COMP2121 Experiment 4

Size: px
Start display at page:

Download "COMP2121 Experiment 4"

Transcription

1 COMP2121 Experiment 4 1. Objectives In this lab, you will learn AVR programming on Parallel input/output; Some typical input/output devices; and Interrupts 2. Preparation Before coming to the laboratory, you should: Read through the document available upon selecting Board Notes from the left menu at the course page for a general description of the AVR development board and for the system set up; Read through the introduction in the next section and complete the tutorial task; Read through the task description of this experiment, trying to understand what you will be doing; Try to write your programs at home in order to finish the experiment on time; and Obtain one or two memory disk on which to store your work 3. Introduction to AVR Microprocessor Development Board This section gives you a tutorial-like introduction to the AVR Microcontroller Development Board and how to use it. In the subsequent tasks you will use the development board to run your program instead of only simulating it using AVR Studio Equipment Handling Precautions A few precautions are necessary in the Digital System Laboratory: The Laboratory is an environment where, unfortunately, it is quite easy for you to build up a static electric charge. Electrostatic discharge can destroy electronic equipment, including the circuits used in this Laboratory, without giving any sign of doing so! Since you may be carrying a static charge without even realizing it, you should always discharge yourself. You can do this painlessly by touching a grounded conductor using a coin, a key or another metallic object instead of your finger. You can use one of the oscillator input connectors as a suitable grounded conductor. Short circuits may damage certain devices. Please remove any metal watchstraps, buckles, rings and so on before handling the boards. There are no dangerous voltages or currents that will harm you here, but this is a good habit to always act with caution and follow the designed procedure. Always turn the power off before connecting or disconnecting any I/O subsystems.

2 3.2. Examining the AVR Microcontroller Board Figure 1: AVR Development Board Figure 1 shows a picture of the assembled system. It also shows how cables attach between the microcontroller connectors and the I/O connectors. Figure 2 is a layout diagram of the assembled system. As you can see from the figures, the AVR Microcontroller Board has one printed circuit board that contains most of the electronics, peripherals and connectors. This board is designed by staff in the School of Computer Science and Engineering, University of New South Wales, Australia. The particular microcontroller used on this board is Atmel ATmega64 device, one of the dozens available from different manufacturers worldwide.

3 Figure 2: AVR Development Board Block Diagram Take a closer look at the particular microcontroller used on the AVR Microcontroller Board. Open to page 2 of the Atmel ATmega64 Datasheet to observe the pin diagram for this processor (You can find this datasheet in the AVRDOC folder on your desktop). Now identify the following components on the board, observe them on the system block diagram and try to trace the connections between them and other major components: AVR processor USB Interface SRAM Reset & Loader Switches Speaker AVR, I/O Pins Keyboard LED bar graph LCD Display Microphone Filter-Amplifier Flash Memory Motor, Shaft Encoder LDR, LED, POT, PB1, PB Examining the AVR Microcontroller Board

4 ; led.asm ; Author: ; Date:.include "m64def.inc".def temp =r16.equ PATTERN1 = 0x5B.equ PATTERN2 = 0xAA ser temp out PORTC, temp out DDRC, temp out PORTA, temp clr temp out DDRA, temp switch0: sbic PINA, 0 rjmp switch1 ldi temp, PATTERN1 out PORTC, temp switch1: sbic PINA, 1 rjmp switch0 ldi temp, PATTERN2 out PORTC, temp rjmp switch0 ; Write ones to all the LEDs ; PORTC is output ; Enable pull-up resistors on PORTA ; PORTA is input ; Skip the next instruction ; if switch0 is pushed ; If not pushed, check the other switch ; Store PATTERN1 to the LEDs ; if the switch was pushed ; Skip the next instruction ; if switch 1 is pushed ; If not pushed, check the other switch ; Store PATTERN2 to the LEDs ; if the switch was pushed ; Now check switch 1 again Figure 3: Program led.asm In AVR Studio, create a new file and call it led.asm. Enter the code in Figure 3 and compile it. You are now ready to advance to the next step, which is running the code in simulator mode Simulating the Code At this point you have generated the files needed to simulate the code. To start running the code, select I/O tab at the bottom of Workspace window. Now double click on I/O ATMEGA64 tree, or press the + next to I/O ATMEGA64 to expand it. This is used to inspect and modify the contents of the I/O registers in the execution target. The standard configuration gives you a quick overview of the hardware with the ability to expand particular items for more information. Expand PORTC tree in the list. It shows all registers associated with Port C, these are: Port C Data Register (PORTC), Data Direction (DDRC) and Input Pins (PINC).

