEOUS EMBEDDED SYSTEMS USING MULTICORE INDUSTRY STANDARD APIS HIGH-LEVEL PROGRAMMING MODEL FOR HETEROGENEOUS EMBEDDED SYSTEMS USING MULTICORE INDUSTRY STANDARD APIS A Dissertation Presented to the Faculty of the Department of Computer Science University of Houston

More information

Deploying OpenMP Task Parallelism on Multicore Embedded Systems with MCA Task APIs

Deploying OpenMP Task Parallelism on Multicore Embedded Systems with MCA Task APIs Deploying OpenMP Task Parallelism on Multicore Embedded Systems with MCA Task APIs Peng Sun, Sunita Chandrasekaran, Suyang Zhu and Barbara Chapman Department of Computer Science, University of Houston,

More information

Embedded Multicore Building Blocks (EMB²)

Embedded Multicore Building Blocks (EMB²) FOSDEM 16 Embedded Multicore Building Blocks (EMB²) Easy and Efficient Parallel Programming of Embedded Systems Tobias Schüle Siemens Corporate Technology Introduction The free lunch is over! 1995 2000

More information

A unified multicore programming model

A unified multicore programming model A unified multicore programming model Simplifying multicore migration By Sven Brehmer Abstract There are a number of different multicore architectures and programming models available, making it challenging

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

Modeling and SW Synthesis for

Modeling and SW Synthesis for Modeling and SW Synthesis for Heterogeneous Embedded Systems in UML/MARTE Hector Posadas, Pablo Peñil, Alejandro Nicolás, Eugenio Villar University of Cantabria Spain Motivation Design productivity it

More information

Industrial Multicore Software with EMB²

Industrial Multicore Software with EMB² Siemens Industrial Multicore Software with EMB² Dr. Tobias Schüle, Dr. Christian Kern Introduction In 2022, multicore will be everywhere. (IEEE CS) Parallel Patterns Library Apple s Grand Central Dispatch

More information

OpenMP 3.0 Tasking Implementation in OpenUH

OpenMP 3.0 Tasking Implementation in OpenUH Open64 Workshop @ CGO 09 OpenMP 3.0 Tasking Implementation in OpenUH Cody Addison Texas Instruments Lei Huang University of Houston James (Jim) LaGrone University of Houston Barbara Chapman University

More information

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT Eric Kelmelis 28 March 2018 OVERVIEW BACKGROUND Evolution of processing hardware CROSS-PLATFORM KERNEL DEVELOPMENT Write once, target multiple hardware

More information

Heterogeneous Processing Systems. Heterogeneous Multiset of Homogeneous Arrays (Multi-multi-core)

Heterogeneous Processing Systems. Heterogeneous Multiset of Homogeneous Arrays (Multi-multi-core) Heterogeneous Processing Systems Heterogeneous Multiset of Homogeneous Arrays (Multi-multi-core) Processing Heterogeneity CPU (x86, SPARC, PowerPC) GPU (AMD/ATI, NVIDIA) DSP (TI, ADI) Vector processors

More information

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008 1 of 6 Lecture 7: March 4 CISC 879 Software Support for Multicore Architectures Spring 2008 Lecture 7: March 4, 2008 Lecturer: Lori Pollock Scribe: Navreet Virk Open MP Programming Topics covered 1. Introduction

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Lecture 2: OpenMP fundamentals Overview Basic Concepts in OpenMP History of OpenMP Compiling and running OpenMP programs 2 1 What is OpenMP? OpenMP is an API designed for programming

More information

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest

The Heterogeneous Programming Jungle. Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest The Heterogeneous Programming Jungle Service d Expérimentation et de développement Centre Inria Bordeaux Sud-Ouest June 19, 2012 Outline 1. Introduction 2. Heterogeneous System Zoo 3. Similarities 4. Programming

More information

S Comparing OpenACC 2.5 and OpenMP 4.5

S Comparing OpenACC 2.5 and OpenMP 4.5 April 4-7, 2016 Silicon Valley S6410 - Comparing OpenACC 2.5 and OpenMP 4.5 James Beyer, NVIDIA Jeff Larkin, NVIDIA GTC16 April 7, 2016 History of OpenMP & OpenACC AGENDA Philosophical Differences Technical

More information

Introduction to OpenMP. Lecture 2: OpenMP fundamentals

Introduction to OpenMP. Lecture 2: OpenMP fundamentals Introduction to OpenMP Lecture 2: OpenMP fundamentals Overview 2 Basic Concepts in OpenMP History of OpenMP Compiling and running OpenMP programs What is OpenMP? 3 OpenMP is an API designed for programming

