Fujitsu s Technologies to the K Computer

Size: px
Start display at page:

Download "Fujitsu s Technologies to the K Computer"

Transcription

1 Fujitsu s Technologies to the K Computer - a journey to practical Petascale computing platform - June 21 nd, 2011 Motoi Okuda FUJITSU Ltd.

2 Agenda The Next generation supercomputer project of Japan The K computer Design concept of the K computer Our technologies applied to the K computer Preliminary performance figures of the K computer Toward post 10PFlops era and Exa-scale computing Conclusion 1

3 History of the K computer project Project officially started mid of 2006 System installation started in Oct Partial system started test-operation in April 2011 Full system installation and adjustment will be completed by middle of 2012 Official operation will start by the end of 2012 Application software projects are also running concurrently Conceptual design Detailed design Prototype, evaluation Production, installation, and adjustment Tuning Next-Generation Integrated Nano-science Simulation Next-Generation Integrated Simulation of Living Matter 2

4 Pre History of the K computer project Primary R&D project started in 2005 National grid project started in 2003 High-end Computing WG initiated the feasibility study for future high end computing environment from application point of view in WG for High-end Computing National Grid Project NAREGI Primary R&D projects for Next Generation Supercomputer Conceptual design Detailed design Production, Prototype, installation, Tuning evaluation and adjustment Next-Generation Integrated Nano-science Simulation Next-Generation Integrated Simulation of Living Matter 3

5 Target Applications of the K computer 4 Courtesy of RIKEN

6 Design target of the K computer Toward wider coverage of applications and higher performance on those applications High Performance 10PFlops at LINPACK High productivity Easy to extract high performance from the highly paralleled programs without inordinate burden to programmers Sophisticated language and programmer support environment High operability Low power consumption High reliability and easy to operate Ensuring target date : mid. of

7 Fujitsu s technologies applied to the K computer SPARC64 TM VIIIfx Processor HPC-ACE (SPARC V9 Architecture Enhancement for HPC) :128GFlpos SIMD Register enhancements Software controllable cache Hardware barrier between core Main frame CPU level of high reliable design Low power consumption : ~58W New Interconnect,Tofu 6-dimensional Mesh/Torus topology High speed, highly scalable, high operability and high availability interconnect for over 100,000 nodes system Functional interconnect Single CPU per node configuration High memory bandwidth and simple memory hierarchy CPU/ICC direct water cooling High reliability, low power consumption and compact packaging 6 LINPACK 10 PFlops Over 1PB mem. 800 racks 80,000 CPUs 640,000 cores

8 Fujitsu s technologies applied to the K computer (cont.) Software environment Applications HPC Portal / System Management Portal System Operations Management System configuration management System monitoring System installation& operation Job operations Management Job manager Job scheduler Resource management High Performance File System Lustre based distributed file system High scalability IO bandwidth guarantee High reliability and availability Compiler (Fortran, C, C++) Hybrid parallel programming Sector cache support SIMD/register file extensions MPI/Math. Libraries Tuned for hardware Support tools Profiler & tuning tools Interactive debugger Linux based OS enhanced for K computer The K computer 7

9 Performance Efficiency The K computer s Performance Productivity LINPACK performance and its efficiency (RMax : LINPACK Performance / RPeak : Peak Performance) GSIC (Japan) NSCS (China) Jaguar (US) Opteron 横軸 top500 ( 左の方が一位 ) v.s. 効率横軸を性能にする案もあるか? NSCT (China) Performance (R max PFlops) June 2011 K computer (subset) 68,544 CPUs, 548,352 cores 8.162PFlops, 93.0% SPARC64 TM VIIIfx Other Fujitsu System 9

10 The K computer s Performance (cont.) Greenness LINPACK performance and its power consumption Power Efficiency (RMax MFlops/W) IBM BlueGene/Q prototype (US) PowerBQC Nagasaki Univ. (Japan) CINECA/SCS (Italy) GSIC (Japan) K computer (subset) 825 MFlops/W SPARC64 TM VIIIfx NSCT (China) June 2011 FZJ (German) XCell Performance (R max PFlops) 10

