Advanced Research Computing. ARC3 and GPUs. Mark Dixon

Size: px
Start display at page:

Download "Advanced Research Computing. ARC3 and GPUs. Mark Dixon"

Transcription

1 Advanced Research Computing Mark Dixon

2 ARC3 (1st March 217) Included 2 GPU nodes, each with: 24 Intel CPU cores & 128G RAM (same as standard compute node) 2 NVIDIA Tesla K8 24G RAM PCIe cards ARC3 upgrade (21st September 217) Added 6 GPU nodes, each with: 24 Intel CPU cores & 256G RAM 4 NVIDIA Tesla P1 12G RAM PCIe cards

3 Why? Increasing interest in GPUs from users Increasing support for GPUs in applications High theoretical speed Suited to strongly-scaling problems requiring relatively low memory sizes GPUs typically use a memory latency hiding programming model: helps make best use of memory bandwidth

4 Why NOT? Can be difficult to extract the theoretical performance More complicated programming: Code runs on the CPU and the GPU(s), transferring memory between them as needed Need to overlap multiple tasks at once: transferring memory, multiple different sets of computations Algorithms need to be amenable to SIMD (Single Instruction Multiple Data, a.k.a. vectorisation) The unwary can be locked in to NVIDIA's hardware

5 ARC3 Standard compute node

6 ARC3 P1 GPU node

7 Comparison: 2x Intel E5-265 v4 NVIDIA K8 card NVIDIA P1 card Calc/s (DP) 845 Gflops 2.9 Tflops 4.7 Tflops Cores 24 Intel cores 2x 2496 Cuda cores 3584 Cuda cores Clock speed 2.2 GHz 875 MHz 1.3 GHz Mem size 128 GB 2x 12 GB 12 GB ~5 GB/s ~5 GB/s Mem Bandwidth ~1 GB/s Different terminology between CPU and GPU worlds Cuda cores are not comparable to CPU cores!

8 ARC3 NVIDIA P1 GPU (4.7 Tflops)

9 What is SIMD / Vectorisation? Where the compiler can automatically rewrite something like this: for (i =, i < SIZE; i++) { c[i] = a[i] * b[i]; } Into something like this (loop unrolling): for (i =, i < SIZE; i += 4) { c[i] = a[i] * b[i]; And then the memory c[i+1] = a[i+1] * b[i+1]; layout means it can c[i+2] = a[i+2] * b[i+2]; issue a single c[i+3] = a[i+3] * b[i+3]; instruction to do this. } }

10 Submitting jobs: To run a batch job: qsub -l h_rt=<time>,coproc_<gpu_type>=<num_cards> job_script.sh To get an interactive session (use for compiling GPU applications): qrsh -l h_rt=<time>,coproc_<gpu_type>=<num_cards> -pty y bash Jobs given dedicated access to GPU, no sharing NVIDIA K8 (num_cards = 1 or 2): NVIDIA P1 (num_cards = 1, 2, 3 or 4): Allocated fractions of a compute node if it has 4 cards and job asks for 1 card, get ¼ of the cores and memory in node.

11 Submitting jobs (examples): NVIDIA K8: qsub -l h_rt=1::,coproc_k8=1 job_script.sh (batch) qrsh -l h_rt=1::,coproc_k8=1 -pty y bash (interactive) Gives you: 12 CPU cores & 64G RAM 1 NVIDIA K8 card (the K8 is a bit odd - appears as 2 GPUs) NVIDIA P1: qsub -l h_rt=1::,coproc_p1=1 job_script.sh (batch) qrsh -l h_rt=1::,coproc_p1=1 -pty y bash (interactive) Gives you: 6 CPU cores & 64G RAM 1 NVIDIA P1 card (appears as 1 GPU)

12 Useful commands: See what hardware is free: $ qstat -g c CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoacds cdsue core-128G-2K8.q core-128G.q core-256G-4P1.q core-768G.q thread-112G-cache.q thread-112G-half -NA 256thread-112G-memory.q astro.q cryoem-2p4.q cryoem-4p1.q maths.q minphys.q omics.q skyblue.q