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 Performance Workshop Multicore Programming Overview Shared memory systems Basic Concepts in OpenMP Brief history of OpenMP Compiling and running OpenMP programs 2 1 Shared memory systems OpenMP

More information

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors 1 Agenda OpenCL Overview of Platform, Execution and Memory models Mapping these models to AM57x Overview of OpenMP Offload Model Compare and contrast

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17

Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17 Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17 11/27/2017 Background Many developers choose OpenMP in hopes of having a single source code that runs effectively anywhere (performance

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing Programming Models for Multi- Threading Brian Marshall, Advanced Research Computing Why Do Parallel Computing? Limits of single CPU computing performance available memory I/O rates Parallel computing allows

More information

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017!

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Advanced Topics on Heterogeneous System Architectures HSA Foundation! Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2

More information

Chapter 4: Multi-Threaded Programming

Chapter 4: Multi-Threaded Programming Chapter 4: Multi-Threaded Programming Chapter 4: Threads 4.1 Overview 4.2 Multicore Programming 4.3 Multithreading Models 4.4 Thread Libraries Pthreads Win32 Threads Java Threads 4.5 Implicit Threading

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

Mapping applications into MPSoC

Mapping applications into MPSoC Mapping applications into MPSoC concurrency & communication Jos van Eijndhoven jos@vectorfabrics.com March 12, 2011 MPSoC mapping: exploiting concurrency 2 March 12, 2012 Computation on general purpose

More information

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC Course Class #1 Q&A Contents OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC/CUDA/OpenMP Q: Is OpenACC an NVIDIA standard or is it accepted

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

OpenMP tasking model for Ada: safety and correctness

OpenMP tasking model for Ada: safety and correctness www.bsc.es www.cister.isep.ipp.pt OpenMP tasking model for Ada: safety and correctness Sara Royuela, Xavier Martorell, Eduardo Quiñones and Luis Miguel Pinho Vienna (Austria) June 12-16, 2017 Parallel

More information

OpenMP 4.0: A Significant Paradigm Shift in Parallelism

OpenMP 4.0: A Significant Paradigm Shift in Parallelism OpenMP 4.0: A Significant Paradigm Shift in Parallelism Michael Wong OpenMP CEO michaelw@ca.ibm.com http://bit.ly/sc13-eval SC13 OpenMP 4.0 released 2 Agenda The OpenMP ARB History of OpenMP OpenMP 4.0

More information

Serial and Parallel Sobel Filtering for multimedia applications

Serial and Parallel Sobel Filtering for multimedia applications Serial and Parallel Sobel Filtering for multimedia applications Gunay Abdullayeva Institute of Computer Science University of Tartu Email: gunay@ut.ee Abstract GSteamer contains various plugins to apply

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

Integrating DMA capabilities into BLIS for on-chip data movement. Devangi Parikh Ilya Polkovnichenko Francisco Igual Peña Murtaza Ali

Integrating DMA capabilities into BLIS for on-chip data movement. Devangi Parikh Ilya Polkovnichenko Francisco Igual Peña Murtaza Ali Integrating DMA capabilities into BLIS for on-chip data movement Devangi Parikh Ilya Polkovnichenko Francisco Igual Peña Murtaza Ali 5 Generations of TI Multicore Processors Keystone architecture Lowers

More information

Unified Memory. Notes on GPU Data Transfers. Andreas Herten, Forschungszentrum Jülich, 24 April Member of the Helmholtz Association

Unified Memory. Notes on GPU Data Transfers. Andreas Herten, Forschungszentrum Jülich, 24 April Member of the Helmholtz Association Unified Memory Notes on GPU Data Transfers Andreas Herten, Forschungszentrum Jülich, 24 April 2017 Handout Version Overview, Outline Overview Unified Memory enables easy access to GPU development But some

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Barbara Chapman, Gabriele Jost, Ruud van der Pas

Barbara Chapman, Gabriele Jost, Ruud van der Pas Using OpenMP Portable Shared Memory Parallel Programming Barbara Chapman, Gabriele Jost, Ruud van der Pas The MIT Press Cambridge, Massachusetts London, England c 2008 Massachusetts Institute of Technology

More information

Support for Programming Reconfigurable Supercomputers

Support for Programming Reconfigurable Supercomputers Support for Programming Reconfigurable Supercomputers Miriam Leeser Nicholas Moore, Albert Conti Dept. of Electrical and Computer Engineering Northeastern University Boston, MA Laurie Smith King Dept.