11 The K computer s Performance (cont.) LINPACK performance and its computing time June 2011 Computing Time (Hours) JAXA (Japan) FX1 SPARC64 TM VII Jaguar (US) Opteron K computer (subset) 28 hr. SPARC64 TM VIIIfx NSCT (China) Performance (R max PFlops) 11

12 Performance Efficiency The K computer s Performance (cont.) Productivity LINPACK performance efficiency and power consumption (RMax : LINPACK Performance / RPeak : Peak Performance) Power data not registered FZJ(German),etc. XCell NSCT(China) K computer (subset) SPARC64 TM VIIIfx CINECA/SCS(Italy) GSIC(Japan) IBM BlueGene/Q prototype (US) PowerBQC Nagasaki Univ. (Japan) June 2011 Power Efficiency (R Max MFlops/W) 12 Greenness

13 Scalability The K computer s Performance (cont.) Example of the fundamental BMT performance on 1.05PFlops system* High efficient threading between cores and functional interconnect Hybrid execution** with Integrated MPI support Hybrid execution** w/o Integrated MPI support Flat MPI execution with Integrated MPI support No. of Cores Scalability of the HIMENO-BMT*** (XL size, 1,024 x 512 x 512) * : 65,536 cores, 8,192 CPUs, ** : 8 thread /node + MPI ** : HIMENO-BMT, Benchmark program which measures the speed of major loops to solve Poisson's equation solution using Jacobi iteration method. In this measurement, Grid-size XL was used. 13

14 Applications running on the K Computer Several real applications are now running on the K computer which is in test operation phase First priority applications has been optimized, tested and evaluated Program Discipline Outline Scheme NICAM Seism3D FrontFlow/ Blue PHASE Earth science Earth science Engineering Material science Nonhydrostatic ICosahedral Atmospheric Model (NICAM) for Global-Cloud Resolving Simulations Simulation of Seismic-Wave Propagation and Strong Ground Motions Unsteady Flow Analysis based on Large Eddy Simulation (LES) First-Principles Simulation within the Plane-Wave Pseudo potential formalism FDM (atmosphere) FDM (wave) FEM (fluid) DFT (plane wave) RSDFT Material science Ab-initio Calculation in Real Space The realspace DFT LatticeQCD Physics Study of elementary particle and nuclear physics based on Lattice QCD simulation QCD Others More than 20 applications are optimizing and testing on the K computer 14

15 For post 10PFlops era and Exa-scale computing Many core architecture CNT technologies Graphene technologies Under 20nm semiconductor tech. 3D stacked memory DNA computer CPU integrated interconnect I/F Quantum computer Optical computer On board optical link FPGA, Reconfigurable LSI Tight collaboration, co-work and concurrent development with target applications Expansion and brush up of current technologies for practical 10PFlops class computing Technologies Jump for practical 100PFlops class computing Japanese HPC community s big question after March 11 th How Exa-scale computing contribute to the society? Which applications need Exa-scale computing power? Accelerator technologies 15

16 Conclusion The K computer targeted practical PFlops class computing. Fujitsu s several leading-edge technologies applied to the K computer and achieved excellent performance, productivity and operability How to utilize this huge computer power for bringing safe, reliable and sustainable society in reality is the Fujitsu s next and true challenge This is a milestone to reach real Exa-scale computing Fujitsu will continue our effort toward real Exa-scale computing 16

17

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited Fujitsu HPC Roadmap Beyond Petascale Computing Toshiyuki Shimizu Fujitsu Limited Outline Mission and HPC product portfolio K computer*, Fujitsu PRIMEHPC, and the future K computer and PRIMEHPC FX10 Post-FX10,

More information

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN Current Status of the Next- Generation Supercomputer in Japan YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN International Workshop on Peta-Scale Computing Programming Environment, Languages

More information

Key Technologies for 100 PFLOPS. Copyright 2014 FUJITSU LIMITED

Key Technologies for 100 PFLOPS. Copyright 2014 FUJITSU LIMITED Key Technologies for 100 PFLOPS How to keep the HPC-tree growing Molecular dynamics Computational materials Drug discovery Life-science Quantum chemistry Eigenvalue problem FFT Subatomic particle phys.