5 PORTC: PORTC register is a read/write register. It is initialized at reset to $00. When programmed as an output, then writing to PORTC will allow you to change the logic state at the PORTC pins. DDRC: The register is used to control the direction of each of the pins of the PORTC. Writing a 0 (which is also the reset value) in any bit of this register will make the corresponding PORTC bit as input, and writing a 1 will make it an output bit. PINC: This is a read-only port, and with this you can read the logic at the physical pin of PORTC. As shown, each bit in the registers is represented by a white square box. A logical zero (0) is represented by a white square box and a logical one (1) is represented by a black square box. These boxes will be updated during program execution, and show the current state of every bit. You may also set and clear these bits by clicking on the appropriate box at any time during the program execution. Now single step down to the last line of the code by repeated pressing the F11 key or by selecting Step Into from the Debug menu. Notice how the color changes from black to red on the registers that change value. This makes it easier to identify which registers change value on each instruction. Continue pressing the F11 key and see how the binary value in PORT C is changed Download When we have finished simulating the program, we need to download the program to the hardware and run it there. An Intel Hex Format file called led.hex has been generated after Build and Run. Here are some of the steps you might need to follow: (Note: Don t have the USB power cable plugged in before performing any wiring) 1. Use the provided patch cables to connect pins PC0-PC7 to the LED0-LED7, and PB0- PB1 to the PA0-PA1. (make sure you have the right order). 2. Plug the USB cable into the board and the PC. 3. Open the downloader nite by double clicking the nite icon on the desktop. 4. Hold the Loader push-button down on the AVR Microcontroller Board. 5. While holding the Loader push-button down push the Reset button and release the Reset button. 6. Release the loader button. The board is now waiting for a program to be downloaded. 7. When you see the logo in the nite window appears, then you can download the new version of the program. 8. Now change the directory by typing :path directory name (ie: :path led). 9. To download the program, type :send file.hex (ie: :send led.hex). This downloads the program to the AVR board, and some output is also generated. 10. Press the Reset switch to execute the program. Note: every time you are downloading a new or modified program to the AVR Microcontroller Board, you have to RESET the board and repeat steps 4-6.

6 Now work out the bit patterns. Does a 1 bit turn the LED on or does it turn it off? Which registers change their value? How are the values been changed? Which instruction turns on the LEDs? Run and test the program. 4. Task Implement an up/down counter which counts up to 8 with a one second interval in between counts. The value of the counter should be displayed on the LED in any sensible format. Use the push buttons (PB0 and PB1) to control whether the counter is counting up or down. The program should take this change in at any time the counter is running (use external interrupts). Note: when incrementing, the counter should start again at 0 after it reaches 8. Vice versa, the counter should be reset to 8 after it reaches 0 while decrementing. You are free to choose any way to implement the one-second-delay function. Assemble your program using AVR Studio, and run it on the AVR Microcontroller Board. Demonstrate your working program to the Laboratory assessor. 5. Note The task is worth 5 marks. Your programs should be well commented. Up to 1 mark will be deducted for the program without proper and sufficient comments.

COMP2121: Microprocessors and Interfacing. I/O Devices (I)

COMP2121: Microprocessors and Interfacing. I/O Devices (I) COMP2121: Microprocessors and Interfacing I/O Devices (I) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Overview I/O Ports AVR Ports 2 2 What is I/O? I/O is Input or Output (Input/Output).

More information

COMP2121 Introductory Experiment

COMP2121 Introductory Experiment COMP2121 Introductory Experiment Objectives: In this introductory experiment, you will: Learn how to use AVR studio, an Integrated Development Environment (IDE) for developing AVR applications in Windows

More information

Lab Objectives. 2. Preparations. 3. Signing in. 4. Examining the Host Environment. 5. Part A: Introduction to AVR Studio. 5.

Lab Objectives. 2. Preparations. 3. Signing in. 4. Examining the Host Environment. 5. Part A: Introduction to AVR Studio. 5. Lab 0 1. Objectives Learn how to use AVR studio, an Integrated Development Environment (IDE) for developing AVR applications in Windows environments, to debug and run an AVR assembly program. Understand

More information

Programming Microcontroller Assembly and C

Programming Microcontroller Assembly and C Programming Microcontroller Assembly and C Course Number CLO : 2 Week : 5-7 : TTH2D3 CLO#2 Student have the knowledge to create basic programming for microcontroller [C3] Understand how to program in Assembly

More information

Objectives. I/O Ports in AVR. Topics. ATmega16/mega32 pinout. AVR pin out The structure of I/O pins I/O programming Bit manipulating 22/09/2017

Objectives. I/O Ports in AVR. Topics. ATmega16/mega32 pinout. AVR pin out The structure of I/O pins I/O programming Bit manipulating 22/09/2017 Objectives The AVR microcontroller and embedded systems using assembly and c I/O Ports in AVR List all the ports of the AVR microcontroller Describe the dual role of the AVR pins Code assembly language

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Review Part I Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA February 15, 2018 Aly El-Osery (NMT) EE 308:

