Chap1 Introduction. Outline. An Example System. 1.1 Overview. Computer organization and architecture. Computer organization and architecture

Size: px
Start display at page:

Download "Chap1 Introduction. Outline. An Example System. 1.1 Overview. Computer organization and architecture. Computer organization and architecture"

Transcription

1 Computer Architecture Chap Introduction Zheng Qinghua CS Department of XJTU Outline Overview What s the Computer Architecture Classification of Computer Architecture Quantitative Design Principles Evaluation and Benchmark Overview Why study computer architecture? Design better programs, including system software such as compilers, operating systems, and device drivers. Optimize program behavior. Evaluate (benchmark) computer system performance. Understand the tradeoffs relationship among time, space, and price cost. An Example System What does it all mean? Computer organization and architecture Computer organization physical aspects of computer systems. E.g., circuit design, control signals, memory types. Key: How does a computer work? Computer architecture Logical aspects of system as seen by the assembly programmer or OS designer. E.g., instruction sets, instruction formats, data types, addressing modes, I/O mode. Key: How do we design a computer? Computer organization and architecture Principle of Equivalence of Hardware and Software: Anything that can be done with software can also be done with hardware, and anything that can be done with hardware can also be done with software.* At the most basic level, a computer is a device consisting of three pieces: A processor to interpret and execute programs A memory to store both data and programs A mechanism for * Assuming speed is not a concern. transferring data to and from the outside world, i.e. I/O system.

2 .2 What is Computer Architecture? Research Topics of Single Computer Architecture Definition[Amdahl, Blaaw, and Brooks, 964.]: the attributes of a [computing] system as seen by the programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation. Remark: G.M.Amdahl was the general system designer of IBM,he proposed this conception in 964 when he designed the IBM 360 computer. Input/Output and Storage Memory Hierarchy Hard Disks, CD, NAS, SAN DRAM L2 Cache L Cache VLSI Instruction Set Architecture Pipelining, Hazard Resolution, Superscalar, Reordering, Prediction, Speculation, Vector, DSP Emerging Technologies Interleaving Memories Coherence, Bandwidth, Latency RAID Addressing, Protection, Exception Handling Pipelining and Instruction Level Parallelism Research Topics of Multiple Computer Architecture The Tasks of a Computer Designer P M P M P M P M. Shared Memory, 2. Message Passing, 3. Data Parallelism Implementation Complexity Evaluate Existing Systems for Bottlenecks S Interconnection Network Processor-Memory-Switch Multiprocessors Networks and Interconnections Network Interfaces Topologies, Routing, Bandwidth, Latency, Reliability Implement Next Generation System Workloads Technology Trends Simulate New Designs and Organizations Benchmarks Basic principle: balance Cost /Performance Computer Systems: Technology Trends Supercomputers Multi Core Processor Massively Parallel Processors Network of SMP Mini-supercomputers Workstations Minicomputers Mainframes Workstations Supercomputers PC s Cloud Computing Embedded Computers.3 The Computer Level Hierarchy Complex computer systems employ virtual machine layers. Each one is an abstraction of the level below it, execute their own particular instructions, calling upon machines at lower levels to perform tasks as required. Computer circuits ultimately carry out the work. 2

3 .3 The Computer Level Hierarchy Level 6: The User Level Program execution and user interface level. The level with which we are most familiar. Level 5: High-Level Language Level The level with which we interact when we write programs in languages such as C, Python, XML and Java. Level 4: Assembly Language Level Acts upon assembly language produced from Level 5, as well as instructions programmed directly at this level..3 The Computer Level Hierarchy Level 3: System Software Level Controls and Schedule executing processes on the system. Protects system resources. Level 2: Machine Level Also known as the Instruction Set Architecture (ISA) Level. Consists of instructions that are particular to the architecture of the machine. Programs written in machine language need no compilers, interpreters, or assemblers..3 The Computer Level Hierarchy Level : Control Level A control unit decodes and executes instructions and moves data through the system. Control units can be microprogrammed or hardwired. A microprogram is a program written in a low-level language that is implemented by the hardware. Hardwired control units consist of hardware that directly executes machine instructions. Level 0: Digital Logic Level This level is where we find digital circuits (the chips). Digital circuits consist of gates and wires. These components implement the mathematical logic of all other levels. )CPUs Single CPU Multiple Processors Parallel Processing Correlated Processing Superscalar Pipeline Symmetric Multiple Processors MPP (Massively Parallel Processors) Cluster, Cloud 2)Flynn Categories(996) () SISD :Single Instruction Single Data stream. (2) SIMD:Single Instruction Stream Multiple Data stream. (3) MISD:Single Data stream for Multiple Instructions. (4) MIMD:Multiple Instruction stream Multiple Data stream..4 Classification SISD:Single Instruction Single Data Stream SIMD:Single Instruction Multiple Data stream Ex:PDP- IBM-360/370 PC 8086 Z-80 Ex:Vectors Operate(+,-,*) ILLAC Ⅳ(64 Units) Array Machine Pentium s padd [b,w,d] 3