More information

Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future

Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future Fujitsu s Technologies Leading to Practical Petascale Computing: K computer, PRIMEHPC FX10 and the Future November 16 th, 2011 Motoi Okuda Technical Computing Solution Unit Fujitsu Limited Agenda Achievements

More information

PRIMEHPC FX10: Advanced Software

PRIMEHPC FX10: Advanced Software PRIMEHPC FX10: Advanced Software Koh Hotta Fujitsu Limited System Software supports --- Stable/Robust & Low Overhead Execution of Large Scale Programs Operating System File System Program Development for

More information

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED Advanced Software for the Supercomputer PRIMEHPC FX10 System Configuration of PRIMEHPC FX10 nodes Login Compilation Job submission 6D mesh/torus Interconnect Local file system (Temporary area occupied

More information

Fujitsu s new supercomputer, delivering the next step in Exascale capability

Fujitsu s new supercomputer, delivering the next step in Exascale capability Fujitsu s new supercomputer, delivering the next step in Exascale capability Toshiyuki Shimizu November 19th, 2014 0 Past, PRIMEHPC FX100, and roadmap for Exascale 2011 2012 2013 2014 2015 2016 2017 2018

More information

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS HPC User Forum, 7 th September, 2016 Outline of Talk Introduction of FLAGSHIP2020 project An Overview of post K system Concluding Remarks

More information

Japan HPC Programs - The Japanese national project of the K computer -

Japan HPC Programs - The Japanese national project of the K computer - TERATEC 2011 Forum Japan HPC Programs - The Japanese national project of the K computer - June 28,2011 Tadashi WATANABE Next-Generation Supercomputer R&D Center RIKEN 0 Contents Outline of the Project

More information

Introduction to the K computer

Introduction to the K computer Introduction to the K computer Fumiyoshi Shoji Deputy Director Operations and Computer Technologies Div. Advanced Institute for Computational Science RIKEN Outline ü Overview of the K

More information

The way toward peta-flops

The way toward peta-flops The way toward peta-flops ISC-2011 Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Where things started from DESIGN CONCEPTS 2 New challenges and requirements! Optimal sustained flops

More information

Introduction of Fujitsu s next-generation supercomputer

Introduction of Fujitsu s next-generation supercomputer Introduction of Fujitsu s next-generation supercomputer MATSUMOTO Takayuki July 16, 2014 HPC Platform Solutions Fujitsu has a long history of supercomputing over 30 years Technologies and experience of

More information

Experiences of the Development of the Supercomputers

Experiences of the Development of the Supercomputers Experiences of the Development of the Supercomputers - Earth Simulator and K Computer YOKOKAWA, Mitsuo Kobe University/RIKEN AICS Application Oriented Systems Developed in Japan No.1 systems in TOP500

More information

Introduction of Oakforest-PACS

Introduction of Oakforest-PACS Introduction of Oakforest-PACS Hiroshi Nakamura Director of Information Technology Center The Univ. of Tokyo (Director of JCAHPC) Outline Supercomputer deployment plan in Japan What is JCAHPC? Oakforest-PACS

More information

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED Post-K Supercomputer Overview 1 Post-K supercomputer overview Developing Post-K as the successor to the K computer with RIKEN Developing HPC-optimized high performance CPU and system software Selected