More information

2. Tutorial ESC Programming myavr MK2 USB UFO Doctor, June 5 rd, 2010

2. Tutorial ESC Programming myavr MK2 USB UFO Doctor, June 5 rd, 2010 . Tutorial ESC Programming myavr MK USB UFO Doctor, June 5 rd, 00. Introduction The programming of an ESC (Electronic Speed Controller) requires a basic uc understanding and training. Here you will learn

More information

Robosoft Systems in association with JNCE presents. Swarm Robotics

Robosoft Systems in association with JNCE presents. Swarm Robotics Robosoft Systems in association with JNCE presents Swarm Robotics What is a Robot Wall-E Asimo ABB Superior Moti ABB FlexPicker What is Swarm Robotics RoboCup ~ 07 Lets Prepare for the Robotics Age The

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Layman definition: Gadgets and devices Technical definition: Self-controlled devices Usually, such systems consist of I/O (input/output) devices such

Layman definition: Gadgets and devices Technical definition: Self-controlled devices Usually, such systems consist of I/O (input/output) devices such Layman definition: Gadgets and devices Technical definition: Self-controlled devices Usually, such systems consist of I/O (input/output) devices such as LCDs, keypads, etc. and other devices like EEPROM

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

COMP2121: Microprocessors and Interfacing. I/O Devices (II)

COMP2121: Microprocessors and Interfacing. I/O Devices (II) COMP2121: Microprocessors and Interfacing I/O Devices (II) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Overview Keyboard LCD (Liquid Crystal Display) 2 2 Input Switches (1/2)

More information

Submit this lab and the extended learning (optional) to TEACH by Monday at 11:59pm. You must get checked off by a TA by the beginning of lab 7.

Submit this lab and the extended learning (optional) to TEACH by Monday at 11:59pm. You must get checked off by a TA by the beginning of lab 7. CS151 LAB 6 1 Lab 6 Due Dates: Submit this lab and the extended learning (optional) to TEACH by Monday at 11:59pm. You must get checked off by a TA by the beginning of lab 7. Prelab: 1. Download the zipped

More information

Module 2: Introduction to AVR ATmega 32 Architecture

Module 2: Introduction to AVR ATmega 32 Architecture Module 2: Introduction to AVR ATmega 32 Architecture Definition of computer architecture processor operation CISC vs RISC von Neumann vs Harvard architecture AVR introduction AVR architecture Architecture

More information

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Intermidiate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

An FTDI connection: The ATtiny microcontrollers don t have a hardware UART External Crystal header pins for an optional crystal

An FTDI connection: The ATtiny microcontrollers don t have a hardware UART External Crystal header pins for an optional crystal Getting Started with the T-Board The T-Board modules were designed to speed up your AVR prototyping. This guide will show you just how quickly you can get up and running with the Hello World for microcontrollers

More information

Pre-Lab: Part 1 Using The Development Environment. Purpose: Minimum Parts Required: References: Handouts:

Pre-Lab: Part 1 Using The Development Environment. Purpose: Minimum Parts Required: References: Handouts: Purpose: Minimum Parts Required: References: Handouts: Laboratory Assignment Number 1 for Mech 143/ELEN123 Due by 5:00pm in lab box on Friday, April 19, 2002 Pre-Lab due by 5:00pm in lab box on Tuesday,

More information

Getting Started with STK200 Dragon

Getting Started with STK200 Dragon Getting Started with STK200 Dragon Introduction This guide is designed to get you up and running with main software and hardware. As you work through it, there could be lots of details you do not understand,

More information

Lab Course Microcontroller Programming

Lab Course Microcontroller Programming Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Robotics and Embedded Systems Lab Course Microcontroller Programming Michael Geisinger geisinge@in.tum.de

More information

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 Switches 7 Jumpers 8 MCU Sockets 9 Power Supply 11 On-board USB 2.0 Programmer 12 Oscillator 14 LEDs 15 Reset Circuit 17 Push-buttons

More information

Laboratory 1 Introduction to the Arduino boards

Laboratory 1 Introduction to the Arduino boards Laboratory 1 Introduction to the Arduino boards The set of Arduino development tools include µc (microcontroller) boards, accessories (peripheral modules, components etc.) and open source software tools

More information

Register-Level Programming

Register-Level Programming Introduction Register-Level Programming Programming can be considered a set a instructions that are executed in a precise order. A programming simulator can evaluate how instructions store, move and calculate

More information

Introduction to Micro-controllers. Anurag Dwivedi

Introduction to Micro-controllers. Anurag Dwivedi Introduction to Micro-controllers Anurag Dwivedi Lecture Structure Things to be covered today.. What is a micro-controller? What are the basic features of a microcontroller? How to input and output from

More information

Module 3B: Arduino as Power Supply

Module 3B: Arduino as Power Supply Name/NetID: Teammate/NetID: Module 3B: Laboratory Outline As you work on through the labs during the semester and some of the modules you may want to continue experimenting at home. Luckily the microprocessor