4 SIMD Computers MISD:Multiple Instructions Single Data Stream Such computers require multiple processing elements. Can share global memory among PEs or each PE might have local memory Control Unit controls signals to all PEs (one instruction is sent out, each PE has its own memory to work on) SIMD Computer characteristics: distribute processing over large amount of hardware, operate concurrently on many different data elements, perform same computation on each data element Commonly used for vector applications. MISD is a controversy architecture, no practical application. MISD Computers Logically, such a computer would issue several instructions simultaneously on the same datum For instance, perform six different analysis of the information stored in a single array Such an operation can be carried out on a SISD computer as sequential analysis, or on a MIMD computer MISD computers would be very restrictive in terms of useful applications and are therefore not constructed MIMD : Multiple Instructions Multiple Data Streams EX:IBM 308/3084 Univac 00/80,Cray-2 etc. MIMD Computers These are true parallel processing computers These computers have many independent processors (a computer with two somewhat dependent processors is not a MIMD) MIMD Characteristics: distribute processing over independent processors, share resources (sometimes including main memory), processors operate independently and concurrently, each processor can also run its own program Two extremes for MIMD computers: global memory (tightly coupled) local memory (loosely coupled).5 Quantitative Principles for Computer Architecture Designing Make the Common Case Fast Amdahl s Law CPU Performance Equation, decrease CPI Clock cycle time CPI: Cycles Per Instruction IPC: Instruction Count per Cycle Principles of Locality Take advantage of Parallelism 4

5 Principle:Make the common case fast. E.g.: Cache,short codec for common use instruction, Amdahl s Law: Relates total speedup of a system to the speedup of some portion of that system. Amdal Law ExTime new = ExTime old x ( - Fraction enhanced ) + Fraction enhanced Speedup enhanced Speedup overall = ExTime old ExTime new = ( - Fraction enhanced ) + Fraction enhanced Speedup enhanced Example -: 例 : 设某计算机系统执行程序中, 可向量化部分最大可达 70% 一种实现方法是采用阵列多处理机即硬件方式实现, 使 60% 的向量化指令执行速度加快到原来的 0 倍, 另一种方法是采用优化编译系统的方法实现, 使向量化程序可达 70%, 且速度可增加 3 倍 请比较这两种方案哪种更优 S硬件 ( 60%) 0.6 / S编译 ( 70%) 0.7 / 采用硬件的方法且有更高的加速比 年 3 月 If Amdahl Law can be used in parallel computer system or multi-processors to find the maximum expected improvement to an overall system when only part of the system is improved? References: Think it over Principle2: CPU Performance Equation CPU time ( Seconds ) = Instructions x Cycles x Seconds Program Program Instruction Cycle Inst Count CPI Clock Rate Program X Compiler X (X) Inst. Set. X X Organization X X Principle2: Lower Cycles Per Instruction (CPI) CPI = (CPU Time * Clock Rate) / Instruction Count = Cycles / Instruction Count CPU_ Time Cycle _ Time* Instruction Frequency CPI n i CPI i * F i where n i CPI i * I i F i Number of instructions of type I. Ii Instruction _ Count Technology X Invest Resources where time is Spent! 5

6 Principle2: Lower Cycles Per Instruction Suppose we have a machine where we can count the frequency with which instructions are executed. We also know how many cycles it takes for each instruction type. Base Machine (Reg / Reg) Op Freq Cycles CPI(i) (% Time) ALU 50%.5 (33%) Load 20% 2.4 (27%) Store 0% 2.2 (3%) Branch 20% 2.4 (27%) Total CPI.5 Example-2 : 设某程序中 FP 操作占 20%, 其平均 CPI=4.0, FPSQR 操作的比例占 4%, 其 CPI=20.0, 其它指令平均 CPI=.20, 现采用两种方法进行优化 : a. 将 FP 操作的 CPI 减为 2; b. 将 FPSQR 操作的 CPI 减少为 2; 问哪一种方法更优? 若同时采用 a b 方法, 系统的加速比多少? [ 解 ]:CPI a =(-20%-4%) CPI 其他 +(20% CPI FP ) +4%CPI FPSQR = % 2+4% 20 = 2. CPI b =(-20%-4%) CPI 其他 +20% CPI FP +4% CPI FPSQR = %+2 4%=2.3 所以, 采用方法 a 更优 Speedup: CPI ( 原 ) S CPI ( 新 ) ( 20% 4%) CPI ( 20% 4%) CPI 其它 其它 20% CPI 20% CPI 76%.20 20% 4 4% %.20 20% 2 4% 2 FP 4% CPI 4% CPI FPQSR FP FPQSR Principle3: Locality of Reference Thumb: only 20% instructions consume 80% execution time. Programs access a relatively small portion of the address space at any instant of time. Two different types of locality: Temporal Locality (locality in time): If an item is referenced, it will tend to be referenced again soon (loops, reuse, etc.) Spatial Locality (locality in space/location): If an item is referenced, items whose addresses are close by tend to be referenced soon (straight line code, array access, etc.).6 Measuring and Reporting Performance Metrics-: Throughput Execution time is the best measure of computer performance! Two issues: Metrics how do we describe in a numerical way for the performance of a computer? What tools do we use to find those metrics? Application Programming Language Compiler Data BUS Datapath Control Function Units Transistors Wires Pins Operations per second (millions) of Instructions per second: MIPS (millions) of (FP) operations per second: MFLOP/s Megabytes per second Cycles per second (clock rate) 6