13 Useful commands: See what you are running: $ qstat job-id prior name user state submit/start at queue slots ja-task-id bash issmcd r 11/24/217 9:54:5 24core-256G-4P1.q@db12gpu5.a bash issmcd r 11/24/217 9:54:5 24core-256G-4P1.q@db12gpu5.a bash issmcd r 11/24/217 9:54:59 24core-256G-4P1.q@db12gpu6.a sleep.sh issmcd qw 11/24/217 11:25:33 12

14 OK, so you have your GPU. What next? Within a job, setup NVIDIA development environment: module load cuda module switch intel gnu/native Once done, the NVIDIA CUDA compiler (nvcc) is available, as are things like a status tool (nvidia-smi), profiling tools (nvprof and nvvp) Also makes CUDA optimised numerical libraries available, e.g. linear algebra (cublas, cusparse), FFTs (cufft), image processing (NPP), etc. Note: some applications need a specific major version (execute module avail cuda to see choices) Note: if you are building an application and its build scripts asks where the CUDA files are, their location can be found by executing: echo $CUDA_HOME

15 The NVIDIA CUDA compiler (nvcc) Different GPU cards have different capabilities and different architectures Can be important to optimise when building applications Nvcc can create a single fat binary optimised for multiple GPU cards To run on a: K8, want: -gencode arch=compute_37,code=sm_37 P1, want: -gencode arch=compute_6,code=sm_6 Use both to optimise for both cards nvcc doesn't need a GPU to run (e.g. on a login node), but many application build scripts expect one so build applications within a GPU job.

16 Useful commands: Within a job, see what GPUs you have: $ nvidia-smi Fri Nov 24 11:28: NVIDIA-SMI Driver Version: GPU Name Fan Temp Persistence-M Bus-Id Perf Pwr:Usage/Cap Disp.A Volatile Uncorr. ECC Memory-Usage GPU-Util Compute M. ===============================+======================+====================== N/A Tesla K8 45C P On :5:. Off 58W / 149W 1911MiB / 11439MiB % Default N/A Tesla K8 39C P On :6:. Off 72W / 149W 1873MiB / 11439MiB % Default Processes: GPU GPU Memory PID Type Process name Usage ============================================================================= 8885 C /opt/conda/bin/python 1896MiB C /opt/conda/bin/python 1858MiB

17 Useful commands: Within a job, see how busy your GPUs are: $ nvidia-smi dmon # gpu pwr temp # Idx W C ^C sm % mem % enc % dec % (updates every second, Ctrl-C to quit) mclk MHz pclk MHz

18 Example job script (submit with qsub job_script.sh): #$ -l h_rt=1:: #$ -l coproc_p1=2 #$ -j y # Asked for two GPUs. # The first is device, the second is device 1. # Log GPU details nvidia-smi # Collect GPU performance stats, one line per 1 seconds nvidia-smi dmon -d 1 > "${JOB_NAME}.g${JOB_ID}" & # Run program./mygpuprogram

19 Example job script output: File job_script.sh.g<job_id> # gpu # Idx pwr W temp C sm % 4 mem % enc % dec % mclk MHz pclk MHz

20 Example job script output: File job_script.sh.o<job_id> ## Hosts assigned to job : ## ## db12gpu8.arc3.leeds.ac.uk 12 slots ## ## Resources granted: ## ## h_vmem = (per slot) ## h_rt = 1:: ## disk = 1G (per slot) Fri Nov 24 11:47: NVIDIA-SMI Driver Version: GPU Name Fan Temp Persistence-M Bus-Id Perf Pwr:Usage/Cap Disp.A Volatile Uncorr. ECC Memory-Usage GPU-Util Compute M. ===============================+======================+====================== N/A Tesla P1-PCIE... 29C P On :82:. Off 29W / 25W MiB / 12193MiB % Default

21 Program ming Other tools Tool Trade off NVIDIA CUDA (C dialect, nvcc compiler) OpenCL (C API, non-proprietary). Existing codes need to be rewritten. Provides the most optimisation opportunities. Experimenting with OpenMP 4 / OpenACC (code annotation of Fortran, C or C++) on GCC 7.2. Existing code can be reused. Unlikely to extract as good performance as CUDA. NVIDIA CUDA provides a profiling and optimisation tool. NVIDIA CUDA provides optimised libraries (linear algebra, FFT, image processing, deep learning, etc.) Looking at integrating 3rd party tools like ddt, map and tau Multi-node MPI not currently supported on ARC3 with GPUs