More information

Post-K: Building the Arm HPC Ecosystem

Post-K: Building the Arm HPC Ecosystem Post-K: Building the Arm HPC Ecosystem Toshiyuki Shimizu FUJITSU LIMITED Nov. 14th, 2017 Exhibitor Forum, SC17, Nov. 14, 2017 0 Post-K: Building up Arm HPC Ecosystem Fujitsu s approach for HPC Approach

More information

Technical Computing Suite supporting the hybrid system

Technical Computing Suite supporting the hybrid system Technical Computing Suite supporting the hybrid system Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster Hybrid System Configuration Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster 6D mesh/torus Interconnect

More information

Challenges in Developing Highly Reliable HPC systems

Challenges in Developing Highly Reliable HPC systems Dec. 1, 2012 JS International Symopsium on DVLSI Systems 2012 hallenges in Developing Highly Reliable HP systems Koichiro akayama Fujitsu Limited K computer Developed jointly by RIKEN and Fujitsu First

More information

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED Fujitsu Petascale Supercomputer PRIMEHPC FX10 4x2 racks (768 compute nodes) configuration PRIMEHPC FX10 Highlights Scales up to 23.2 PFLOPS Improves Fujitsu s supercomputer technology employed in the FX1

More information

Findings from real petascale computer systems with meteorological applications

Findings from real petascale computer systems with meteorological applications 15 th ECMWF Workshop Findings from real petascale computer systems with meteorological applications Toshiyuki Shimizu Next Generation Technical Computing Unit FUJITSU LIMITED October 2nd, 2012 Outline

More information

Brand-New Vector Supercomputer

Brand-New Vector Supercomputer Brand-New Vector Supercomputer NEC Corporation IT Platform Division Shintaro MOMOSE SC13 1 New Product NEC Released A Brand-New Vector Supercomputer, SX-ACE Just Now. Vector Supercomputer for Memory Bandwidth

More information

Programming for Fujitsu Supercomputers

Programming for Fujitsu Supercomputers Programming for Fujitsu Supercomputers Koh Hotta The Next Generation Technical Computing Fujitsu Limited To Programmers who are busy on their own research, Fujitsu provides environments for Parallel Programming

More information

Update of Post-K Development Yutaka Ishikawa RIKEN AICS

Update of Post-K Development Yutaka Ishikawa RIKEN AICS Update of Post-K Development Yutaka Ishikawa RIKEN AICS 11:20AM 11:40AM, 2 nd of November, 2017 FLAGSHIP2020 Project Missions Building the Japanese national flagship supercomputer, post K, and Developing

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs Introduction Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University How to.. Process terabytes

More information

The Architecture and the Application Performance of the Earth Simulator

The Architecture and the Application Performance of the Earth Simulator The Architecture and the Application Performance of the Earth Simulator Ken ichi Itakura (JAMSTEC) http://www.jamstec.go.jp 15 Dec., 2011 ICTS-TIFR Discussion Meeting-2011 1 Location of Earth Simulator

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency The next generation supercomputer and NWP system of JMA Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency Contents JMA supercomputer systems Current system (Mar

More information

White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10

White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10 White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10 Next Generation Technical Computing Unit Fujitsu Limited Contents Overview of the PRIMEHPC FX10 Supercomputer 2 SPARC64 TM IXfx: Fujitsu-Developed

More information

White paper FUJITSU Supercomputer PRIMEHPC FX100 Evolution to the Next Generation

White paper FUJITSU Supercomputer PRIMEHPC FX100 Evolution to the Next Generation White paper FUJITSU Supercomputer PRIMEHPC FX100 Evolution to the Next Generation Next Generation Technical Computing Unit Fujitsu Limited Contents FUJITSU Supercomputer PRIMEHPC FX100 System Overview

More information

A Simulation of Global Atmosphere Model NICAM on TSUBAME 2.5 Using OpenACC

A Simulation of Global Atmosphere Model NICAM on TSUBAME 2.5 Using OpenACC A Simulation of Global Atmosphere Model NICAM on TSUBAME 2.5 Using OpenACC Hisashi YASHIRO RIKEN Advanced Institute of Computational Science Kobe, Japan My topic The study for Cloud computing My topic