7 Methods For Predicting Performance Benchmarks, Traces, Mixes Hardware: Cost, delay, area, power estimation Simulation (many levels) ISA, RT, Gate, Circuit Queuing Theory to predict the load Fundamental Laws /Principles Index : MIPS(Million Instructions Per Second) Features: The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions. Therefore, MIPS only can be useful when comparing performance between processors made from a similar architecture. CPU instruction rates are different from clock frequencies, some instruction may require several clock cycles, or the processor may be capable of executing multiple independent instructions at once. MIPS has not become a measure of instruction execution speed. Effective MIPS speeds are highly dependent on the programming language used. nstructions_per_second Index 2: MFlops(Million Floating point Operation Per Second) Features: )MFlops can only indicate the performance of float point performance, it can t represent overall system performance. 2)MFlops is highly dependent on programming language, instruction sets, e.g *9.3 2 and /9.3 2 are no comparable. Float Point Operations MFlops 6 Execution Time 0 Index 3:Benchmark Test Background: No single numerical measurement can completely describe the performance of a complex device like a computer. The only totally accurate way to measure the performance of your system, however, is to test the software applications you use on your computer system. Benchmark results published by Intel are measured on specific systems using specific hardware and software configurations. Two kinds: component and system. Component benchmarks measure the performance of specific parts of a computer system, such as a microprocessor or hard disk drive, while system benchmarks typically measure the performance of the entire computer system. Multiple Benchmarks for different purposes. E.g. CPU file read/write I/O network and so on. Typical Benchmarks:. Comprehensive: E.g. Dhrystone,Whetstone. 2. Kernel:E.g. Livemore Fortran Kernals, NAS. 3. Matlib:E.g. Linpack, FFT. 4. Application:E.g., SPEC,Perfect, Splash 5. Parallel:NPB, PARKBENCK of NAS You can find LINPACK, LAPACK, BLAS, BLACS, Livemore and other benchmark test tools. SPEC: System Performance Evaluation Cooperative First Round programs yielding a single number ( SPECmarks ) Second Round 992 SPECInt92 (6 integer programs) and SPECfp92 (4 floating point programs) Third Round 995 new set of programs: SPECint95 (8 integer programs) and SPECfp95 (0 floating point) benchmarks useful for 3 years Single flag setting for all programs: SPECint_base95, SPECfp_base95 7

8 Metrics-2: System s Reliability Bathtub Curve. Concepts Error: reasons of fault Fault: bugs, flaws and errors initiate system fault in run-time. Failure: faults cause system disaster, it shows Bathtub curve rule. Fault avoidance: to prevent or hold back fault happening. Fault tolerant: system still can run even error or fault 207 happened. 年 3 月 How to measure Reliability Reliability:probability of no fault, R () t e t failure rate MTTF: Mean Time To Failure MTTF Rtdt e t () dt e t R(t) t 例 : 设系统的平均无故障时间是 0 4 小时, 问该系统正常工作 小时的可靠性是多少? 解 : 因 MTTF=0 4, 故 l=0-4, R()=e =0.990 MTBF = MTTF+MTTR=/ + /u Wherein, MTTR is the average time for recovering failure/u, and u is the recovery rate. MTBF: Mean Time Between Failure Availability of system MTTF / Availability MTTF MTTR / / Summary Website of my courseware: Summary:. Concept: What s computer architecture? 2. Classification of Computer Architecture. 3. Design Principle: Make Common Case fast, Amdahl Law, CPU Performance, Locality. 4. Evaluation Benchmark. Exercises: References: Read the listed Wikipedia s websites. 8

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

EECS4201 Computer Architecture

EECS4201 Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis These slides are based on the slides provided by the publisher. The slides will be

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Computer Architecture Is the attributes of a [computing] system as seen by the programmer, i.e.,