22 Training: ARC to run CUDA courses in January Apply for an account: Documentation: ARC: (GPU sections still work in progress) NVIDIA:

Accelerator programming with OpenACC

Accelerator programming with OpenACC ..... Accelerator programming with OpenACC Colaboratorio Nacional de Computación Avanzada Jorge Castro jcastro@cenat.ac.cr 2018. Agenda 1 Introduction 2 OpenACC life cycle 3 Hands on session Profiling

More information

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky RWTH GPU-Cluster Fotos: Christian Iwainsky Sandra Wienke wienke@rz.rwth-aachen.de March 2012 Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative

More information

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky The GPU-Cluster Sandra Wienke wienke@rz.rwth-aachen.de Fotos: Christian Iwainsky Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative computer

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Gridengine. Contents. Aim. Configuration of gridengine. From reading group / nlp lunch

Gridengine. Contents. Aim. Configuration of gridengine. From reading group / nlp lunch Gridengine From reading group / nlp lunch Contents 1 Aim 2 Configuration of gridengine 3 Preparation (Login info) 4 How to use gridengine (Hello World Example) 5 Useful Commands 6 Other environmental variables

More information

Profiling & Tuning Applications. CUDA Course István Reguly

Profiling & Tuning Applications. CUDA Course István Reguly Profiling & Tuning Applications CUDA Course István Reguly Introduction Why is my application running slow? Work it out on paper Instrument code Profile it NVIDIA Visual Profiler Works with CUDA, needs

More information

GRID SOFTWARE. DU _v4.6 January User Guide

GRID SOFTWARE. DU _v4.6 January User Guide GRID SOFTWARE DU-06920-001 _v.6 January 2018 User Guide TABLE OF CONTENTS Chapter 1. Introduction to NVIDIA... 1 1.1. How this guide is organized... 1 1.2. GRID vgpu architecture... 2 1.3. Supported GPUs...

More information

HPC DOCUMENTATION. 3. Node Names and IP addresses:- Node details with respect to their individual IP addresses are given below:-

HPC DOCUMENTATION. 3. Node Names and IP addresses:- Node details with respect to their individual IP addresses are given below:- HPC DOCUMENTATION 1. Hardware Resource :- Our HPC consists of Blade chassis with 5 blade servers and one GPU rack server. a.total available cores for computing: - 96 cores. b.cores reserved and dedicated

More information

DELIVERING HIGH-PERFORMANCE REMOTE GRAPHICS WITH NVIDIA GRID VIRTUAL GPU. Andy Currid NVIDIA

DELIVERING HIGH-PERFORMANCE REMOTE GRAPHICS WITH NVIDIA GRID VIRTUAL GPU. Andy Currid NVIDIA DELIVERING HIGH-PERFORMANCE REMOTE GRAPHICS WITH NVIDIA GRID VIRTUAL Andy Currid NVIDIA WHAT YOU LL LEARN IN THIS SESSION NVIDIA's GRID Virtual Architecture What it is and how it works Using GRID Virtual

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC On-class STAT8330 Georgia Advanced Computing Resource Center University of Georgia Suchitra Pakala pakala@uga.edu Slides courtesy: Zhoufei Hou 1 Outline What

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca (Slides http://support.scinet.utoronto.ca/ northrup/westgrid CUDA.pdf) March 12, 2014

More information

Using JURECA's GPU Nodes

Using JURECA's GPU Nodes Mitglied der Helmholtz-Gemeinschaft Using JURECA's GPU Nodes Willi Homberg Supercomputing Centre Jülich (JSC) Introduction to the usage and programming of supercomputer resources in Jülich 23-24 May 2016

More information

An Introduction to OpenACC

An Introduction to OpenACC An Introduction to OpenACC Alistair Hart Cray Exascale Research Initiative Europe 3 Timetable Day 1: Wednesday 29th August 2012 13:00 Welcome and overview 13:15 Session 1: An Introduction to OpenACC 13:15