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Green Supercomputing

Green Supercomputing Green Supercomputing On the Energy Consumption of Modern E-Science Prof. Dr. Thomas Ludwig German Climate Computing Centre Hamburg, Germany ludwig@dkrz.de Outline DKRZ 2013 and Climate Science The Exascale

More information

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer Tianhe-2, the world s fastest supercomputer Shaohua Wu Senior HPC application development engineer Inspur Inspur revenue 5.8 2010-2013 6.4 2011 2012 Unit: billion$ 8.8 2013 21% Staff: 14, 000+ 12% 10%

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories HPC Benchmarking Presentations: Jack Dongarra, University of Tennessee & ORNL The HPL Benchmark: Past, Present & Future Mike Heroux, Sandia National Laboratories The HPCG Benchmark: Challenges It Presents

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar CRAY XK6 REDEFINING SUPERCOMPUTING - Sanjana Rakhecha - Nishad Nerurkar CONTENTS Introduction History Specifications Cray XK6 Architecture Performance Industry acceptance and applications Summary INTRODUCTION

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

FUJITSU HPC and the Development of the Post-K Supercomputer

FUJITSU HPC and the Development of the Post-K Supercomputer FUJITSU HPC and the Development of the Post-K Supercomputer Toshiyuki Shimizu Vice President, System Development Division, Next Generation Technical Computing Unit 0 November 16 th, 2016 Post-K is currently

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

Exascale: challenges and opportunities in a power constrained world

Exascale: challenges and opportunities in a power constrained world Exascale: challenges and opportunities in a power constrained world Carlo Cavazzoni c.cavazzoni@cineca.it SuperComputing Applications and Innovation Department CINECA CINECA non profit Consortium, made

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Post-K Development and Introducing DLU. Copyright 2017 FUJITSU LIMITED

Post-K Development and Introducing DLU. Copyright 2017 FUJITSU LIMITED Post-K Development and Introducing DLU 0 Fujitsu s HPC Development Timeline K computer The K computer is still competitive in various fields; from advanced research to manufacturing. Deep Learning Unit

More information

Himeno Performance Benchmark and Profiling. December 2010

Himeno Performance Benchmark and Profiling. December 2010 Himeno Performance Benchmark and Profiling December 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource

More information

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

CUDA. Matthew Joyner, Jeremy Williams

CUDA. Matthew Joyner, Jeremy Williams CUDA Matthew Joyner, Jeremy Williams Agenda What is CUDA? CUDA GPU Architecture CPU/GPU Communication Coding in CUDA Use cases of CUDA Comparison to OpenCL What is CUDA? What is CUDA? CUDA is a parallel

More information

Basic Specification of Oakforest-PACS

Basic Specification of Oakforest-PACS Basic Specification of Oakforest-PACS Joint Center for Advanced HPC (JCAHPC) by Information Technology Center, the University of Tokyo and Center for Computational Sciences, University of Tsukuba Oakforest-PACS

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

How то Use HPC Resources Efficiently by a Message Oriented Framework.

How то Use HPC Resources Efficiently by a Message Oriented Framework. How то Use HPC Resources Efficiently by a Message Oriented Framework www.hp-see.eu E. Atanassov, T. Gurov, A. Karaivanova Institute of Information and Communication Technologies Bulgarian Academy of Science

More information

Fujitsu High Performance CPU for the Post-K Computer

Fujitsu High Performance CPU for the Post-K Computer Fujitsu High Performance CPU for the Post-K Computer August 21 st, 2018 Toshio Yoshida FUJITSU LIMITED 0 Key Message A64FX is the new Fujitsu-designed Arm processor It is used in the post-k computer A64FX