More information

ET-BASE AVR ATmega64/128

ET-BASE AVR ATmega64/128 ET-BASE AVR ATmega64/128 ET-BASE AVR ATmega64/128 which is a Board Microcontroller AVR family from ATMEL uses MCU No.ATmega64 and ATmega128 64PIN. Board ET-BASE AVR ATmega64/128 uses MCU s resources on

More information

IAS0430 MICROPROCESSOR SYSTEMS

IAS0430 MICROPROCESSOR SYSTEMS IAS0430 MICROPROCESSOR SYSTEMS Fall 2018 Arduino and assembly language Martin Jaanus U02-308 martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Learning environment : http://isc.ttu.ee Materials : http://isc.ttu.ee/martin

More information

M32 Development Board

M32 Development Board M32 Development Board User Guide Document Control Information This Document Release Date: 12th March 2006 This Document Version: 1.0 Document History Author Release Date Reference Release Notes JSL 23rd

More information

Doc: page 1 of 8

Doc: page 1 of 8 Minicon Reference Manual Revision: February 9, 2009 Note: This document applies to REV C of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Minicon board is a

More information

ONE AVR D EVELOPMENT SECTION I NTRODUCTION TO NTRODUCTION TO AVR EVELOPMENT TOOLS. Section One: Introduction to AVR Development Tools

ONE AVR D EVELOPMENT SECTION I NTRODUCTION TO NTRODUCTION TO AVR EVELOPMENT TOOLS. Section One: Introduction to AVR Development Tools Section One: Introduction to AVR Development Tools I NTRODUCTION TO NTRODUCTION TO AVR SECTION ONE AVR D EVELOPMENT EVELOPMENT TOOLS 2009 Oregon State University ECE375 Manual Page 10 Section One: Introduction

More information

CSCE 436/836: Embedded Systems Lab 1b: Hoverboard Programming Introduction

CSCE 436/836: Embedded Systems Lab 1b: Hoverboard Programming Introduction 1 Overview CSCE 436/836: Embedded Systems Lab 1b: Hoverboard Programming Introduction Instructor: Carrick Detweiler carrick _at_ cse.unl.edu University of Nebraska-Lincoln Spring 2011 Started: Jan 27,

More information

Writing Code and Programming Microcontrollers

Writing Code and Programming Microcontrollers Writing Code and Programming Microcontrollers This document shows how to develop and program software into microcontrollers. It uses the example of an Atmel ATmega32U2 device and free software. The ATmega32U2

More information

Robotics Training Module ABLab Solutions

Robotics Training Module ABLab Solutions Robotics Training Module ABLab Solutions www.ablab.in Table of Contents Course Outline... 4 Introduction to Robotics... 4 Overview of Basic Electronic... 4 Overview of Digital Electronic... 4 Power Supply...

More information

I2C and SPI Foundation

I2C and SPI Foundation Revision 30 September 2010 Release I2C and SPI Foundation 17 March 2018 changed ref: command f to x Introduction I2C (I squared C) and SPI (Serial peripheral Interface) are two main ways that microcontrollers

More information

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software!

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software! Summer Training 2016 Advance Embedded Systems Fast track of AVR and detailed working on STM32 ARM Processor with RTOS- Real Time Operating Systems Covering 1. Hands on Topics and Sessions Covered in Summer

More information

ECE 362 Experiment 3: General Purpose I/O

ECE 362 Experiment 3: General Purpose I/O ECE 362 Experiment 3: General Purpose I/O 1.0 Introduction In this experiment, you will learn how to attach simple input devices (pushbuttons) and simple output devices (LEDs) to an STM32 development board.

More information

CMPE C Programming & Embedded Systems. Discussion I (Version 2.0) August 31, 2014

CMPE C Programming & Embedded Systems. Discussion I (Version 2.0) August 31, 2014 CMPE 311 - C Programming & Embedded Systems Discussion I (Version 2.0) August 31, 2014 Version History Version 2.1 - (August 31, 2015) - Addition Pin Connections Section and Document Verification. Version

More information

Figure 1-1 ISPAVRU1 application

Figure 1-1 ISPAVRU1 application ISP AVR Programmer through USB Main Features AVR Studio Interface (AVR Studio 4.12 or later) Supports all AVR Device with ISP interface, refer to AVR Studio Programs both Flash and EEPROM Supports Fuse

More information

Instruction Sheet Updating SmartPAC 2 Firmware

Instruction Sheet Updating SmartPAC 2 Firmware Instruction Sheet Updating SmartPAC 2 Firmware This document shows you how to update SmartPAC 2 firmware, using a USB disk, and load SmartPAC 2 firmware installed on a replacement Compact Flash (CF) card.