More information

A Uniform Programming Model for Petascale Computing

A Uniform Programming Model for Petascale Computing A Uniform Programming Model for Petascale Computing Barbara Chapman University of Houston WPSE 2009, Tsukuba March 25, 2009 High Performance Computing and Tools Group http://www.cs.uh.edu/~hpctools Agenda

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

Professional Multicore Programming. Design and Implementation for C++ Developers

Professional Multicore Programming. Design and Implementation for C++ Developers Professional Multicore Programming Design and Implementation for C++ Developers Cameron Hughes Tracey Hughes WILEY Wiley Publishing, Inc. Introduction xxi Chapter 1: The New Architecture 1 What Is a Multicore?

More information

Parallel Programming. Libraries and Implementations

Parallel Programming. Libraries and Implementations Parallel Programming Libraries and Implementations Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program Amdahl's Law About Data What is Data Race? Overview to OpenMP Components of OpenMP OpenMP Programming Model OpenMP Directives

More information

Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels

Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels National Aeronautics and Space Administration Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels Jose M. Monsalve Diaz (UDEL), Gabriele Jost (NASA), Sunita Chandrasekaran

More information

Addressing Heterogeneity in Manycore Applications

Addressing Heterogeneity in Manycore Applications Addressing Heterogeneity in Manycore Applications RTM Simulation Use Case stephane.bihan@caps-entreprise.com Oil&Gas HPC Workshop Rice University, Houston, March 2008 www.caps-entreprise.com Introduction

More information

Heterogeneous Software Architecture with OpenAMP

Heterogeneous Software Architecture with OpenAMP Heterogeneous Software Architecture with OpenAMP Shaun Purvis, Xilinx Agenda Heterogeneous SoCs Linux and OpenAMP OpenAMP for HSA Heterogeneous SoCs A System-on-Chip that integrates multiple processor

More information

GPGPU Offloading with OpenMP 4.5 In the IBM XL Compiler

GPGPU Offloading with OpenMP 4.5 In the IBM XL Compiler GPGPU Offloading with OpenMP 4.5 In the IBM XL Compiler Taylor Lloyd Jose Nelson Amaral Ettore Tiotto University of Alberta University of Alberta IBM Canada 1 Why? 2 Supercomputer Power/Performance GPUs

More information

Shared Memory Parallel Programming. Shared Memory Systems Introduction to OpenMP

Shared Memory Parallel Programming. Shared Memory Systems Introduction to OpenMP Shared Memory Parallel Programming Shared Memory Systems Introduction to OpenMP Parallel Architectures Distributed Memory Machine (DMP) Shared Memory Machine (SMP) DMP Multicomputer Architecture SMP Multiprocessor

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Synchronization 3 Automatic Parallelization and OpenMP 4 GPGPU 5 Q& A 2 Multithreaded

More information

CSC573: TSHA Introduction to Accelerators

CSC573: TSHA Introduction to Accelerators CSC573: TSHA Introduction to Accelerators Sreepathi Pai September 5, 2017 URCS Outline Introduction to Accelerators GPU Architectures GPU Programming Models Outline Introduction to Accelerators GPU Architectures

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

Parallel and Distributed Computing

Parallel and Distributed Computing Parallel and Distributed Computing NUMA; OpenCL; MapReduce José Monteiro MSc in Information Systems and Computer Engineering DEA in Computational Engineering Department of Computer Science and Engineering

More information

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015 PERFORMANCE PORTABILITY WITH OPENACC Jeff Larkin, NVIDIA, November 2015 TWO TYPES OF PORTABILITY FUNCTIONAL PORTABILITY PERFORMANCE PORTABILITY The ability for a single code to run anywhere. The ability

More information

Applications to MPSoCs

Applications to MPSoCs 3 rd Workshop on Mapping of Applications to MPSoCs A Design Exploration Framework for Mapping and Scheduling onto Heterogeneous MPSoCs Christian Pilato, Fabrizio Ferrandi, Donatella Sciuto Dipartimento

More information

Shared Memory programming paradigm: openmp

Shared Memory programming paradigm: openmp IPM School of Physics Workshop on High Performance Computing - HPC08 Shared Memory programming paradigm: openmp Luca Heltai Stefano Cozzini SISSA - Democritos/INFM

More information

6.1 Multiprocessor Computing Environment

6.1 Multiprocessor Computing Environment 6 Parallel Computing 6.1 Multiprocessor Computing Environment The high-performance computing environment used in this book for optimization of very large building structures is the Origin 2000 multiprocessor,