More information

Understanding IO patterns of SSDs

Understanding IO patterns of SSDs 固态硬盘 I/O 特性测试 周大 众所周知, 固态硬盘是一种由闪存作为存储介质的数据库存储设备 由于闪存和磁盘之间物理特性的巨大差异, 现有的各种软件系统无法直接使用闪存芯片 为了提供对现有软件系统的支持, 往往在闪存之上添加一个闪存转换层来实现此目的 固态硬盘就是在闪存上附加了闪存转换层从而提供和磁盘相同的访问接口的存储设备 一方面, 闪存本身具有独特的访问特性 另外一方面, 闪存转换层内置大量的算法来实现闪存和磁盘访问接口之间的转换

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

The Von Neumann Computer Model

The Von Neumann Computer Model The Von Neumann Computer Model Partitioning of the computing engine into components: Central Processing Unit (CPU): Control Unit (instruction decode, sequencing of operations), Datapath (registers, arithmetic

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information

Chapter 1 (Part 2) Introduction to Operating System

Chapter 1 (Part 2) Introduction to Operating System Chapter 1 (Part 2) Introduction to Operating System 张竞慧办公室 : 计算机楼 366 室电邮 :jhzhang@seu.edu.cn 主页 :http://cse.seu.edu.cn/personalpage/zjh/ 电话 :025-52091017 1.1 Computer System Components 1. Hardware provides

More information

Course web site: teaching/courses/car. Piazza discussion forum:

Course web site:   teaching/courses/car. Piazza discussion forum: Announcements Course web site: http://www.inf.ed.ac.uk/ teaching/courses/car Lecture slides Tutorial problems Courseworks Piazza discussion forum: http://piazza.com/ed.ac.uk/spring2018/car Tutorials start

More information

Instructor Information

Instructor Information CS 203A Advanced Computer Architecture Lecture 1 1 Instructor Information Rajiv Gupta Office: Engg.II Room 408 E-mail: gupta@cs.ucr.edu Tel: (951) 827-2558 Office Times: T, Th 1-2 pm 2 1 Course Syllabus

More information

Computer Performance Evaluation: Cycles Per Instruction (CPI)

Computer Performance Evaluation: Cycles Per Instruction (CPI) Computer Performance Evaluation: Cycles Per Instruction (CPI) Most computers run synchronously utilizing a CPU clock running at a constant clock rate: where: Clock rate = 1 / clock cycle A computer machine

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Lecture - 4. Measurement. Dr. Soner Onder CS 4431 Michigan Technological University 9/29/2009 1

Lecture - 4. Measurement. Dr. Soner Onder CS 4431 Michigan Technological University 9/29/2009 1 Lecture - 4 Measurement Dr. Soner Onder CS 4431 Michigan Technological University 9/29/2009 1 Acknowledgements David Patterson Dr. Roger Kieckhafer 9/29/2009 2 Computer Architecture is Design and Analysis

More information

Previous on Computer Networks Class 18. ICMP: Internet Control Message Protocol IP Protocol Actually a IP packet

Previous on Computer Networks Class 18. ICMP: Internet Control Message Protocol IP Protocol Actually a IP packet ICMP: Internet Control Message Protocol IP Protocol Actually a IP packet 前 4 个字节都是一样的 0 8 16 31 类型代码检验和 ( 这 4 个字节取决于 ICMP 报文的类型 ) ICMP 的数据部分 ( 长度取决于类型 ) ICMP 报文 首部 数据部分 IP 数据报 ICMP: Internet Control Message

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

Operating Systems. Chapter 4 Threads. Lei Duan

Operating Systems. Chapter 4 Threads. Lei Duan Operating Systems Chapter 4 Threads Lei Duan leiduan@scu.edu.cn 2015.2 Agenda 4.1 Processes and Threads 4.2 Types of Threads 4.3 Multicore and Multithreading 4.4 Summary 2015-04-01 2/49 Agenda 4.1 Processes

More information

CpE 442 Introduction to Computer Architecture. The Role of Performance

CpE 442 Introduction to Computer Architecture. The Role of Performance CpE 442 Introduction to Computer Architecture The Role of Performance Instructor: H. H. Ammar CpE442 Lec2.1 Overview of Today s Lecture: The Role of Performance Review from Last Lecture Definition and

More information

Introduction to Computer Architecture II

Introduction to Computer Architecture II Introduction to Computer Architecture II ECE 154B Dmitri Strukov Computer systems overview 1 Outline Course information Trends Computing classes Quantitative Principles of Design Dependability 2 Course

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

ECE C61 Computer Architecture Lecture 2 performance. Prof. Alok N. Choudhary.