More information

GPU Computing with Fornax. Dr. Christopher Harris

GPU Computing with Fornax. Dr. Christopher Harris GPU Computing with Fornax Dr. Christopher Harris ivec@uwa CAASTRO GPU Training Workshop 8-9 October 2012 Introducing the Historical GPU Graphics Processing Unit (GPU) n : A specialised electronic circuit

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca March 13, 2014 Outline 1 Heterogeneous Computing 2 GPGPU - Overview Hardware Software

More information

GPU Performance Optimisation. Alan Gray EPCC The University of Edinburgh

GPU Performance Optimisation. Alan Gray EPCC The University of Edinburgh GPU Performance Optimisation EPCC The University of Edinburgh Hardware NVIDIA accelerated system: Memory Memory GPU vs CPU: Theoretical Peak capabilities NVIDIA Fermi AMD Magny-Cours (6172) Cores 448 (1.15GHz)

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Practical: a sample code

Practical: a sample code Practical: a sample code Alistair Hart Cray Exascale Research Initiative Europe 1 Aims The aim of this practical is to examine, compile and run a simple, pre-prepared OpenACC code The aims of this are:

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

An Introduc+on to OpenACC Part II

An Introduc+on to OpenACC Part II An Introduc+on to OpenACC Part II Wei Feinstein HPC User Services@LSU LONI Parallel Programming Workshop 2015 Louisiana State University 4 th HPC Parallel Programming Workshop An Introduc+on to OpenACC-

More information

Introduc)on to GPU Programming

Introduc)on to GPU Programming Introduc)on to GPU Programming Mubashir Adnan Qureshi h3p://www.ncsa.illinois.edu/people/kindr/projects/hpca/files/singapore_p1.pdf h3p://developer.download.nvidia.com/cuda/training/nvidia_gpu_compu)ng_webinars_cuda_memory_op)miza)on.pdf

More information

VIRTUAL GPU SOFTWARE. DU _v5.0 through 5.2 Revision 05 March User Guide

VIRTUAL GPU SOFTWARE. DU _v5.0 through 5.2 Revision 05 March User Guide VIRTUAL GPU SOFTWARE DU-69- _v5. through 5. Revision 5 March 8 User Guide TABLE OF CONTENTS Chapter. Introduction to NVIDIA vgpu Software..... How this Guide Is Organized..... NVIDIA vgpu Architecture....3.

More information

GPU ARCHITECTURE Chris Schultz, June 2017

GPU ARCHITECTURE Chris Schultz, June 2017 GPU ARCHITECTURE Chris Schultz, June 2017 MISC All of the opinions expressed in this presentation are my own and do not reflect any held by NVIDIA 2 OUTLINE CPU versus GPU Why are they different? CUDA

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Advanced Topics in High Performance Scientific Computing [MA5327] Exercise 1

Advanced Topics in High Performance Scientific Computing [MA5327] Exercise 1 Advanced Topics in High Performance Scientific Computing [MA5327] Exercise 1 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de

More information

VSC Users Day 2018 Start to GPU Ehsan Moravveji

VSC Users Day 2018 Start to GPU Ehsan Moravveji Outline A brief intro Available GPUs at VSC GPU architecture Benchmarking tests General Purpose GPU Programming Models VSC Users Day 2018 Start to GPU Ehsan Moravveji Image courtesy of Nvidia.com Generally

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Agenda 1 Agenda-Day 1 HPC Overview What is a cluster? Shared v.s. Distributed Parallel v.s. Massively Parallel Interconnects

More information

Intel Xeon Phi Coprocessors

Intel Xeon Phi Coprocessors Intel Xeon Phi Coprocessors Reference: Parallel Programming and Optimization with Intel Xeon Phi Coprocessors, by A. Vladimirov and V. Karpusenko, 2013 Ring Bus on Intel Xeon Phi Example with 8 cores Xeon

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015

Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015 Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015 Oct 1: Introduction to OpenACC Oct 6: Office Hours Oct 15: Profiling and Parallelizing with the OpenACC Toolkit