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING Keynote, ADVCOMP 2017 November, 2017, Barcelona, Spain Prepared by: Ahmad Qawasmeh Assistant Professor The Hashemite University,

More information

An Introduction to OpenMP

An Introduction to OpenMP An Introduction to OpenMP U N C L A S S I F I E D Slide 1 What Is OpenMP? OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism

More information

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell Khronos OpenCL SYCL committee 05/12/2015 IWOCL 2015 SYCL Tutorial OpenCL SYCL committee work... Weekly telephone meeting Define

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Automatic Parallelization and OpenMP 3 GPGPU 2 Multithreaded Programming

More information

Parallelization, OpenMP

Parallelization, OpenMP ~ Parallelization, OpenMP Scientific Computing Winter 2016/2017 Lecture 26 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de made wit pandoc 1 / 18 Why parallelization? Computers became faster and faster

More information

THE FUTURE OF GPU DATA MANAGEMENT. Michael Wolfe, May 9, 2017

THE FUTURE OF GPU DATA MANAGEMENT. Michael Wolfe, May 9, 2017 THE FUTURE OF GPU DATA MANAGEMENT Michael Wolfe, May 9, 2017 CPU CACHE Hardware managed What data to cache? Where to store the cached data? What data to evict when the cache fills up? When to store data

More information

Chapter 4: Threads. Operating System Concepts 9 th Edit9on

Chapter 4: Threads. Operating System Concepts 9 th Edit9on Chapter 4: Threads Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads 1. Overview 2. Multicore Programming 3. Multithreading Models 4. Thread Libraries 5. Implicit

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013 OpenMP António Abreu Instituto Politécnico de Setúbal 1 de Março de 2013 António Abreu (Instituto Politécnico de Setúbal) OpenMP 1 de Março de 2013 1 / 37 openmp what? It s an Application Program Interface

More information

JCudaMP: OpenMP/Java on CUDA

JCudaMP: OpenMP/Java on CUDA JCudaMP: OpenMP/Java on CUDA Georg Dotzler, Ronald Veldema, Michael Klemm Programming Systems Group Martensstraße 3 91058 Erlangen Motivation Write once, run anywhere - Java Slogan created by Sun Microsystems

More information

Chapter 3 Parallel Software

Chapter 3 Parallel Software Chapter 3 Parallel Software Part I. Preliminaries Chapter 1. What Is Parallel Computing? Chapter 2. Parallel Hardware Chapter 3. Parallel Software Chapter 4. Parallel Applications Chapter 5. Supercomputers

More information

Integrating ROS and ROS2 on mixed-critical robotic systems based on embedded heterogeneous platforms

Integrating ROS and ROS2 on mixed-critical robotic systems based on embedded heterogeneous platforms ROSCon 2018 Integrating ROS and ROS2 on mixed-critical robotic systems based on embedded heterogeneous platforms Fabio Federici, Giulio M. Mancuso This document contains no USA or EU export controlled

More information

ECMWF Workshop on High Performance Computing in Meteorology. 3 rd November Dean Stewart

ECMWF Workshop on High Performance Computing in Meteorology. 3 rd November Dean Stewart ECMWF Workshop on High Performance Computing in Meteorology 3 rd November 2010 Dean Stewart Agenda Company Overview Rogue Wave Product Overview IMSL Fortran TotalView Debugger Acumem ThreadSpotter 1 Copyright

More information

Introduction. CS 2210 Compiler Design Wonsun Ahn

Introduction. CS 2210 Compiler Design Wonsun Ahn Introduction CS 2210 Compiler Design Wonsun Ahn What is a Compiler? Compiler: A program that translates source code written in one language to a target code written in another language Source code: Input

More information

On the Portability and Performance of Message-Passing Programs on Embedded Multicore Platforms

On the Portability and Performance of Message-Passing Programs on Embedded Multicore Platforms On the Portability and Performance of Message-Passing Programs on Embedded Multicore Platforms Shih-Hao Hung, Po-Hsun Chiu, Chia-Heng Tu, Wei-Ting Chou and Wen-Long Yang Graduate Institute of Networking

More information

Debugging CUDA Applications with Allinea DDT. Ian Lumb Sr. Systems Engineer, Allinea Software Inc.