More information

AVR Development Board

AVR Development Board CAMPUS COMPONENT Pvt. Ltd. 1 DISCLAIMER Information furnished is believed to be accurate and reliable at the time of publication. However, Campus Component Pvt. Ltd. assumes no responsibility arising from

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Development Tools. 8-Bit Development Tools. Development Tools. AVR Development Tools

Development Tools. 8-Bit Development Tools. Development Tools. AVR Development Tools Development Tools AVR Development Tools This section describes some of the development tools that are available for the 8-bit AVR family. Atmel AVR Assembler Atmel AVR Simulator IAR ANSI C-Compiler, Assembler,

More information

AVR MICROCONTROLLER PROJECT TUTORIAL E-PUB

AVR MICROCONTROLLER PROJECT TUTORIAL E-PUB 14 May, 2018 AVR MICROCONTROLLER PROJECT TUTORIAL E-PUB Document Filetype: PDF 151.29 KB 0 AVR MICROCONTROLLER PROJECT TUTORIAL E-PUB Premium source of Projects Tutorials Code Ebooks Library for Atmels

More information

AT89S8252 Development Board V1.0. Manual

AT89S8252 Development Board V1.0. Manual AT89S8252 Development Board V1.0 Manual Page 1 Chapter 1. Introduction 1.1 Introduction This user s guide describes how to connect to and set-up the AT89S8252 Development Board, for program development

More information

EPX Touchscreen and Display Replacement Assemblies

EPX Touchscreen and Display Replacement Assemblies EPX Touchscreen and Display Replacement Assemblies This document describes the procedures required to replace the touchscreen and display assembly in the EPX BZK-08T7 kit. The following procedures are

More information

AVR Simulation with the ATMEL AVR Studio 4 Updated: 8/3/2005

AVR Simulation with the ATMEL AVR Studio 4 Updated: 8/3/2005 AVR Simulation with the ATMEL AVR Studio 4 Updated: 8/3/2005 Page 1 9/27/2005 Introduction The AVR Studio 4 is an Integrated Development Environment for debugging AVR software. The AVR Studio allows chip

More information

Diploma in Embedded Systems

Diploma in Embedded Systems Diploma in Embedded Systems Duration: 5 Months[5 days a week,3 hours a day, Total 300 hours] Module 1: 8051 Microcontroller in Assemble Language Characteristics of Embedded System Overview of 8051 Family

More information

ECE 353 Lab 4. General MIDI Explorer. Professor Daniel Holcomb Fall 2015

ECE 353 Lab 4. General MIDI Explorer. Professor Daniel Holcomb Fall 2015 ECE 353 Lab 4 General MIDI Explorer Professor Daniel Holcomb Fall 2015 Where are we in Course Lab 0 Cache Simulator in C C programming, data structures Cache architecture and analysis Lab 1 Heat Flow Modeling

More information

USB Type A Female Breakout Hookup Guide

USB Type A Female Breakout Hookup Guide Page 1 of 7 USB Type A Female Breakout Hookup Guide Introduction If you have a microcontroller that can act as a USB host, then you will need a way to plug in USB cables and devices. The USB Type A Female

More information

XC164CS Prototype Board

XC164CS Prototype Board XC164CS Prototype Board Features: Small PCB (95 x 57 mm) with ground plane. o Designed to fit inside a Pac Tec FLX-4624 ABS enclosure Infineon XC164CS 16-bit single-chip microcontroller o 166SV2 core o

More information

Note that FLIP is an Atmel program supplied by Crossware with Atmel s permission.

Note that FLIP is an Atmel program supplied by Crossware with Atmel s permission. INTRODUCTION This manual will guide you through the first steps of getting the SE-8051ICD running with the Crossware 8051 Development Suite and the Atmel Flexible In-System Programming system (FLIP). The

More information

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features:

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features: AVRminiV3. Manual. AVRminiV3. Overview The AVRminiV3. board is a low-cost versatile development board for Atmel AVR processors. The AVRminiV3. supports all AVR processors in 40-pin and 64-pin packages

More information

1.0 The System Architecture and Design Features

1.0 The System Architecture and Design Features 1.0 The System Architecture and Design Features Figure 1. System Architecture The overall guiding design philosophy behind the Data Capture and Logging System Architecture is to have a clean design that

More information

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON SECURE DIGITAL ACCESS SYSTEM USING IBUTTON Access control forms a vital link in a security chain. Here we describe a secure digital access system using ibutton that allows only authorised persons to access

More information

3700 SERIES USER MANUAL

3700 SERIES USER MANUAL SAFETY GUIDE This manual contains the precautions necessary to ensure your personal safety as well as for protection for the products and the connected equipment. These precautions are highlighted with

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Input/Output Devices Input devices Input switches Basics of switches Keypads Output devices LCD Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week8 1 S2, 2008