More information

Fujitsu and the HPC Pyramid

Fujitsu and the HPC Pyramid Fujitsu and the HPC Pyramid Wolfgang Gentzsch Executive HPC Strategist (external) Fujitsu Global HPC Competence Center June 20 th, 2012 1 Copyright 2012 FUJITSU "Fujitsu's objective is to contribute to

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

Oak Ridge National Laboratory Computing and Computational Sciences

Oak Ridge National Laboratory Computing and Computational Sciences Oak Ridge National Laboratory Computing and Computational Sciences OFA Update by ORNL Presented by: Pavel Shamis (Pasha) OFA Workshop Mar 17, 2015 Acknowledgments Bernholdt David E. Hill Jason J. Leverman

More information

Jülich Supercomputing Centre

Jülich Supercomputing Centre Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre Norbert Attig Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich (FZJ) Aug 26, 2009 DOAG Regionaltreffen NRW 2 Supercomputing at

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

The Red Storm System: Architecture, System Update and Performance Analysis

The Red Storm System: Architecture, System Update and Performance Analysis The Red Storm System: Architecture, System Update and Performance Analysis Douglas Doerfler, Jim Tomkins Sandia National Laboratories Center for Computation, Computers, Information and Mathematics LACSI

More information

Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration

Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration Exascale Applications and Software Conference 21st 23rd April 2015, Edinburgh, UK Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration Xue-Feng

More information

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Sep 2009 Gilad Shainer, Tong Liu (Mellanox); Jeffrey Layton (Dell); Joshua Mora (AMD) High Performance Interconnects for

More information

HOKUSAI System. Figure 0-1 System diagram

HOKUSAI System. Figure 0-1 System diagram HOKUSAI System October 11, 2017 Information Systems Division, RIKEN 1.1 System Overview The HOKUSAI system consists of the following key components: - Massively Parallel Computer(GWMPC,BWMPC) - Application

More information

The Cray Rainier System: Integrated Scalar/Vector Computing

The Cray Rainier System: Integrated Scalar/Vector Computing THE SUPERCOMPUTER COMPANY The Cray Rainier System: Integrated Scalar/Vector Computing Per Nyberg 11 th ECMWF Workshop on HPC in Meteorology Topics Current Product Overview Cray Technology Strengths Rainier

More information

Lattice QCD on Graphics Processing Units?

Lattice QCD on Graphics Processing Units? Lattice QCD on Graphics Processing Units? Zhaofeng Liu LPT, INRIA-Futurs(Orsay), PRISM(Versailles), IRISA/INRIA(Rennes), CAPS-Entreprise June 14, 2007 Outline Background Graphics Processing Units(GPU)

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Practical Scientific Computing

Practical Scientific Computing Practical Scientific Computing Performance-optimized Programming Preliminary discussion: July 11, 2008 Dr. Ralf-Peter Mundani, mundani@tum.de Dipl.-Ing. Ioan Lucian Muntean, muntean@in.tum.de MSc. Csaba

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Fujitsu's Lustre Contributions - Policy and Roadmap-

Fujitsu's Lustre Contributions - Policy and Roadmap- Lustre Administrators and Developers Workshop 2014 Fujitsu's Lustre Contributions - Policy and Roadmap- Shinji Sumimoto, Kenichiro Sakai Fujitsu Limited, a member of OpenSFS Outline of This Talk Current

More information

ECE 574 Cluster Computing Lecture 2

ECE 574 Cluster Computing Lecture 2 ECE 574 Cluster Computing Lecture 2 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 24 January 2019 Announcements Put your name on HW#1 before turning in! 1 Top500 List November

More information

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity Fujitsu High Performance Computing Ecosystem Human Centric Innovation in Action Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Innovation Flexibility Simplicity INTERNAL USE ONLY 0 Copyright

More information

Portable and Productive Performance with OpenACC Compilers and Tools. Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc.

Portable and Productive Performance with OpenACC Compilers and Tools. Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. Portable and Productive Performance with OpenACC Compilers and Tools Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. 1 Cray: Leadership in Computational Research Earth Sciences

More information

Fabio AFFINITO.