Debugging CUDA Applications with Allinea DDT. Ian Lumb Sr. Systems Engineer, Allinea Software Inc. Debugging CUDA Applications with Allinea DDT Ian Lumb Sr. Systems Engineer, Allinea Software Inc. ilumb@allinea.com GTC 2013, San Jose, March 20, 2013 Embracing GPUs GPUs a rival to traditional processors

More information

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems Ed Hinkel Senior Sales Engineer Agenda Overview - Rogue Wave & TotalView GPU Debugging with TotalView Nvdia CUDA Intel Phi 2

More information

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria Alexei Katranov IWOCL '16, April 21, 2016, Vienna, Austria Hardware: customization, integration, heterogeneity Intel Processor Graphics CPU CPU CPU CPU Multicore CPU + integrated units for graphics, media

More information

Experiences Using Tegra K1 and X1 for Highly Energy Efficient Computing

Experiences Using Tegra K1 and X1 for Highly Energy Efficient Computing Experiences Using Tegra K1 and X1 for Highly Energy Efficient Computing Gaurav Mitra Andrew Haigh Luke Angove Anish Varghese Eric McCreath Alistair P. Rendell Research School of Computer Science Australian

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

PRACE Autumn School Basic Programming Models

PRACE Autumn School Basic Programming Models PRACE Autumn School 2010 Basic Programming Models Basic Programming Models - Outline Introduction Key concepts Architectures Programming models Programming languages Compilers Operating system & libraries

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013 Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading

More information

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Jonas Hahnfeld 1, Christian Terboven 1, James Price 2, Hans Joachim Pflug 1, Matthias S. Müller

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore CSCI-GA.3033-012 Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Status Quo Previously, CPU vendors

More information

HSA foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015!

HSA foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015! Advanced Topics on Heterogeneous System Architectures HSA foundation! Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2

More information

Questions from last time

Questions from last time Questions from last time Pthreads vs regular thread? Pthreads are POSIX-standard threads (1995). There exist earlier and newer standards (C++11). Pthread is probably most common. Pthread API: about a 100

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Le Yan Scientific computing consultant User services group High Performance Computing @ LSU Goals Acquaint users with the concept of shared memory parallelism Acquaint users with

More information

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Achieving High Performance Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Does Instruction Set Matter? We find that ARM and x86 processors are simply engineering design points optimized

More information

When Will SystemC Replace gcc/g++? Bodo Parady, CTO Pentum Group Inc. Sunnyvale, CA

When Will SystemC Replace gcc/g++? Bodo Parady, CTO Pentum Group Inc. Sunnyvale, CA When Will SystemC Replace gcc/g++? Bodo Parady, CTO Pentum Group Inc. Sunnyvale, CA 94087 bparady@pentum.com SystemC: The Next Programming Who Language Who will support future system development? What

More information

Parallel Programming Libraries and implementations

Parallel Programming Libraries and implementations Parallel Programming Libraries and implementations Partners Funding Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License.

More information

Early Experiences Writing Performance Portable OpenMP 4 Codes

Early Experiences Writing Performance Portable OpenMP 4 Codes Early Experiences Writing Performance Portable OpenMP 4 Codes Verónica G. Vergara Larrea Wayne Joubert M. Graham Lopez Oscar Hernandez Oak Ridge National Laboratory Problem statement APU FPGA neuromorphic

More information

Lecture Topic: An Overview of OpenCL on Xeon Phi

Lecture Topic: An Overview of OpenCL on Xeon Phi C-DAC Four Days Technology Workshop ON Hybrid Computing Coprocessors/Accelerators Power-Aware Computing Performance of Applications Kernels hypack-2013 (Mode-4 : GPUs) Lecture Topic: on Xeon Phi Venue

More information

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo OpenMP Amasis Brauch German University in Cairo May 4, 2010 Simple Algorithm 1 void i n c r e m e n t e r ( short a r r a y ) 2 { 3 long i ; 4 5 for ( i = 0 ; i < 1000000; i ++) 6 { 7 a r r a y [ i ]++;

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

Introduction to OpenMP.

Introduction to OpenMP. Introduction to OpenMP www.openmp.org Motivation Parallelize the following code using threads: for (i=0; i

More information

OpenACC (Open Accelerators - Introduced in 2012)

OpenACC (Open Accelerators - Introduced in 2012) OpenACC (Open Accelerators - Introduced in 2012) Open, portable standard for parallel computing (Cray, CAPS, Nvidia and PGI); introduced in 2012; GNU has an incomplete implementation. Uses directives in

More information

Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015

Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015 Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015 Abstract As both an OpenMP and OpenACC insider I will present my opinion of the current status of these two directive sets for programming

More information