More information

Modern GPU Programming With CUDA and Thrust. Gilles Civario (ICHEC)

Modern GPU Programming With CUDA and Thrust. Gilles Civario (ICHEC) Modern GPU Programming With CUDA and Thrust Gilles Civario (ICHEC) gilles.civario@ichec.ie Let me introduce myself ID: Gilles Civario Gender: Male Age: 40 Affiliation: ICHEC Specialty: HPC Mission: CUDA

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Graham vs legacy systems

Graham vs legacy systems New User Seminar Graham vs legacy systems This webinar only covers topics pertaining to graham. For the introduction to our legacy systems (Orca etc.), please check the following recorded webinar: SHARCNet

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop Before We Start Sign in hpcxx account slips Windows Users: Download PuTTY Google PuTTY First result Save putty.exe to Desktop Research Computing at Virginia Tech Advanced Research Computing Compute Resources

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

High Performance Computing (HPC) Using zcluster at GACRC

High Performance Computing (HPC) Using zcluster at GACRC High Performance Computing (HPC) Using zcluster at GACRC On-class STAT8060 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC?

More information

Parallel Computing. November 20, W.Homberg

Parallel Computing. November 20, W.Homberg Mitglied der Helmholtz-Gemeinschaft Parallel Computing November 20, 2017 W.Homberg Why go parallel? Problem too large for single node Job requires more memory Shorter time to solution essential Better

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions How to run applications on Aziz supercomputer Mohammad Rafi System Administrator Fujitsu Technology Solutions Agenda Overview Compute Nodes Storage Infrastructure Servers Cluster Stack Environment Modules

More information

Experts in Application Acceleration Synective Labs AB

Experts in Application Acceleration Synective Labs AB Experts in Application Acceleration 1 2009 Synective Labs AB Magnus Peterson Synective Labs Synective Labs quick facts Expert company within software acceleration Based in Sweden with offices in Gothenburg

More information

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016 OpenACC. Part I Ned Nedialkov McMaster University Canada October 2016 Outline Introduction Execution model Memory model Compiling pgaccelinfo Example Speedups Profiling c 2016 Ned Nedialkov 2/23 Why accelerators

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Introduction to CUDA programming 1 Agenda GPU Architecture Overview Tools of the Trade Introduction to CUDA C Patterns of Parallel

More information

CSC573: TSHA Introduction to Accelerators

CSC573: TSHA Introduction to Accelerators CSC573: TSHA Introduction to Accelerators Sreepathi Pai September 5, 2017 URCS Outline Introduction to Accelerators GPU Architectures GPU Programming Models Outline Introduction to Accelerators GPU Architectures

More information

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018 S8630 - WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS Jakob Progsch, Mathias Wagner GTC 2018 1. Know your hardware BEFORE YOU START What are the target machines, how many nodes? Machine-specific

More information

Tesla Cluster Monitoring & Management

Tesla Cluster Monitoring & Management Tesla Cluster Monitoring & Management Introductions Robert Alexander CUDA Tools Software Engineer at NVIDIA Tesla Software Group Overview Management and Monitoring APIs Kepler Tesla Power Management Features

More information

CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION

CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION CUDA OPTIMIZATION WITH NVIDIA NSIGHT ECLIPSE EDITION WHAT YOU WILL LEARN An iterative method to optimize your GPU code Some common bottlenecks to look out for Performance diagnostics with NVIDIA Nsight

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni CUDA Optimizations WS 2014-15 Intelligent Robotics Seminar 1 Table of content 1 Background information 2 Optimizations 3 Summary 2 Table of content 1 Background information 2 Optimizations 3 Summary 3

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

WHAT S NEW IN CUDA 8. Siddharth Sharma, Oct 2016

WHAT S NEW IN CUDA 8. Siddharth Sharma, Oct 2016 WHAT S NEW IN CUDA 8 Siddharth Sharma, Oct 2016 WHAT S NEW IN CUDA 8 Why Should You Care >2X Run Computations Faster* Solve Larger Problems** Critical Path Analysis * HOOMD Blue v1.3.3 Lennard-Jones liquid