ECE C61 Computer Architecture Lecture 2 performance. Prof. Alok N. Choudhary. ECE C61 Computer Architecture Lecture 2 performance Prof Alok N Choudhary choudhar@ecenorthwesternedu 2-1 Today s s Lecture Performance Concepts Response Time Throughput Performance Evaluation Benchmarks

More information

Chapter 1. Instructor: Josep Torrellas CS433. Copyright Josep Torrellas 1999, 2001, 2002,

Chapter 1. Instructor: Josep Torrellas CS433. Copyright Josep Torrellas 1999, 2001, 2002, Chapter 1 Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Course Goals Introduce you to design principles, analysis techniques and design options in computer architecture

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

Triangle - Delaunay Triangulator

Triangle - Delaunay Triangulator Triangle - Delaunay Triangulator eryar@163.com Abstract. Triangle is a 2D quality mesh generator and Delaunay triangulator. Triangle was created as part of the Quake project in the school of Computer Science

More information

Module 5 Introduction to Parallel Processing Systems

Module 5 Introduction to Parallel Processing Systems Module 5 Introduction to Parallel Processing Systems 1. What is the difference between pipelining and parallelism? In general, parallelism is simply multiple operations being done at the same time.this

More information

Build a Key Value Flash Disk Based Storage System. Flash Memory Summit 2017 Santa Clara, CA 1

Build a Key Value Flash Disk Based Storage System. Flash Memory Summit 2017 Santa Clara, CA 1 Build a Key Value Flash Disk Based Storage System Flash Memory Summit 2017 Santa Clara, CA 1 Outline Ø Introduction,What s Key Value Disk Ø A Evolution to Key Value Flash Disk Based Storage System Ø Three

More information

Lecture 8: RISC & Parallel Computers. Parallel computers

Lecture 8: RISC & Parallel Computers. Parallel computers Lecture 8: RISC & Parallel Computers RISC vs CISC computers Parallel computers Final remarks Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation in computer

More information

Chapter 18 Parallel Processing

Chapter 18 Parallel Processing Chapter 18 Parallel Processing Multiple Processor Organization Single instruction, single data stream - SISD Single instruction, multiple data stream - SIMD Multiple instruction, single data stream - MISD

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

Parallel computer architecture classification

Parallel computer architecture classification Parallel computer architecture classification Hardware Parallelism Computing: execute instructions that operate on data. Computer Instructions Data Flynn s taxonomy (Michael Flynn, 1967) classifies computer

More information

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Parallel Processing http://www.yildiz.edu.tr/~naydin 1 2 Outline Multiple Processor

More information

Chapter2 Instruction Sets

Chapter2 Instruction Sets Coputer Architecture Chapter Instruction Sets Zheng Qinghua CS Departent of XJTU 05.3 Introduction to Instruction Set Architecture ISA is the structure of a coputer that a achine language prograer ust

More information

Transistors and Wires

Transistors and Wires Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis Part II These slides are based on the slides provided by the publisher. The slides

More information

云计算入门 Introduction to Cloud Computing GESC1001

云计算入门 Introduction to Cloud Computing GESC1001 Lecture #6 云计算入门 Introduction to Cloud Computing GESC1001 Philippe Fournier-Viger Professor School of Humanities and Social Sciences philfv8@yahoo.com Fall 2017 1 Introduction Last week: how cloud applications

More information

如何查看 Cache Engine 缓存中有哪些网站 /URL

如何查看 Cache Engine 缓存中有哪些网站 /URL 如何查看 Cache Engine 缓存中有哪些网站 /URL 目录 简介 硬件与软件版本 处理日志 验证配置 相关信息 简介 本文解释如何设置处理日志记录什么网站 /URL 在 Cache Engine 被缓存 硬件与软件版本 使用这些硬件和软件版本, 此配置开发并且测试了 : Hardware:Cisco 缓存引擎 500 系列和 73xx 软件 :Cisco Cache 软件版本 2.3.0

More information

MEASURING COMPUTER TIME. A computer faster than another? Necessity of evaluation computer performance

MEASURING COMPUTER TIME. A computer faster than another? Necessity of evaluation computer performance Necessity of evaluation computer performance MEASURING COMPUTER PERFORMANCE For comparing different computer performances User: Interested in reducing the execution time (response time) of a task. Computer

More information

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer Contents advanced anced computer architecture i FOR m.tech (jntu - hyderabad & kakinada) i year i semester (COMMON TO ECE, DECE, DECS, VLSI & EMBEDDED SYSTEMS) CONTENTS UNIT - I [CH. H. - 1] ] [FUNDAMENTALS

More information

Performance of computer systems

Performance of computer systems Performance of computer systems Many different factors among which: Technology Raw speed of the circuits (clock, switching time) Process technology (how many transistors on a chip) Organization What type

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class Overview of Today s Lecture: Cost & Price, Performance EE176-SJSU Computer Architecture and Organization Lecture 2 Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class EE176

More information

CC312: Computer Organization

CC312: Computer Organization CC312: Computer Organization 1 Chapter 1 Introduction Chapter 1 Objectives Know the difference between computer organization and computer architecture. Understand units of measure common to computer systems.