Fabio AFFINITO. Introduction to High Performance Computing Fabio AFFINITO What is the meaning of High Performance Computing? What does HIGH PERFORMANCE mean??? 1976... Cray-1 supercomputer First commercial successful

More information

Compute Node Linux: Overview, Progress to Date & Roadmap

Compute Node Linux: Overview, Progress to Date & Roadmap Compute Node Linux: Overview, Progress to Date & Roadmap David Wallace Cray Inc ABSTRACT: : This presentation will provide an overview of Compute Node Linux(CNL) for the CRAY XT machine series. Compute

More information

Early Experiences Writing Performance Portable OpenMP 4 Codes

Early Experiences Writing Performance Portable OpenMP 4 Codes Early Experiences Writing Performance Portable OpenMP 4 Codes Verónica G. Vergara Larrea Wayne Joubert M. Graham Lopez Oscar Hernandez Oak Ridge National Laboratory Problem statement APU FPGA neuromorphic

More information

Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning

Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning Yukinori Sato (JAIST / JST CREST) Hiroko Midorikawa (Seikei Univ. / JST CREST) Toshio Endo (TITECH / JST CREST)

More information

Medical practice: diagnostics, treatment and surgery in supercomputing centers

Medical practice: diagnostics, treatment and surgery in supercomputing centers International Advanced Research Workshop on High Performance Computing from Clouds and Big Data to Exascale and Beyond Medical practice: diagnostics, treatment and surgery in supercomputing centers Prof.

More information

Fujitsu and the HPC Pyramid

Fujitsu and the HPC Pyramid Fujitsu and the HPC Pyramid Wolfgang Gentzsch Executive HPC Strategist (external) Fujitsu Global HPC Competence Center June 20 th, 2012 1 Copyright 2012 FUJITSU "Fujitsu's objective is to contribute to

More information

An Overview of Fujitsu s Lustre Based File System

An Overview of Fujitsu s Lustre Based File System An Overview of Fujitsu s Lustre Based File System Shinji Sumimoto Fujitsu Limited Apr.12 2011 For Maximizing CPU Utilization by Minimizing File IO Overhead Outline Target System Overview Goals of Fujitsu

More information

Getting the best performance from massively parallel computer

Getting the best performance from massively parallel computer Getting the best performance from massively parallel computer June 6 th, 2013 Takashi Aoki Next Generation Technical Computing Unit Fujitsu Limited Agenda Second generation petascale supercomputer PRIMEHPC

More information

ECMWF Workshop on High Performance Computing in Meteorology. 3 rd November Dean Stewart

ECMWF Workshop on High Performance Computing in Meteorology. 3 rd November Dean Stewart ECMWF Workshop on High Performance Computing in Meteorology 3 rd November 2010 Dean Stewart Agenda Company Overview Rogue Wave Product Overview IMSL Fortran TotalView Debugger Acumem ThreadSpotter 1 Copyright

More information

The IBM Blue Gene/Q: Application performance, scalability and optimisation

The IBM Blue Gene/Q: Application performance, scalability and optimisation The IBM Blue Gene/Q: Application performance, scalability and optimisation Mike Ashworth, Andrew Porter Scientific Computing Department & STFC Hartree Centre Manish Modani IBM STFC Daresbury Laboratory,

More information

Parallel Computing & Accelerators. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

Parallel Computing & Accelerators. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Parallel Computing Accelerators John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Purpose of this talk This is the 50,000 ft. view of the parallel computing landscape. We want

More information

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction ICON for HD(CP) 2 High Definition Clouds and Precipitation for Advancing Climate Prediction High Definition Clouds and Precipitation for Advancing Climate Prediction ICON 2 years ago Parameterize shallow

More information

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D HPC with GPU and its applications from Inspur Haibo Xie, Ph.D xiehb@inspur.com 2 Agenda I. HPC with GPU II. YITIAN solution and application 3 New Moore s Law 4 HPC? HPC stands for High Heterogeneous Performance