More information

Input/Output Devices. Lecturer: Sri Parameswaran Notes by: Annie Guo

Input/Output Devices. Lecturer: Sri Parameswaran Notes by: Annie Guo Input/Output Devices Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview Input devices Input switches Basics of switches Keypads Output devices LCD 2 Input Switches Most basic binary input

More information

EasyAVR6 Development System

EasyAVR6 Development System EasyAVR6 Development System Part No.: MPMICRO-AVR-Devel-EasyAVR6 Overview EasyAVR6 is a development system that supports a wide range of 8-, 14-, 20-, 28- and 40-pin AVR MCUs. EasyAVR6 allows AVR microcontrollers

More information

4D Picaso Touchscreen Display board datasheet EB

4D Picaso Touchscreen Display board datasheet EB 4D Picaso Touchscreen Display board datasheet EB076-00 00-1 CONTENTS 1. About this document. 2 2. General Information.. 3 3. Board layout... 3 4. Testing this product... 4 5. Circuit description.. 4 Appendix

More information

Shack Clock kit. U3S Rev 2 PCB 1. Introduction

Shack Clock kit. U3S Rev 2 PCB 1. Introduction Shack Clock kit U3S Rev 2 PCB 1. Introduction Thank you for purchasing the QRP Labs Shack Clock kit. This clock uses the Ultimate3S QRSS/WSPR kit hardware, but a different firmware version. It can be used

More information

acret Ameya Centre for Robotics & Embedded Technology Syllabus for Diploma in Embedded Systems (Total Eight Modules-4 Months -320 Hrs.

acret Ameya Centre for Robotics & Embedded Technology Syllabus for Diploma in Embedded Systems (Total Eight Modules-4 Months -320 Hrs. acret Ameya Centre for Robotics & Embedded Technology Syllabus for Diploma in Embedded Systems (Total Eight Modules-4 Months -320 Hrs.) Module 0 Introduction Introduction to Embedded Systems, Real Time

More information

AGH University of Science and Technology Cracow Department of Electronics

AGH University of Science and Technology Cracow Department of Electronics AGH University of Science and Technology Cracow Department of Electronics Microprocessors laboratory Tutorial A Using Arduino UNO for laboratory tutorials Author: Paweł Russek http://www.fpga.agh.edu.pl/upt

More information

Review on Lecture-1. ICT 6641: Advanced Embedded System. Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming

Review on Lecture-1. ICT 6641: Advanced Embedded System. Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming ICT 6641: Advanced Embedded System Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming Prof. S. M. Lutful Kabir Session: April, 2011 Review on Lecture-1 Three parts of a computer : CPU, Memory

More information

Buses and Parallel Input/Output

Buses and Parallel Input/Output Buses and Parallel Input/Output Lecturer: Sri Parameswaran Notes by: Annie Guo Week7 1 Lecture Overview Buses Computer buses I/O Addressing Memory mapped I/O Separate I/O Parallel input/output AVR examples

More information

Lab 0 Introduction to the MSP430F5529 Launchpad-based Lab Board and Code Composer Studio

Lab 0 Introduction to the MSP430F5529 Launchpad-based Lab Board and Code Composer Studio ECE2049 Embedded Computing in Engineering Design Lab 0 Introduction to the MSP430F5529 Launchpad-based Lab Board and Code Composer Studio In this lab, you will be introduced to the Code Composer Studio

More information

ARDUINO MINI 05 Code: A000087

ARDUINO MINI 05 Code: A000087 ARDUINO MINI 05 Code: A000087 The Arduino Mini is a very compact version of the Arduino Nano without an on board USB to Serial connection The Arduino Mini 05 is a small microcontroller board originally

More information

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview Freeduino USB 1.0 Arduino Compatible Development Board Starter Guide 1. Overview 1 Arduino is an open source embedded development platform consisting of a simple development board based on Atmel s AVR

More information

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9 Cerebot II Board Reference Manual Revision: September 14, 2007 Note: This document applies to REV B of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (II) Interrupts in AVR External interrupts Internal interrupts Timers/Counters Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week7 1 S2, 2008 COMP9032

More information

Assembly Programming in Atmel Studio 7 Step by Step Tutorial

Assembly Programming in Atmel Studio 7 Step by Step Tutorial Assembly Programming in Atmel Studio 7 Step by Step Tutorial Sepehr Naimi BIHE University 12/1/2017 Contents Introduction... 2 Downloading and Installing Atmel Studio... 3 Opening Atmel Studio... 3 Creating

More information

Copyright White Box Robotics Inc. and Frontline Robotics Inc

Copyright White Box Robotics Inc. and Frontline Robotics Inc Disclaimer Working with electronics and installing the plastics will require care and patience. PROPER GROUNDING PROCEDURES before handling the electronics. Touching the robot chassis (which is common

More information

WHAT TO DO IF THE SERVO SYSTEM REPORTS FAILURES.