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Number Representation 09212011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Logic Circuits for Register Transfer

More information

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : CS6303 / COMPUTER ARCHITECTURE SEM / YEAR : VI / III year B.E. Unit I OVERVIEW AND INSTRUCTIONS Part A Q.No Questions BT Level

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications

More information

Lecture 2: Computer Performance. Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533

Lecture 2: Computer Performance. Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533 Lecture 2: Computer Performance Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533 Performance and Cost Purchasing perspective given a collection of machines, which has the - best performance?

More information

Bi-monthly report. Tianyi Luo

Bi-monthly report. Tianyi Luo Bi-monthly report Tianyi Luo 1 Work done in this week Write a crawler plus based on keywords (Support Chinese and English) Modify a Sina weibo crawler (340M/day) Offline learning to rank module is completed

More information

ICP Enablon User Manual Factory ICP Enablon 用户手册 工厂 Version th Jul 2012 版本 年 7 月 16 日. Content 内容

ICP Enablon User Manual Factory ICP Enablon 用户手册 工厂 Version th Jul 2012 版本 年 7 月 16 日. Content 内容 Content 内容 A1 A2 A3 A4 A5 A6 A7 A8 A9 Login via ICTI CARE Website 通过 ICTI 关爱网站登录 Completing the Application Form 填写申请表 Application Form Created 创建的申请表 Receive Acknowledgement Email 接收确认电子邮件 Receive User

More information

Top500 Supercomputer list

Top500 Supercomputer list Top500 Supercomputer list Tends to represent parallel computers, so distributed systems such as SETI@Home are neglected. Does not consider storage or I/O issues Both custom designed machines and commodity

More information

操作系统原理与设计. 第 13 章 IO Systems(IO 管理 ) 陈香兰 2009 年 09 月 01 日 中国科学技术大学计算机学院

操作系统原理与设计. 第 13 章 IO Systems(IO 管理 ) 陈香兰 2009 年 09 月 01 日 中国科学技术大学计算机学院 第 13 章 IO Systems(IO 管理 ) 中国科学技术大学计算机学院 2009 年 09 月 01 日 提纲 I/O Hardware 1 I/O Hardware Polling Interrupts Direct Memory Access (DMA) I/O hardware summary 2 Block and Character Devices Network Devices

More information

Lecture 23 Introduction to Paging

Lecture 23 Introduction to Paging Lecture 23 Introduction to Paging Why not Segmentation? Segmentation to chop up space into different-size chunks. the space itself can become fragmented, and thus allocation becomes more challenging over

More information

COSC 6385 Computer Architecture - Thread Level Parallelism (I)

COSC 6385 Computer Architecture - Thread Level Parallelism (I) COSC 6385 Computer Architecture - Thread Level Parallelism (I) Edgar Gabriel Spring 2014 Long-term trend on the number of transistor per integrated circuit Number of transistors double every ~18 month

More information

计算机组成原理第二讲 第二章 : 运算方法和运算器 数据与文字的表示方法 (1) 整数的表示方法. 授课老师 : 王浩宇

计算机组成原理第二讲 第二章 : 运算方法和运算器 数据与文字的表示方法 (1) 整数的表示方法. 授课老师 : 王浩宇 计算机组成原理第二讲 第二章 : 运算方法和运算器 数据与文字的表示方法 (1) 整数的表示方法 授课老师 : 王浩宇 haoyuwang@bupt.edu.cn 1 Today: Bits, Bytes, and Integers Representing information as bits Bit-level manipulations Integers Representation: unsigned

More information

15-740/ Computer Architecture Lecture 4: Pipelining. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 4: Pipelining. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 4: Pipelining Prof. Onur Mutlu Carnegie Mellon University Last Time Addressing modes Other ISA-level tradeoffs Programmer vs. microarchitect Virtual memory Unaligned

More information

密级 : 博士学位论文. 论文题目基于 ScratchPad Memory 的嵌入式系统优化研究

密级 : 博士学位论文. 论文题目基于 ScratchPad Memory 的嵌入式系统优化研究 密级 : 博士学位论文 论文题目基于 ScratchPad Memory 的嵌入式系统优化研究 作者姓名指导教师学科 ( 专业 ) 所在学院提交日期 胡威陈天洲教授计算机科学与技术计算机学院二零零八年三月 A Dissertation Submitted to Zhejiang University for the Degree of Doctor of Philosophy TITLE: The

More information

Computer Architecture. Chapter 1 Part 2 Performance Measures

Computer Architecture. Chapter 1 Part 2 Performance Measures Computer Architecture Chapter 1 Part 2 Performance Measures 1 Topics Designing for Performance Performance Measures 2 Designing for Performance (1) Support-Demand Cycle Computer Performance Demands Supports

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology Classes of Computers Personal computers General purpose, variety of software

More information

Introduction to Computer Science

Introduction to Computer Science Introduction to Computer Science 郝建业副教授 软件学院 http://www.escience.cn/people/jianye/index.html Lecturer Jianye HAO ( 郝建业 ) Email: jianye.hao@tju.edu.cn Tutor: Li Shuxin ( 李姝昕 ) Email: 957005030@qq.com Outline