More information

PORTING CP2K TO THE INTEL XEON PHI. ARCHER Technical Forum, Wed 30 th July Iain Bethune

PORTING CP2K TO THE INTEL XEON PHI. ARCHER Technical Forum, Wed 30 th July Iain Bethune PORTING CP2K TO THE INTEL XEON PHI ARCHER Technical Forum, Wed 30 th July Iain Bethune (ibethune@epcc.ed.ac.uk) Outline Xeon Phi Overview Porting CP2K to Xeon Phi Performance Results Lessons Learned Further

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

GPU Cluster Usage Tutorial

GPU Cluster Usage Tutorial GPU Cluster Usage Tutorial How to make caffe and enjoy tensorflow on Torque 2016 11 12 Yunfeng Wang 1 PBS and Torque PBS: Portable Batch System, computer software that performs job scheduling versions

More information

Automated Finite Element Computations in the FEniCS Framework using GPUs

Automated Finite Element Computations in the FEniCS Framework using GPUs Automated Finite Element Computations in the FEniCS Framework using GPUs Florian Rathgeber (f.rathgeber10@imperial.ac.uk) Advanced Modelling and Computation Group (AMCG) Department of Earth Science & Engineering

More information

CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA

CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA CSC266 Introduction to Parallel Computing using GPUs Introduction to CUDA Sreepathi Pai October 18, 2017 URCS Outline Background Memory Code Execution Model Outline Background Memory Code Execution Model

More information

Introduction to GPU Programming

Introduction to GPU Programming Introduction to GPU Programming Volodymyr (Vlad) Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) Tutorial Goals Become familiar with

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

Quantum ESPRESSO on GPU accelerated systems

Quantum ESPRESSO on GPU accelerated systems Quantum ESPRESSO on GPU accelerated systems Massimiliano Fatica, Everett Phillips, Josh Romero - NVIDIA Filippo Spiga - University of Cambridge/ARM (UK) MaX International Conference, Trieste, Italy, January

More information

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro INTRODUCTION TO GPU COMPUTING WITH CUDA Topi Siro 19.10.2015 OUTLINE PART I - Tue 20.10 10-12 What is GPU computing? What is CUDA? Running GPU jobs on Triton PART II - Thu 22.10 10-12 Using libraries Different

More information

Using the computational resources at the GACRC

Using the computational resources at the GACRC An introduction to zcluster Georgia Advanced Computing Resource Center (GACRC) University of Georgia Dr. Landau s PHYS4601/6601 course - Spring 2017 What is GACRC? Georgia Advanced Computing Resource Center

More information

Overview of Parallel Computing. Timothy H. Kaiser, PH.D.

Overview of Parallel Computing. Timothy H. Kaiser, PH.D. Overview of Parallel Computing Timothy H. Kaiser, PH.D. tkaiser@mines.edu Introduction What is parallel computing? Why go parallel? The best example of parallel computing Some Terminology Slides and examples

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Addressing Heterogeneity in Manycore Applications

Addressing Heterogeneity in Manycore Applications Addressing Heterogeneity in Manycore Applications RTM Simulation Use Case stephane.bihan@caps-entreprise.com Oil&Gas HPC Workshop Rice University, Houston, March 2008 www.caps-entreprise.com Introduction

More information

GPU ARCHITECTURE Chris Schultz, June 2017

GPU ARCHITECTURE Chris Schultz, June 2017 Chris Schultz, June 2017 MISC All of the opinions expressed in this presentation are my own and do not reflect any held by NVIDIA 2 OUTLINE Problems Solved Over Time versus Why are they different? Complex

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu 1 Outline What is GACRC? What is HPC Concept? What

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

getting started guide

getting started guide Pure commitment. getting started guide Cloud GPU Compute version 2.0 Contents Introduction... 3 Intended audience... 3 Cloud GPU overview... 3 Before you begin... 4 Creating your virtual machine... 5 Provisioning

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology

Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology Automatic FFT Kernel Generation for CUDA GPUs. Akira Nukada Tokyo Institute of Technology FFT (Fast Fourier Transform) FFT is a fast algorithm to compute DFT (Discrete Fourier Transform). twiddle factors