WHAT TO DO IF THE SERVO SYSTEM REPORTS FAILURES. WHAT TO DO IF THE SERVO SYSTEM REPORTS FAILURES. 1. Try a hard reset on the system, shut the computer down and turn the main power switch off for 30 seconds, turn the main power back on and run the mango

More information

Lab 1 An Introduction to Assembly

Lab 1 An Introduction to Assembly Lab 1 An Introduction to Assembly This lab is designed to introduce you to the Arduino Microcontroller Board, Atmel (part of MicroChip) Integrated Development Environment (IDE) and AVR Assembly Language

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

Locktronics PICmicro getting started guide

Locktronics PICmicro getting started guide Page 2 getting started guide What you need to follow this course 2 Using the built-in programs 3 Create your own programs 4 Using Flowcode - your first program 5 A second program 7 A third program 8 Other

More information

AVR- M16 development board Users Manual

AVR- M16 development board Users Manual AVR- M16 development board Users Manual All boards produced by Olimex are ROHS compliant Rev. C, January 2005 Copyright(c) 2009, OLIMEX Ltd, All rights reserved Page1 INTRODUCTION AVR-M16 is header board

More information

NEWBIE'S GUIDE TO AVR DEVELOPMENT A N IN TR O DU CT I O N I N TE N DE D FO R PEOPL E W I TH NO PRIOR AV R KNOWLE DG E AVRFREAKS.

NEWBIE'S GUIDE TO AVR DEVELOPMENT A N IN TR O DU CT I O N I N TE N DE D FO R PEOPL E W I TH NO PRIOR AV R KNOWLE DG E AVRFREAKS. NEWBIE'S GUIDE TO AVR DEVELOPMENT A N IN TR O DU CT I O N I N TE N DE D FO R PEOPL E W I TH NO PRIOR AV R KNOWLE DG E AVRFREAKS.NET JULY 2002 TABLE OF CONTENTS Newbie's Getting Started Guide...2 Preparing

More information

Laboratory 10. Programming a PIC Microcontroller - Part II

Laboratory 10. Programming a PIC Microcontroller - Part II Laboratory 10 Programming a PIC Microcontroller - Part II Required Components: 1 PIC16F88 18P-DIP microcontroller 1 0.1 F capacitor 3 SPST microswitches or NO buttons 4 1k resistors 1 MAN 6910 or LTD-482EC

More information

µpad: Microprocessor for Academic Development

µpad: Microprocessor for Academic Development µpad: Microprocessor for Academic Development Last Updated May 13, 2015 Figure 1: µpad Top Figure 2:µPAD Bottom Table of Contents WARNING: READ BEFORE PROCEDING!... 4 Overview... Error! Bookmark not defined.

More information

keyestudio Keyestudio MEGA 2560 R3 Board

keyestudio Keyestudio MEGA 2560 R3 Board Keyestudio MEGA 2560 R3 Board Introduction: Keyestudio Mega 2560 R3 is a microcontroller board based on the ATMEGA2560-16AU, fully compatible with ARDUINO MEGA 2560 REV3. It has 54 digital input/output

More information

Thursday, September 15, electronic components

Thursday, September 15, electronic components electronic components a desktop computer relatively complex inside: screen (CRT) disk drive backup battery power supply connectors for: keyboard printer n more! Thursday, September 15, 2011 integrated

More information

INTERFACING HARDWARE WITH MICROCONTROLLER

INTERFACING HARDWARE WITH MICROCONTROLLER INTERFACING HARDWARE WITH MICROCONTROLLER P.Raghavendra Prasad Final Yr EEE What is a Microcontroller? A microcontroller (or MCU) is acomputer-on-a-chip. It is a type of microprocessor emphasizing self-

More information

Using Arduino Boards in Atmel Studio 7

Using Arduino Boards in Atmel Studio 7 Using Arduino Boards in Atmel Studio 7 Sepehr Naimi www.nicerland.com 12/17/2017 Contents Introduction... 3 Installing Atmel Studio and Making the First Project... 3 Downloading Avrdude... 3 Checking COM

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Motorola M68HC11 Specs Assembly Programming Language BUFFALO Topics of Discussion Microcontrollers M68HC11 Package & Pinouts Accumulators Index Registers Special Registers Memory Map I/O Registers Instruction

More information

Microprocessors And Microcontrollers (Practical)

Microprocessors And Microcontrollers (Practical) Microprocessors And Microcontrollers (Practical) Semester : 4 th, 5 th (TL, ES) Course Code : ES256, ES313 By: Dr. Attiya Baqai Assistant Professor, Department of Electronics, MUET. 3 Introduction to Programming

More information

Robotic Systems ECE 401RB Fall 2006

Robotic Systems ECE 401RB Fall 2006 The following notes are from: Robotic Systems ECE 401RB Fall 2006 Lecture 13: Processors Part 1 Chapter 12, G. McComb, and M. Predko, Robot Builder's Bonanza, Third Edition, Mc- Graw Hill, 2006. I. Introduction