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter Objectives To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks To present a number

More information

Keywords and Review Questions

Keywords and Review Questions Keywords and Review Questions lec1: Keywords: ISA, Moore s Law Q1. Who are the people credited for inventing transistor? Q2. In which year IC was invented and who was the inventor? Q3. What is ISA? Explain

More information

Computer Architecture 计算机体系结构. Lecture 9. CMP and Multicore System 第九讲 片上多处理器与多核系统. Chao Li, PhD. 李超博士

Computer Architecture 计算机体系结构. Lecture 9. CMP and Multicore System 第九讲 片上多处理器与多核系统. Chao Li, PhD. 李超博士 Computer Architecture 计算机体系结构 Lecture 9. CMP and Multicore System 第九讲 片上多处理器与多核系统 Chao Li, PhD. 李超博士 SJTU-SE346, Spring 2017 Review Classification of parallel architectures Shared-memory system Cache coherency

More information

TDT 4260 lecture 3 spring semester 2015

TDT 4260 lecture 3 spring semester 2015 1 TDT 4260 lecture 3 spring semester 2015 Lasse Natvig, The CARD group Dept. of computer & information science NTNU http://research.idi.ntnu.no/multicore 2 Lecture overview Repetition Chap.1: Performance,

More information

学习沉淀成长分享 EIGRP. 红茶三杯 ( 朱 SIR) 微博 : Latest update:

学习沉淀成长分享 EIGRP. 红茶三杯 ( 朱 SIR) 微博 :  Latest update: 学习沉淀成长分享 EIGRP 红茶三杯 ( 朱 SIR) 微博 :http://t.sina.com/vinsoney Latest update: 2012-06-01 课程目标 EIGRP 协议基础 EIGRP 基础配置 EIGRP 协议基础 EIGRP 的协议特点 EIGRP 的三张表 EIGRP 数据包 初始路由发现 EIGRP metric DUAL 算法 EIGRP 的协议特点 CISCO

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

绝佳的并行处理 - FPGA 加速的根本基石

绝佳的并行处理 - FPGA 加速的根本基石 赛灵思技术日 XILINX TECHNOLOGY DAY 绝佳的并行处理 - 加速的根本基石 朱勇赛灵思大中华区业务拓展总监 2019 年 3 月 19 日 加速 : 大幅提升应用的性能 Without acceleration CPU func1 func2 func3 func4 With acceleration CPU func1 func3 func4 func2 handles compute-intensive,

More information

The Role of Performance

The Role of Performance Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Role of Performance What is performance? A set of metrics that allow us to compare two different hardware

More information

RAID 0 (non-redundant) RAID Types 4/25/2011

RAID 0 (non-redundant) RAID Types 4/25/2011 Exam 3 Review COMP375 Topics I/O controllers chapter 7 Disk performance section 6.3-6.4 RAID section 6.2 Pipelining section 12.4 Superscalar chapter 14 RISC chapter 13 Parallel Processors chapter 18 Security

More information

Computer Organization and Design, 5th Edition: The Hardware/Software Interface

Computer Organization and Design, 5th Edition: The Hardware/Software Interface Computer Organization and Design, 5th Edition: The Hardware/Software Interface 1 Computer Abstractions and Technology 1.1 Introduction 1.2 Eight Great Ideas in Computer Architecture 1.3 Below Your Program

More information

BlueGene/L (No. 4 in the Latest Top500 List)

BlueGene/L (No. 4 in the Latest Top500 List) BlueGene/L (No. 4 in the Latest Top500 List) first supercomputer in the Blue Gene project architecture. Individual PowerPC 440 processors at 700Mhz Two processors reside in a single chip. Two chips reside

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 15, 2007 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines

Announcement. Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Chapter 9 Objectives. 9.2 RISC Machines Announcement Computer Architecture (CSC-3501) Lecture 25 (24 April 2008) Seung-Jong Park (Jay) http://wwwcsclsuedu/~sjpark 1 2 Chapter 9 Objectives 91 Introduction Learn the properties that often distinguish

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

EE282 Computer Architecture. Lecture 1: What is Computer Architecture?