More information

Device Memories and Matrix Multiplication

Device Memories and Matrix Multiplication Device Memories and Matrix Multiplication 1 Device Memories global, constant, and shared memories CUDA variable type qualifiers 2 Matrix Multiplication an application of tiling runningmatrixmul in the

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

The Titan Tools Experience

The Titan Tools Experience The Titan Tools Experience Michael J. Brim, Ph.D. Computer Science Research, CSMD/NCCS Petascale Tools Workshop 213 Madison, WI July 15, 213 Overview of Titan Cray XK7 18,688+ compute nodes 16-core AMD

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What is HPC Concept? What is

More information

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library Libraries Don t reinvent the wheel. Specialized math libraries are likely faster. BLAS: Basic Linear Algebra Subprograms LAPACK: Linear Algebra Package (uses BLAS) http://www.netlib.org/lapack/ to download

More information

NVIDIA GPU BOOST FOR TESLA

NVIDIA GPU BOOST FOR TESLA NVIDIA GPU BOOST FOR TESLA DA-06767-001_v02 January 2014 Application Note DOCUMENT CHANGE HISTORY DA-06767-001_v02 Version Date Authors Description of Change 01 March 28, 2013 GG, SM Initial Release 02

More information

Genius Quick Start Guide

Genius Quick Start Guide Genius Quick Start Guide Overview of the system Genius consists of a total of 116 nodes with 2 Skylake Xeon Gold 6140 processors. Each with 18 cores, at least 192GB of memory and 800 GB of local SSD disk.

More information

Introduction to PICO Parallel & Production Enviroment

Introduction to PICO Parallel & Production Enviroment Introduction to PICO Parallel & Production Enviroment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Nicola Spallanzani n.spallanzani@cineca.it

More information

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Jonas Hahnfeld 1, Christian Terboven 1, James Price 2, Hans Joachim Pflug 1, Matthias S. Müller

More information

High Performance Computing with Accelerators

High Performance Computing with Accelerators High Performance Computing with Accelerators Volodymyr Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) National Center for Supercomputing

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

Making use of and accounting for GPUs. Daniel Traynor, GridPP39

Making use of and accounting for GPUs. Daniel Traynor, GridPP39 Making use of and accounting for GPUs Daniel Traynor, GridPP39 Overview Given that we don't yet have accounting for GPUs setup I'm planning to talk more about practical GPU issues: Purchase, consumer vs

More information

VIRTUAL GPU SOFTWARE. DU _v6.0 March User Guide

VIRTUAL GPU SOFTWARE. DU _v6.0 March User Guide VIRTUAL GPU SOFTWARE DU-69- _v6. March User Guide TABLE OF CONTENTS Chapter. Introduction to NVIDIA vgpu Software..... How this Guide Is Organized..... NVIDIA vgpu Architecture....3. Supported GPUs....3..

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

Accelerate your Application with Kepler. Peter Messmer

Accelerate your Application with Kepler. Peter Messmer Accelerate your Application with Kepler Peter Messmer Goals How to analyze/optimize an existing application for GPUs What to consider when designing new GPU applications How to optimize performance with

More information

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten GPU Computing: Development and Analysis Part 1 Anton Wijs Muhammad Osama Marieke Huisman Sebastiaan Joosten NLeSC GPU Course Rob van Nieuwpoort & Ben van Werkhoven Who are we? Anton Wijs Assistant professor,

More information

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

The RWTH Compute Cluster Environment

The RWTH Compute Cluster Environment The RWTH Compute Cluster Environment Tim Cramer 29.07.2013 Source: D. Both, Bull GmbH Rechen- und Kommunikationszentrum (RZ) The RWTH Compute Cluster (1/2) The Cluster provides ~300 TFlop/s No. 32 in TOP500

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization

Exploiting Task-Parallelism on GPU Clusters via OmpSs and rcuda Virtualization Exploiting Task-Parallelism on Clusters via Adrián Castelló, Rafael Mayo, Judit Planas, Enrique S. Quintana-Ortí RePara 2015, August Helsinki, Finland Exploiting Task-Parallelism on Clusters via Power/energy/utilization

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC On-class PBIO/BINF8350 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What

More information