More information

Embedded programming, AVR intro

Embedded programming, AVR intro Applied mechatronics, Lab project Embedded programming, AVR intro Sven Gestegård Robertz Department of Computer Science, Lund University 2017 Outline 1 Low-level programming Bitwise operators Masking and

More information

Experiment #0. PC Hardware and Operating Systems

Experiment #0. PC Hardware and Operating Systems Experiment #0 PC Hardware and Operating Systems Objective: The objective of this experiment is to introduce the operating systems and different hardware components of a microcomputer. Equipment: Microcomputer

More information

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Development board is designed for

More information

LAB #1: The CSM12C32 Module and PBMCUSLK Project Board

LAB #1: The CSM12C32 Module and PBMCUSLK Project Board CS/EE 5780/6780 Handout #1 Spring 2007 Myers LAB #1: The CSM12C32 Module and PBMCUSLK Project Board Lab writeup is due to your TA at the beginning of your next scheduled lab. Don t put this off to the

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Introduction Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 6, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

Fireloch 4 Digit 7 Segment Programmable Display Module

Fireloch 4 Digit 7 Segment Programmable Display Module NeoLoch FLS-4D7S-1010 Fireloch 4 Digit 7 Segment Programmable Display Module Features: 3 to 11 wire operation. Breadboard compatible. Compact design. Count up / down. Count in Hex / Dec. Two character

More information

Doc: page 1 of 6

Doc: page 1 of 6 Nanocon Reference Manual Revision: February 9, 2009 Note: This document applies to REV A-B of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Nanocon board is

More information

Lab 2: Basic Assembly Programming and Debugging using AVR Studio. Due: December 13, 2011

Lab 2: Basic Assembly Programming and Debugging using AVR Studio. Due: December 13, 2011 Lab 2: Basic Assembly Programming and Debugging using AVR Studio 1 Outcomes Due: December 13, 2011 Familiarize yourself with the capabilities of the ATMEGA32 embedded microcontroller and AVR Studio Develop

More information

PCI bit Digital Input/ Output Card for PCI Bus. User s Manual

PCI bit Digital Input/ Output Card for PCI Bus. User s Manual PCI-1751 48-bit Digital Input/ Output Card for PCI Bus User s Manual Copyright This documentation and the software included with this product are copyrighted 1998 by Advantech Co., Ltd. All rights are

More information

CONSOLE CONNECTOR KIT 9501 INSTALLATION INSTRUCTIONS

CONSOLE CONNECTOR KIT 9501 INSTALLATION INSTRUCTIONS CONSOLE CONNECTOR KIT 9501 INSTALLATION INSTRUCTIONS FOR USE WITH: HAMMOND Organ Models L-100, M-100 Series, M-l, M-2, M-3 LESLIE Speaker Models 760, 770, 825 KIT CONTENT Console Connector Assembly 043075

More information

Installation and Maintenance

Installation and Maintenance Chapter 9 Installation and Maintenance 9.1 Hardware and software System requirements. 215 9.2 Operating Manuals. 216 9.3 Software. 221 9.4 Maintenance. 225 Chapter 9 Installation and Maintenance. This

More information

EK307 Lab: Microcontrollers

EK307 Lab: Microcontrollers EK307 Lab: Microcontrollers Laboratory Goal: Program a microcontroller to perform a variety of digital tasks. Learning Objectives: Learn how to program and use the Atmega 323 microcontroller Suggested

More information

Uzebox JAMMA. Operation manual. (For Uzebox JAMMA Rev. C devices)

Uzebox JAMMA. Operation manual. (For Uzebox JAMMA Rev. C devices) Uzebox JAMMA Operation manual (For Uzebox JAMMA Rev. C devices) Basement Hobbies 2011 Contents Warnings 2 Introduction 3 Materials 4 Overview 5 Installation 6 Operation 7 Troubleshooting 13 Contact 16

More information

Figure 1. Proper Method of Holding the ToolStick. Figure 2. Improper Method of Holding the ToolStick

Figure 1. Proper Method of Holding the ToolStick. Figure 2. Improper Method of Holding the ToolStick TOOLSTICK C8051F560 DAUGHTER CARD USER S GUIDE 1. Handling Recommendations To enable development, the ToolStick Base Adapter and daughter cards are distributed without any protective plastics. To prevent

More information

REQUIRED MATERIALS Epiphany-DAQ board Wire Jumpers Switch LED Resistors Breadboard Multimeter (if needed)

REQUIRED MATERIALS Epiphany-DAQ board Wire Jumpers Switch LED Resistors Breadboard Multimeter (if needed) Page 1/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16 OBJECTIVES This lab will introduce you to the concept of developing with a microcontroller while focusing on the use of General Purpose Input/Output

More information