EE282 Computer Architecture. Lecture 1: What is Computer Architecture? EE282 Computer Architecture Lecture : What is Computer Architecture? September 27, 200 Marc Tremblay Computer Systems Laboratory Stanford University marctrem@csl.stanford.edu Goals Understand how computer

More information

3/24/2014 BIT 325 PARALLEL PROCESSING ASSESSMENT. Lecture Notes:

3/24/2014 BIT 325 PARALLEL PROCESSING ASSESSMENT. Lecture Notes: BIT 325 PARALLEL PROCESSING ASSESSMENT CA 40% TESTS 30% PRESENTATIONS 10% EXAM 60% CLASS TIME TABLE SYLLUBUS & RECOMMENDED BOOKS Parallel processing Overview Clarification of parallel machines Some General

More information

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation

More information

PCU50 的整盘备份. 本文只针对操作系统为 Windows XP 版本的 PCU50 PCU50 启动硬件自检完后, 出现下面文字时, 按向下光标键 光标条停在 SINUMERIK 下方的空白处, 如下图, 按回车键 PCU50 会进入到服务画面, 如下图

PCU50 的整盘备份. 本文只针对操作系统为 Windows XP 版本的 PCU50 PCU50 启动硬件自检完后, 出现下面文字时, 按向下光标键 光标条停在 SINUMERIK 下方的空白处, 如下图, 按回车键 PCU50 会进入到服务画面, 如下图 PCU50 的整盘备份 本文只针对操作系统为 Windows XP 版本的 PCU50 PCU50 启动硬件自检完后, 出现下面文字时, 按向下光标键 OS Loader V4.00 Please select the operating system to start: SINUMERIK Use and to move the highlight to your choice. Press Enter

More information

Lecture 3 for pipelining

Lecture 3 for pipelining Lecture 3 for pipelining The control hazard How to solve the control hazard Pipelining Hazards Taxonomy of Hazards Structural hazards These are conflicts over hardware resources. OK, maybe add extra hardware

More information

2. Introduction to Digital Media Format

2. Introduction to Digital Media Format Digital Asset Management 数字媒体资源管理 2. Introduction to Digital Media Format 任课 老师 : 张宏鑫 2014-09-30 Outline Image format and coding methods Audio format and coding methods Video format and coding methods

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 18, 2005 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Lecture 9: MIMD Architecture

Lecture 9: MIMD Architecture Lecture 9: MIMD Architecture Introduction and classification Symmetric multiprocessors NUMA architecture Cluster machines Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is

More information

: Operating System 计算机原理与设计

: Operating System 计算机原理与设计 11741: Operating System 计算机原理与设计 Chapter 9: Virtual Memory( 虚存 ) 陈香兰 xlanchen@ustceducn http://staffustceducn/~xlanchen Computer Application Laboratory, CS, USTC @ Hefei Embedded System Laboratory, CS,

More information

DPDK Summit China 2017

DPDK Summit China 2017 DPDK Summit China 2017 Network Acceleration and Performance Improvement Lou, Fangliang ZTE Agenda 第一第二第三第四 Performance optimization concepts and methods Performance optimization crisis Software Performance

More information

Unit 9 : Fundamentals of Parallel Processing

Unit 9 : Fundamentals of Parallel Processing Unit 9 : Fundamentals of Parallel Processing Lesson 1 : Types of Parallel Processing 1.1. Learning Objectives On completion of this lesson you will be able to : classify different types of parallel processing

More information

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Sept. 5 th : Homework 1 release (due on Sept.

More information

CS654 Advanced Computer Architecture. Lec 2 - Introduction

CS654 Advanced Computer Architecture. Lec 2 - Introduction CS654 Advanced Computer Architecture Lec 2 - Introduction Peter Kemper Adapted from the slides of EECS 252 by Prof. David Patterson Electrical Engineering and Computer Sciences University of California,

More information

RISC Processors and Parallel Processing. Section and 3.3.6

RISC Processors and Parallel Processing. Section and 3.3.6 RISC Processors and Parallel Processing Section 3.3.5 and 3.3.6 The Control Unit When a program is being executed it is actually the CPU receiving and executing a sequence of machine code instructions.

More information

CS 426 Parallel Computing. Parallel Computing Platforms

CS 426 Parallel Computing. Parallel Computing Platforms CS 426 Parallel Computing Parallel Computing Platforms Ozcan Ozturk http://www.cs.bilkent.edu.tr/~ozturk/cs426/ Slides are adapted from ``Introduction to Parallel Computing'' Topic Overview Implicit Parallelism:

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction A set of general purpose processors is connected together.

More information

DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES

DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES SYLLABUS EC6009 ADVANCED COMPUTER ARCHITECTURE L T P C 3 0 0 3 OBJECTIVES: The student should be made to: Understand the

More information

Advanced Computer Architecture. The Architecture of Parallel Computers

Advanced Computer Architecture. The Architecture of Parallel Computers Advanced Computer Architecture The Architecture of Parallel Computers Computer Systems No Component Can be Treated In Isolation From the Others Application Software Operating System Hardware Architecture

More information

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization Parallel Computer Architecture A parallel computer is a collection of processing elements that cooperate to solve large problems fast Broad issues involved: Resource Allocation: Number of processing elements

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources

Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources Reader's Guide Outline of the Book A Roadmap For Readers and Instructors Why Study Computer Organization and Architecture Internet and Web Resources Overview Introduction Organization and Architecture

More information