More information

HPC and Big Data: Updates about China. Haohuan FU August 29 th, 2017

HPC and Big Data: Updates about China. Haohuan FU August 29 th, 2017 HPC and Big Data: Updates about China Haohuan FU August 29 th, 2017 1 Outline HPC and Big Data Projects in China Recent Efforts on Tianhe-2 Recent Efforts on Sunway TaihuLight 2 MOST HPC Projects 2016

More information

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks WRF Model NASA Parallel Benchmark Intel MPI Bench My own personal benchmark HPC Challenge Benchmark Abstract

More information

NIA CFD Futures Conference Hampton, VA; August 2012

NIA CFD Futures Conference Hampton, VA; August 2012 Petascale Computing and Similarity Scaling in Turbulence P. K. Yeung Schools of AE, CSE, ME Georgia Tech pk.yeung@ae.gatech.edu NIA CFD Futures Conference Hampton, VA; August 2012 10 2 10 1 10 4 10 5 Supported

More information

An Introduction to OpenACC

An Introduction to OpenACC An Introduction to OpenACC Alistair Hart Cray Exascale Research Initiative Europe 3 Timetable Day 1: Wednesday 29th August 2012 13:00 Welcome and overview 13:15 Session 1: An Introduction to OpenACC 13:15

More information

T2K & HA-PACS Projects Supercomputers at CCS

T2K & HA-PACS Projects Supercomputers at CCS T2K & HA-PACS Projects Supercomputers at CCS Taisuke Boku Deputy Director, HPC Division Center for Computational Sciences University of Tsukuba Two Streams of Supercomputers at CCS Service oriented general

More information

Tightly Coupled Accelerators Architecture

Tightly Coupled Accelerators Architecture Tightly Coupled Accelerators Architecture Yuetsu Kodama Division of High Performance Computing Systems Center for Computational Sciences University of Tsukuba, Japan 1 What is Tightly Coupled Accelerators

More information

CC-IN2P3: A High Performance Data Center for Research

CC-IN2P3: A High Performance Data Center for Research April 15 th, 2011 CC-IN2P3: A High Performance Data Center for Research Toward a partnership with DELL Dominique Boutigny Agenda Welcome Introduction to CC-IN2P3 Visit of the computer room Lunch Discussion

More information

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING Top 10 Supercomputers in the World as of November 2013*

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING Top 10 Supercomputers in the World as of November 2013* CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 COMPUTERS : PRESENT, PAST & FUTURE Top 10 Supercomputers in the World as of November 2013* No Site Computer Cores Rmax + (TFLOPS) Rpeak (TFLOPS)

More information

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers Outline Execution Environments for Parallel Applications Master CANS 2007/2008 Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya Supercomputers OS abstractions Extended OS

More information

Intel High-Performance Computing. Technologies for Engineering

Intel High-Performance Computing. Technologies for Engineering 6. LS-DYNA Anwenderforum, Frankenthal 2007 Keynote-Vorträge II Intel High-Performance Computing Technologies for Engineering H. Cornelius Intel GmbH A - II - 29 Keynote-Vorträge II 6. LS-DYNA Anwenderforum,

More information

Compiler Technology That Demonstrates Ability of the K computer

Compiler Technology That Demonstrates Ability of the K computer ompiler echnology hat Demonstrates Ability of the K computer Koutarou aki Manabu Matsuyama Hitoshi Murai Kazuo Minami We developed SAR64 VIIIfx, a new U for constructing a huge computing system on a scale

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is connected

More information

Co-existence: Can Big Data and Big Computation Co-exist on the Same Systems?

Co-existence: Can Big Data and Big Computation Co-exist on the Same Systems? Co-existence: Can Big Data and Big Computation Co-exist on the Same Systems? Dr. William Kramer National Center for Supercomputing Applications, University of Illinois Where these views come from Large

More information